text
stringlengths 56
1.16k
|
---|
[2023-09-02 19:50:18,121::train::INFO] [train] Iter 13682 | loss 1.4554 | loss(rot) 0.9208 | loss(pos) 0.0778 | loss(seq) 0.4568 | grad 3.6734 | lr 0.0010 | time_forward 4.2080 | time_backward 6.1930 |
[2023-09-02 19:50:20,473::train::INFO] [train] Iter 13683 | loss 1.4553 | loss(rot) 0.5448 | loss(pos) 0.3376 | loss(seq) 0.5728 | grad 3.9189 | lr 0.0010 | time_forward 1.0780 | time_backward 1.2700 |
[2023-09-02 19:50:31,068::train::INFO] [train] Iter 13684 | loss 2.2505 | loss(rot) 1.3016 | loss(pos) 0.4084 | loss(seq) 0.5404 | grad 6.0844 | lr 0.0010 | time_forward 4.1170 | time_backward 6.4620 |
[2023-09-02 19:50:33,905::train::INFO] [train] Iter 13685 | loss 0.5976 | loss(rot) 0.1640 | loss(pos) 0.4028 | loss(seq) 0.0308 | grad 2.4133 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4880 |
[2023-09-02 19:50:36,634::train::INFO] [train] Iter 13686 | loss 2.1064 | loss(rot) 1.3862 | loss(pos) 0.1480 | loss(seq) 0.5723 | grad 4.6720 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4350 |
[2023-09-02 19:50:46,254::train::INFO] [train] Iter 13687 | loss 0.8073 | loss(rot) 0.5121 | loss(pos) 0.0877 | loss(seq) 0.2076 | grad 4.0477 | lr 0.0010 | time_forward 4.2700 | time_backward 5.3460 |
[2023-09-02 19:50:48,971::train::INFO] [train] Iter 13688 | loss 2.8542 | loss(rot) 0.0197 | loss(pos) 2.8338 | loss(seq) 0.0007 | grad 7.8497 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4640 |
[2023-09-02 19:50:57,768::train::INFO] [train] Iter 13689 | loss 1.6926 | loss(rot) 1.5641 | loss(pos) 0.0952 | loss(seq) 0.0333 | grad 6.0723 | lr 0.0010 | time_forward 3.6680 | time_backward 5.1260 |
[2023-09-02 19:51:00,606::train::INFO] [train] Iter 13690 | loss 1.6808 | loss(rot) 1.1321 | loss(pos) 0.1205 | loss(seq) 0.4283 | grad 3.2671 | lr 0.0010 | time_forward 1.3030 | time_backward 1.5310 |
[2023-09-02 19:51:10,896::train::INFO] [train] Iter 13691 | loss 0.9524 | loss(rot) 0.2886 | loss(pos) 0.1727 | loss(seq) 0.4911 | grad 3.9010 | lr 0.0010 | time_forward 4.2600 | time_backward 6.0260 |
[2023-09-02 19:51:13,802::train::INFO] [train] Iter 13692 | loss 1.4520 | loss(rot) 0.5181 | loss(pos) 0.7605 | loss(seq) 0.1734 | grad 6.1200 | lr 0.0010 | time_forward 1.3700 | time_backward 1.5320 |
[2023-09-02 19:51:23,131::train::INFO] [train] Iter 13693 | loss 2.0827 | loss(rot) 1.1270 | loss(pos) 0.3252 | loss(seq) 0.6305 | grad 4.5894 | lr 0.0010 | time_forward 3.6990 | time_backward 5.5930 |
[2023-09-02 19:51:33,670::train::INFO] [train] Iter 13694 | loss 1.0651 | loss(rot) 0.5054 | loss(pos) 0.0949 | loss(seq) 0.4648 | grad 4.0068 | lr 0.0010 | time_forward 4.2020 | time_backward 6.3330 |
[2023-09-02 19:51:41,514::train::INFO] [train] Iter 13695 | loss 1.9349 | loss(rot) 1.4056 | loss(pos) 0.4255 | loss(seq) 0.1038 | grad 5.5661 | lr 0.0010 | time_forward 3.1970 | time_backward 4.6430 |
[2023-09-02 19:51:51,047::train::INFO] [train] Iter 13696 | loss 2.3577 | loss(rot) 0.2918 | loss(pos) 2.0542 | loss(seq) 0.0117 | grad 6.4337 | lr 0.0010 | time_forward 4.0450 | time_backward 5.4840 |
[2023-09-02 19:52:01,407::train::INFO] [train] Iter 13697 | loss 0.9870 | loss(rot) 0.2798 | loss(pos) 0.2684 | loss(seq) 0.4388 | grad 3.4397 | lr 0.0010 | time_forward 4.2110 | time_backward 6.1450 |
[2023-09-02 19:52:12,109::train::INFO] [train] Iter 13698 | loss 1.6797 | loss(rot) 0.9760 | loss(pos) 0.2033 | loss(seq) 0.5004 | grad 9.6155 | lr 0.0010 | time_forward 4.2840 | time_backward 6.4140 |
[2023-09-02 19:52:21,443::train::INFO] [train] Iter 13699 | loss 2.2552 | loss(rot) 1.6123 | loss(pos) 0.2625 | loss(seq) 0.3804 | grad 4.7103 | lr 0.0010 | time_forward 3.7550 | time_backward 5.5750 |
[2023-09-02 19:52:29,116::train::INFO] [train] Iter 13700 | loss 1.1051 | loss(rot) 0.2011 | loss(pos) 0.6740 | loss(seq) 0.2300 | grad 3.6220 | lr 0.0010 | time_forward 3.2350 | time_backward 4.4340 |
[2023-09-02 19:52:31,858::train::INFO] [train] Iter 13701 | loss 1.8664 | loss(rot) 0.9371 | loss(pos) 0.3475 | loss(seq) 0.5818 | grad 4.7087 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4480 |
[2023-09-02 19:52:40,989::train::INFO] [train] Iter 13702 | loss 0.9001 | loss(rot) 0.4157 | loss(pos) 0.4240 | loss(seq) 0.0604 | grad 4.5268 | lr 0.0010 | time_forward 3.8560 | time_backward 5.2710 |
[2023-09-02 19:52:47,868::train::INFO] [train] Iter 13703 | loss 2.0282 | loss(rot) 1.6975 | loss(pos) 0.3304 | loss(seq) 0.0003 | grad 5.1848 | lr 0.0010 | time_forward 2.9310 | time_backward 3.9460 |
[2023-09-02 19:52:50,598::train::INFO] [train] Iter 13704 | loss 1.6868 | loss(rot) 1.5980 | loss(pos) 0.0886 | loss(seq) 0.0001 | grad 5.7546 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4460 |
[2023-09-02 19:52:59,430::train::INFO] [train] Iter 13705 | loss 1.2810 | loss(rot) 0.5378 | loss(pos) 0.6434 | loss(seq) 0.0997 | grad 7.5975 | lr 0.0010 | time_forward 3.7150 | time_backward 5.1130 |
[2023-09-02 19:53:02,137::train::INFO] [train] Iter 13706 | loss 1.5761 | loss(rot) 0.8924 | loss(pos) 0.2407 | loss(seq) 0.4429 | grad 4.0879 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4240 |
[2023-09-02 19:53:12,170::train::INFO] [train] Iter 13707 | loss 1.6193 | loss(rot) 0.9128 | loss(pos) 0.1605 | loss(seq) 0.5460 | grad 4.0996 | lr 0.0010 | time_forward 4.1860 | time_backward 5.8430 |
[2023-09-02 19:53:20,827::train::INFO] [train] Iter 13708 | loss 1.1188 | loss(rot) 1.0490 | loss(pos) 0.0637 | loss(seq) 0.0061 | grad 3.1394 | lr 0.0010 | time_forward 3.6490 | time_backward 5.0050 |
[2023-09-02 19:53:28,945::train::INFO] [train] Iter 13709 | loss 1.5717 | loss(rot) 0.1797 | loss(pos) 1.3907 | loss(seq) 0.0013 | grad 7.1128 | lr 0.0010 | time_forward 3.2430 | time_backward 4.8720 |
[2023-09-02 19:53:37,207::train::INFO] [train] Iter 13710 | loss 1.8490 | loss(rot) 1.2175 | loss(pos) 0.1385 | loss(seq) 0.4930 | grad 10.5515 | lr 0.0010 | time_forward 3.4060 | time_backward 4.8520 |
[2023-09-02 19:53:45,862::train::INFO] [train] Iter 13711 | loss 1.2636 | loss(rot) 0.1228 | loss(pos) 1.1149 | loss(seq) 0.0259 | grad 7.4489 | lr 0.0010 | time_forward 3.6350 | time_backward 5.0160 |
[2023-09-02 19:53:56,763::train::INFO] [train] Iter 13712 | loss 2.9347 | loss(rot) 2.6673 | loss(pos) 0.1147 | loss(seq) 0.1528 | grad 4.9507 | lr 0.0010 | time_forward 4.4180 | time_backward 6.4790 |
[2023-09-02 19:53:59,270::train::INFO] [train] Iter 13713 | loss 1.6211 | loss(rot) 0.8775 | loss(pos) 0.2773 | loss(seq) 0.4663 | grad 4.4541 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3220 |
[2023-09-02 19:54:07,777::train::INFO] [train] Iter 13714 | loss 2.1677 | loss(rot) 1.6406 | loss(pos) 0.0962 | loss(seq) 0.4309 | grad 5.4411 | lr 0.0010 | time_forward 3.5120 | time_backward 4.9790 |
[2023-09-02 19:54:14,620::train::INFO] [train] Iter 13715 | loss 2.6051 | loss(rot) 2.3637 | loss(pos) 0.2407 | loss(seq) 0.0007 | grad 5.9165 | lr 0.0010 | time_forward 2.8980 | time_backward 3.9410 |
[2023-09-02 19:54:25,238::train::INFO] [train] Iter 13716 | loss 2.0658 | loss(rot) 1.5569 | loss(pos) 0.2111 | loss(seq) 0.2977 | grad 5.1136 | lr 0.0010 | time_forward 4.2550 | time_backward 6.3610 |
[2023-09-02 19:54:28,611::train::INFO] [train] Iter 13717 | loss 1.0688 | loss(rot) 0.4051 | loss(pos) 0.4343 | loss(seq) 0.2294 | grad 4.9814 | lr 0.0010 | time_forward 1.4800 | time_backward 1.8900 |
[2023-09-02 19:54:36,857::train::INFO] [train] Iter 13718 | loss 1.1820 | loss(rot) 0.1361 | loss(pos) 1.0371 | loss(seq) 0.0088 | grad 5.1229 | lr 0.0010 | time_forward 3.5400 | time_backward 4.6880 |
[2023-09-02 19:54:39,192::train::INFO] [train] Iter 13719 | loss 1.0058 | loss(rot) 0.3932 | loss(pos) 0.1591 | loss(seq) 0.4536 | grad 3.7765 | lr 0.0010 | time_forward 1.0820 | time_backward 1.2490 |
[2023-09-02 19:54:48,050::train::INFO] [train] Iter 13720 | loss 0.8712 | loss(rot) 0.1612 | loss(pos) 0.4571 | loss(seq) 0.2529 | grad 5.1353 | lr 0.0010 | time_forward 3.7760 | time_backward 5.0780 |
[2023-09-02 19:54:58,569::train::INFO] [train] Iter 13721 | loss 1.9587 | loss(rot) 1.2057 | loss(pos) 0.2433 | loss(seq) 0.5097 | grad 4.0857 | lr 0.0010 | time_forward 4.2730 | time_backward 6.2430 |
[2023-09-02 19:55:00,903::train::INFO] [train] Iter 13722 | loss 1.7312 | loss(rot) 0.6991 | loss(pos) 0.4445 | loss(seq) 0.5876 | grad 5.5845 | lr 0.0010 | time_forward 1.0790 | time_backward 1.2530 |
[2023-09-02 19:55:09,698::train::INFO] [train] Iter 13723 | loss 1.4337 | loss(rot) 1.3244 | loss(pos) 0.0954 | loss(seq) 0.0138 | grad 6.8966 | lr 0.0010 | time_forward 3.5970 | time_backward 5.1940 |
[2023-09-02 19:55:19,285::train::INFO] [train] Iter 13724 | loss 0.6880 | loss(rot) 0.2562 | loss(pos) 0.3310 | loss(seq) 0.1009 | grad 2.6218 | lr 0.0010 | time_forward 4.0190 | time_backward 5.5640 |
[2023-09-02 19:55:29,508::train::INFO] [train] Iter 13725 | loss 4.4159 | loss(rot) 0.0186 | loss(pos) 4.3973 | loss(seq) 0.0000 | grad 11.0417 | lr 0.0010 | time_forward 4.1210 | time_backward 6.0980 |
[2023-09-02 19:55:39,867::train::INFO] [train] Iter 13726 | loss 2.1012 | loss(rot) 1.3364 | loss(pos) 0.2654 | loss(seq) 0.4994 | grad 11.6342 | lr 0.0010 | time_forward 4.0890 | time_backward 6.2650 |
[2023-09-02 19:55:50,602::train::INFO] [train] Iter 13727 | loss 1.7751 | loss(rot) 1.2536 | loss(pos) 0.0867 | loss(seq) 0.4347 | grad 3.4112 | lr 0.0010 | time_forward 4.1890 | time_backward 6.5430 |
[2023-09-02 19:56:01,109::train::INFO] [train] Iter 13728 | loss 1.0938 | loss(rot) 0.5484 | loss(pos) 0.3698 | loss(seq) 0.1756 | grad 3.5583 | lr 0.0010 | time_forward 4.6150 | time_backward 5.8880 |
[2023-09-02 19:56:11,620::train::INFO] [train] Iter 13729 | loss 1.4205 | loss(rot) 0.9272 | loss(pos) 0.1032 | loss(seq) 0.3901 | grad 5.1114 | lr 0.0010 | time_forward 4.3640 | time_backward 6.1440 |
[2023-09-02 19:56:14,392::train::INFO] [train] Iter 13730 | loss 1.9584 | loss(rot) 1.8406 | loss(pos) 0.1037 | loss(seq) 0.0141 | grad 11.9914 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4640 |
[2023-09-02 19:56:24,756::train::INFO] [train] Iter 13731 | loss 1.3609 | loss(rot) 0.8022 | loss(pos) 0.1231 | loss(seq) 0.4356 | grad 4.1044 | lr 0.0010 | time_forward 4.2400 | time_backward 6.1200 |
[2023-09-02 19:56:33,906::train::INFO] [train] Iter 13732 | loss 1.4561 | loss(rot) 0.6083 | loss(pos) 0.4849 | loss(seq) 0.3628 | grad 5.0520 | lr 0.0010 | time_forward 3.7910 | time_backward 5.3570 |
[2023-09-02 19:56:42,337::train::INFO] [train] Iter 13733 | loss 1.5308 | loss(rot) 1.0622 | loss(pos) 0.1385 | loss(seq) 0.3301 | grad 5.7384 | lr 0.0010 | time_forward 3.4950 | time_backward 4.9320 |
[2023-09-02 19:56:52,735::train::INFO] [train] Iter 13734 | loss 1.1941 | loss(rot) 1.0419 | loss(pos) 0.0697 | loss(seq) 0.0825 | grad 5.3601 | lr 0.0010 | time_forward 4.3990 | time_backward 5.9950 |
[2023-09-02 19:57:03,752::train::INFO] [train] Iter 13735 | loss 1.4154 | loss(rot) 1.0410 | loss(pos) 0.1489 | loss(seq) 0.2255 | grad 5.5801 | lr 0.0010 | time_forward 4.3550 | time_backward 6.6580 |
[2023-09-02 19:57:06,566::train::INFO] [train] Iter 13736 | loss 1.2927 | loss(rot) 1.0643 | loss(pos) 0.1351 | loss(seq) 0.0933 | grad 5.1436 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4680 |
[2023-09-02 19:57:17,854::train::INFO] [train] Iter 13737 | loss 1.4609 | loss(rot) 1.2258 | loss(pos) 0.0882 | loss(seq) 0.1469 | grad 3.1154 | lr 0.0010 | time_forward 4.6730 | time_backward 6.6120 |
[2023-09-02 19:57:28,043::train::INFO] [train] Iter 13738 | loss 1.6549 | loss(rot) 1.3394 | loss(pos) 0.0765 | loss(seq) 0.2390 | grad 3.8291 | lr 0.0010 | time_forward 4.4950 | time_backward 5.6900 |
[2023-09-02 19:57:31,610::train::INFO] [train] Iter 13739 | loss 2.0333 | loss(rot) 1.6927 | loss(pos) 0.1327 | loss(seq) 0.2079 | grad 5.0376 | lr 0.0010 | time_forward 1.4470 | time_backward 2.1170 |
[2023-09-02 19:57:35,068::train::INFO] [train] Iter 13740 | loss 2.5454 | loss(rot) 2.2120 | loss(pos) 0.1655 | loss(seq) 0.1680 | grad 4.4647 | lr 0.0010 | time_forward 1.5420 | time_backward 1.9110 |
[2023-09-02 19:57:37,825::train::INFO] [train] Iter 13741 | loss 0.7707 | loss(rot) 0.2194 | loss(pos) 0.3591 | loss(seq) 0.1921 | grad 3.0506 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4960 |
[2023-09-02 19:57:46,202::train::INFO] [train] Iter 13742 | loss 0.9513 | loss(rot) 0.4110 | loss(pos) 0.3376 | loss(seq) 0.2026 | grad 2.6789 | lr 0.0010 | time_forward 3.3490 | time_backward 5.0240 |
[2023-09-02 19:57:54,995::train::INFO] [train] Iter 13743 | loss 2.4061 | loss(rot) 1.5466 | loss(pos) 0.3284 | loss(seq) 0.5310 | grad 5.1257 | lr 0.0010 | time_forward 3.5360 | time_backward 5.2530 |
[2023-09-02 19:58:05,366::train::INFO] [train] Iter 13744 | loss 1.3505 | loss(rot) 0.1268 | loss(pos) 1.2075 | loss(seq) 0.0163 | grad 4.9513 | lr 0.0010 | time_forward 4.1500 | time_backward 6.2180 |
[2023-09-02 19:58:15,718::train::INFO] [train] Iter 13745 | loss 1.3475 | loss(rot) 0.5270 | loss(pos) 0.4568 | loss(seq) 0.3637 | grad 4.6177 | lr 0.0010 | time_forward 4.4030 | time_backward 5.9460 |
[2023-09-02 19:58:26,027::train::INFO] [train] Iter 13746 | loss 1.6959 | loss(rot) 1.4798 | loss(pos) 0.0789 | loss(seq) 0.1372 | grad 8.0537 | lr 0.0010 | time_forward 4.1210 | time_backward 6.1850 |
[2023-09-02 19:58:28,564::train::INFO] [train] Iter 13747 | loss 2.2353 | loss(rot) 1.6365 | loss(pos) 0.1551 | loss(seq) 0.4436 | grad 6.1900 | lr 0.0010 | time_forward 1.2180 | time_backward 1.3150 |
[2023-09-02 19:58:37,369::train::INFO] [train] Iter 13748 | loss 2.1696 | loss(rot) 1.6081 | loss(pos) 0.1892 | loss(seq) 0.3723 | grad 5.0596 | lr 0.0010 | time_forward 3.6260 | time_backward 5.1750 |
[2023-09-02 19:58:40,096::train::INFO] [train] Iter 13749 | loss 2.3135 | loss(rot) 2.0399 | loss(pos) 0.2630 | loss(seq) 0.0106 | grad 6.9272 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4440 |
[2023-09-02 19:58:48,752::train::INFO] [train] Iter 13750 | loss 1.5100 | loss(rot) 0.8613 | loss(pos) 0.2026 | loss(seq) 0.4461 | grad 6.2659 | lr 0.0010 | time_forward 3.6370 | time_backward 4.9920 |
[2023-09-02 19:58:56,001::train::INFO] [train] Iter 13751 | loss 1.3197 | loss(rot) 1.0787 | loss(pos) 0.1124 | loss(seq) 0.1286 | grad 10.0832 | lr 0.0010 | time_forward 2.8650 | time_backward 4.3810 |
[2023-09-02 19:59:04,125::train::INFO] [train] Iter 13752 | loss 1.9707 | loss(rot) 0.0458 | loss(pos) 1.9242 | loss(seq) 0.0008 | grad 5.7949 | lr 0.0010 | time_forward 3.2810 | time_backward 4.8400 |
[2023-09-02 19:59:13,159::train::INFO] [train] Iter 13753 | loss 1.3951 | loss(rot) 1.1478 | loss(pos) 0.0975 | loss(seq) 0.1498 | grad 4.9586 | lr 0.0010 | time_forward 3.7990 | time_backward 5.2320 |
[2023-09-02 19:59:21,805::train::INFO] [train] Iter 13754 | loss 1.8435 | loss(rot) 1.6797 | loss(pos) 0.1637 | loss(seq) 0.0001 | grad 6.2439 | lr 0.0010 | time_forward 3.6260 | time_backward 5.0160 |
[2023-09-02 19:59:31,505::train::INFO] [train] Iter 13755 | loss 1.7618 | loss(rot) 1.2670 | loss(pos) 0.1323 | loss(seq) 0.3625 | grad 7.0655 | lr 0.0010 | time_forward 4.0580 | time_backward 5.6390 |
[2023-09-02 19:59:34,337::train::INFO] [train] Iter 13756 | loss 1.4063 | loss(rot) 0.6354 | loss(pos) 0.5161 | loss(seq) 0.2547 | grad 6.0720 | lr 0.0010 | time_forward 1.2870 | time_backward 1.5390 |
[2023-09-02 19:59:42,966::train::INFO] [train] Iter 13757 | loss 1.5972 | loss(rot) 0.5899 | loss(pos) 0.7180 | loss(seq) 0.2892 | grad 6.0232 | lr 0.0010 | time_forward 3.7430 | time_backward 4.8820 |
[2023-09-02 19:59:52,392::train::INFO] [train] Iter 13758 | loss 1.7476 | loss(rot) 0.2329 | loss(pos) 1.2979 | loss(seq) 0.2168 | grad 5.1556 | lr 0.0010 | time_forward 4.0760 | time_backward 5.3470 |
[2023-09-02 19:59:59,842::train::INFO] [train] Iter 13759 | loss 2.4827 | loss(rot) 2.3072 | loss(pos) 0.1735 | loss(seq) 0.0021 | grad 5.9594 | lr 0.0010 | time_forward 3.1840 | time_backward 4.2620 |
[2023-09-02 20:00:09,821::train::INFO] [train] Iter 13760 | loss 1.6856 | loss(rot) 1.4569 | loss(pos) 0.1260 | loss(seq) 0.1027 | grad 7.7602 | lr 0.0010 | time_forward 4.1610 | time_backward 5.8140 |
[2023-09-02 20:00:19,233::train::INFO] [train] Iter 13761 | loss 1.5428 | loss(rot) 1.0263 | loss(pos) 0.1896 | loss(seq) 0.3270 | grad 8.2516 | lr 0.0010 | time_forward 4.0360 | time_backward 5.3730 |
[2023-09-02 20:00:29,278::train::INFO] [train] Iter 13762 | loss 1.4092 | loss(rot) 0.4593 | loss(pos) 0.3284 | loss(seq) 0.6216 | grad 3.4805 | lr 0.0010 | time_forward 4.2500 | time_backward 5.7900 |
[2023-09-02 20:00:38,815::train::INFO] [train] Iter 13763 | loss 0.9117 | loss(rot) 0.0588 | loss(pos) 0.8439 | loss(seq) 0.0090 | grad 4.3400 | lr 0.0010 | time_forward 4.0920 | time_backward 5.4300 |
[2023-09-02 20:00:48,029::train::INFO] [train] Iter 13764 | loss 2.2625 | loss(rot) 1.4213 | loss(pos) 0.3344 | loss(seq) 0.5068 | grad 5.8106 | lr 0.0010 | time_forward 3.7090 | time_backward 5.5010 |
[2023-09-02 20:00:58,747::train::INFO] [train] Iter 13765 | loss 1.3371 | loss(rot) 1.1134 | loss(pos) 0.2236 | loss(seq) 0.0000 | grad 6.3355 | lr 0.0010 | time_forward 4.4890 | time_backward 6.2250 |
[2023-09-02 20:01:08,837::train::INFO] [train] Iter 13766 | loss 1.9195 | loss(rot) 1.8153 | loss(pos) 0.0739 | loss(seq) 0.0303 | grad 3.4601 | lr 0.0010 | time_forward 4.0820 | time_backward 6.0040 |
[2023-09-02 20:01:18,738::train::INFO] [train] Iter 13767 | loss 1.5968 | loss(rot) 0.5251 | loss(pos) 0.7477 | loss(seq) 0.3239 | grad 4.4468 | lr 0.0010 | time_forward 3.7800 | time_backward 6.1170 |
[2023-09-02 20:01:26,871::train::INFO] [train] Iter 13768 | loss 3.0273 | loss(rot) 2.7524 | loss(pos) 0.0551 | loss(seq) 0.2197 | grad 6.1727 | lr 0.0010 | time_forward 3.1930 | time_backward 4.9360 |
[2023-09-02 20:01:35,825::train::INFO] [train] Iter 13769 | loss 1.2094 | loss(rot) 0.4857 | loss(pos) 0.2663 | loss(seq) 0.4573 | grad 4.1887 | lr 0.0010 | time_forward 3.7490 | time_backward 5.2020 |
[2023-09-02 20:01:43,540::train::INFO] [train] Iter 13770 | loss 1.7819 | loss(rot) 0.7494 | loss(pos) 0.5400 | loss(seq) 0.4925 | grad 7.3868 | lr 0.0010 | time_forward 3.2590 | time_backward 4.4520 |
[2023-09-02 20:01:51,739::train::INFO] [train] Iter 13771 | loss 1.7544 | loss(rot) 1.1218 | loss(pos) 0.1234 | loss(seq) 0.5091 | grad 4.6420 | lr 0.0010 | time_forward 3.5510 | time_backward 4.6440 |
[2023-09-02 20:02:00,569::train::INFO] [train] Iter 13772 | loss 0.6054 | loss(rot) 0.2066 | loss(pos) 0.3331 | loss(seq) 0.0658 | grad 5.5277 | lr 0.0010 | time_forward 3.8440 | time_backward 4.9830 |
[2023-09-02 20:02:08,862::train::INFO] [train] Iter 13773 | loss 1.4490 | loss(rot) 1.2400 | loss(pos) 0.1996 | loss(seq) 0.0094 | grad 6.9186 | lr 0.0010 | time_forward 3.3780 | time_backward 4.9110 |
[2023-09-02 20:02:11,600::train::INFO] [train] Iter 13774 | loss 1.4787 | loss(rot) 1.3628 | loss(pos) 0.0955 | loss(seq) 0.0204 | grad 5.5659 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4350 |
[2023-09-02 20:02:14,400::train::INFO] [train] Iter 13775 | loss 1.1196 | loss(rot) 0.4761 | loss(pos) 0.4098 | loss(seq) 0.2337 | grad 4.2828 | lr 0.0010 | time_forward 1.3380 | time_backward 1.4580 |
[2023-09-02 20:02:17,612::train::INFO] [train] Iter 13776 | loss 3.1481 | loss(rot) 0.0229 | loss(pos) 3.1252 | loss(seq) 0.0000 | grad 7.6158 | lr 0.0010 | time_forward 1.4040 | time_backward 1.7770 |
[2023-09-02 20:02:27,971::train::INFO] [train] Iter 13777 | loss 1.1477 | loss(rot) 0.2701 | loss(pos) 0.2722 | loss(seq) 0.6054 | grad 3.0230 | lr 0.0010 | time_forward 4.0830 | time_backward 6.2590 |
[2023-09-02 20:02:36,456::train::INFO] [train] Iter 13778 | loss 0.7126 | loss(rot) 0.1968 | loss(pos) 0.3600 | loss(seq) 0.1558 | grad 3.2825 | lr 0.0010 | time_forward 3.3710 | time_backward 5.1110 |
[2023-09-02 20:02:46,653::train::INFO] [train] Iter 13779 | loss 1.1317 | loss(rot) 0.4210 | loss(pos) 0.3402 | loss(seq) 0.3706 | grad 1.8616 | lr 0.0010 | time_forward 4.1510 | time_backward 6.0400 |
[2023-09-02 20:02:49,385::train::INFO] [train] Iter 13780 | loss 2.2612 | loss(rot) 1.6446 | loss(pos) 0.2079 | loss(seq) 0.4087 | grad 4.4773 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4720 |
[2023-09-02 20:02:58,548::train::INFO] [train] Iter 13781 | loss 1.1026 | loss(rot) 0.4538 | loss(pos) 0.2510 | loss(seq) 0.3979 | grad 3.4438 | lr 0.0010 | time_forward 3.8020 | time_backward 5.3430 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.