text
stringlengths 56
1.16k
|
---|
[2023-09-02 19:38:24,912::train::INFO] [train] Iter 13582 | loss 2.4457 | loss(rot) 1.6874 | loss(pos) 0.2508 | loss(seq) 0.5076 | grad 5.3575 | lr 0.0010 | time_forward 1.1900 | time_backward 1.4150 |
[2023-09-02 19:38:27,480::train::INFO] [train] Iter 13583 | loss 1.6697 | loss(rot) 1.3203 | loss(pos) 0.1379 | loss(seq) 0.2116 | grad 4.4653 | lr 0.0010 | time_forward 1.1800 | time_backward 1.3840 |
[2023-09-02 19:38:36,294::train::INFO] [train] Iter 13584 | loss 2.0275 | loss(rot) 1.4472 | loss(pos) 0.2612 | loss(seq) 0.3191 | grad 5.3082 | lr 0.0010 | time_forward 3.6220 | time_backward 5.1880 |
[2023-09-02 19:38:44,962::train::INFO] [train] Iter 13585 | loss 0.9666 | loss(rot) 0.3668 | loss(pos) 0.4303 | loss(seq) 0.1695 | grad 4.2455 | lr 0.0010 | time_forward 3.5250 | time_backward 5.1410 |
[2023-09-02 19:38:54,083::train::INFO] [train] Iter 13586 | loss 1.9500 | loss(rot) 0.9612 | loss(pos) 0.4250 | loss(seq) 0.5639 | grad 3.5391 | lr 0.0010 | time_forward 4.0050 | time_backward 5.1130 |
[2023-09-02 19:38:57,317::train::INFO] [train] Iter 13587 | loss 2.3035 | loss(rot) 2.1213 | loss(pos) 0.1821 | loss(seq) 0.0001 | grad 4.9206 | lr 0.0010 | time_forward 1.3880 | time_backward 1.8420 |
[2023-09-02 19:39:04,980::train::INFO] [train] Iter 13588 | loss 1.6987 | loss(rot) 0.6395 | loss(pos) 0.6730 | loss(seq) 0.3863 | grad 7.7761 | lr 0.0010 | time_forward 3.3520 | time_backward 4.3070 |
[2023-09-02 19:39:11,204::train::INFO] [train] Iter 13589 | loss 1.6364 | loss(rot) 0.9052 | loss(pos) 0.2219 | loss(seq) 0.5094 | grad 4.3078 | lr 0.0010 | time_forward 2.5520 | time_backward 3.6690 |
[2023-09-02 19:39:13,746::train::INFO] [train] Iter 13590 | loss 0.9193 | loss(rot) 0.3578 | loss(pos) 0.2561 | loss(seq) 0.3053 | grad 3.7178 | lr 0.0010 | time_forward 1.1690 | time_backward 1.3690 |
[2023-09-02 19:39:21,353::train::INFO] [train] Iter 13591 | loss 1.3953 | loss(rot) 0.6360 | loss(pos) 0.4767 | loss(seq) 0.2826 | grad 4.7819 | lr 0.0010 | time_forward 3.0810 | time_backward 4.5220 |
[2023-09-02 19:39:28,977::train::INFO] [train] Iter 13592 | loss 0.9637 | loss(rot) 0.7649 | loss(pos) 0.1050 | loss(seq) 0.0938 | grad 6.4576 | lr 0.0010 | time_forward 3.0000 | time_backward 4.6200 |
[2023-09-02 19:39:37,368::train::INFO] [train] Iter 13593 | loss 0.9477 | loss(rot) 0.4834 | loss(pos) 0.2100 | loss(seq) 0.2543 | grad 3.3624 | lr 0.0010 | time_forward 3.3110 | time_backward 5.0770 |
[2023-09-02 19:39:45,914::train::INFO] [train] Iter 13594 | loss 1.3712 | loss(rot) 0.0235 | loss(pos) 1.3457 | loss(seq) 0.0019 | grad 4.9098 | lr 0.0010 | time_forward 3.4650 | time_backward 5.0780 |
[2023-09-02 19:39:48,562::train::INFO] [train] Iter 13595 | loss 1.7411 | loss(rot) 1.5492 | loss(pos) 0.0985 | loss(seq) 0.0934 | grad 3.9109 | lr 0.0010 | time_forward 1.2030 | time_backward 1.4410 |
[2023-09-02 19:39:56,124::train::INFO] [train] Iter 13596 | loss 1.4698 | loss(rot) 1.3688 | loss(pos) 0.0924 | loss(seq) 0.0085 | grad 6.6665 | lr 0.0010 | time_forward 3.0530 | time_backward 4.5060 |
[2023-09-02 19:40:04,870::train::INFO] [train] Iter 13597 | loss 2.2418 | loss(rot) 1.3732 | loss(pos) 0.3708 | loss(seq) 0.4977 | grad 4.8090 | lr 0.0010 | time_forward 3.5570 | time_backward 5.1860 |
[2023-09-02 19:40:12,701::train::INFO] [train] Iter 13598 | loss 1.5151 | loss(rot) 0.4605 | loss(pos) 0.6643 | loss(seq) 0.3903 | grad 4.0896 | lr 0.0010 | time_forward 3.4490 | time_backward 4.3790 |
[2023-09-02 19:40:19,868::train::INFO] [train] Iter 13599 | loss 1.6837 | loss(rot) 0.9038 | loss(pos) 0.3227 | loss(seq) 0.4572 | grad 4.2208 | lr 0.0010 | time_forward 3.0870 | time_backward 4.0760 |
[2023-09-02 19:40:29,276::train::INFO] [train] Iter 13600 | loss 0.6714 | loss(rot) 0.1776 | loss(pos) 0.4493 | loss(seq) 0.0445 | grad 4.2058 | lr 0.0010 | time_forward 3.8210 | time_backward 5.5830 |
[2023-09-02 19:40:36,886::train::INFO] [train] Iter 13601 | loss 1.0824 | loss(rot) 0.3978 | loss(pos) 0.2234 | loss(seq) 0.4613 | grad 4.8142 | lr 0.0010 | time_forward 3.0630 | time_backward 4.5430 |
[2023-09-02 19:40:44,691::train::INFO] [train] Iter 13602 | loss 1.0909 | loss(rot) 0.6190 | loss(pos) 0.1608 | loss(seq) 0.3111 | grad 4.4558 | lr 0.0010 | time_forward 3.3440 | time_backward 4.4570 |
[2023-09-02 19:40:53,408::train::INFO] [train] Iter 13603 | loss 1.4992 | loss(rot) 1.0341 | loss(pos) 0.0957 | loss(seq) 0.3694 | grad 3.5869 | lr 0.0010 | time_forward 3.5120 | time_backward 5.2020 |
[2023-09-02 19:41:00,515::train::INFO] [train] Iter 13604 | loss 2.9032 | loss(rot) 2.7084 | loss(pos) 0.1935 | loss(seq) 0.0012 | grad 8.1167 | lr 0.0010 | time_forward 2.9650 | time_backward 4.1380 |
[2023-09-02 19:41:08,520::train::INFO] [train] Iter 13605 | loss 1.5120 | loss(rot) 0.9604 | loss(pos) 0.1371 | loss(seq) 0.4144 | grad 4.8608 | lr 0.0010 | time_forward 3.1460 | time_backward 4.8550 |
[2023-09-02 19:41:11,065::train::INFO] [train] Iter 13606 | loss 1.1569 | loss(rot) 0.1605 | loss(pos) 0.9257 | loss(seq) 0.0707 | grad 5.8726 | lr 0.0010 | time_forward 1.1850 | time_backward 1.3570 |
[2023-09-02 19:41:19,756::train::INFO] [train] Iter 13607 | loss 1.2164 | loss(rot) 0.6780 | loss(pos) 0.2879 | loss(seq) 0.2504 | grad 4.0429 | lr 0.0010 | time_forward 3.3810 | time_backward 5.3080 |
[2023-09-02 19:41:27,015::train::INFO] [train] Iter 13608 | loss 1.0399 | loss(rot) 0.4588 | loss(pos) 0.1112 | loss(seq) 0.4698 | grad 3.5433 | lr 0.0010 | time_forward 3.0800 | time_backward 4.1750 |
[2023-09-02 19:41:29,601::train::INFO] [train] Iter 13609 | loss 0.9267 | loss(rot) 0.2770 | loss(pos) 0.1851 | loss(seq) 0.4646 | grad 3.0662 | lr 0.0010 | time_forward 1.2160 | time_backward 1.3680 |
[2023-09-02 19:41:37,461::train::INFO] [train] Iter 13610 | loss 3.4524 | loss(rot) 0.0551 | loss(pos) 3.3950 | loss(seq) 0.0023 | grad 9.8916 | lr 0.0010 | time_forward 3.1870 | time_backward 4.6690 |
[2023-09-02 19:41:45,301::train::INFO] [train] Iter 13611 | loss 1.2336 | loss(rot) 0.6493 | loss(pos) 0.1160 | loss(seq) 0.4683 | grad 4.7875 | lr 0.0010 | time_forward 3.4250 | time_backward 4.4130 |
[2023-09-02 19:41:54,303::train::INFO] [train] Iter 13612 | loss 3.1476 | loss(rot) 2.8021 | loss(pos) 0.3455 | loss(seq) 0.0000 | grad 3.9330 | lr 0.0010 | time_forward 3.8570 | time_backward 5.1410 |
[2023-09-02 19:42:08,513::train::INFO] [train] Iter 13613 | loss 1.9845 | loss(rot) 1.3318 | loss(pos) 0.2002 | loss(seq) 0.4525 | grad 3.2881 | lr 0.0010 | time_forward 3.3120 | time_backward 10.8940 |
[2023-09-02 19:42:18,908::train::INFO] [train] Iter 13614 | loss 1.2884 | loss(rot) 1.1309 | loss(pos) 0.1426 | loss(seq) 0.0149 | grad 5.9989 | lr 0.0010 | time_forward 5.1850 | time_backward 5.2070 |
[2023-09-02 19:42:29,064::train::INFO] [train] Iter 13615 | loss 0.7637 | loss(rot) 0.1518 | loss(pos) 0.4590 | loss(seq) 0.1529 | grad 2.4910 | lr 0.0010 | time_forward 4.7820 | time_backward 5.3700 |
[2023-09-02 19:42:37,080::train::INFO] [train] Iter 13616 | loss 1.4274 | loss(rot) 1.2211 | loss(pos) 0.2050 | loss(seq) 0.0013 | grad 3.9253 | lr 0.0010 | time_forward 3.3060 | time_backward 4.7070 |
[2023-09-02 19:42:47,064::train::INFO] [train] Iter 13617 | loss 3.0054 | loss(rot) 0.0262 | loss(pos) 2.9778 | loss(seq) 0.0013 | grad 11.5398 | lr 0.0010 | time_forward 4.0040 | time_backward 5.9770 |
[2023-09-02 19:42:49,749::train::INFO] [train] Iter 13618 | loss 0.8977 | loss(rot) 0.5755 | loss(pos) 0.1388 | loss(seq) 0.1834 | grad 5.1027 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4310 |
[2023-09-02 19:42:58,137::train::INFO] [train] Iter 13619 | loss 0.8556 | loss(rot) 0.4133 | loss(pos) 0.3223 | loss(seq) 0.1199 | grad 5.3132 | lr 0.0010 | time_forward 3.5330 | time_backward 4.8520 |
[2023-09-02 19:43:08,257::train::INFO] [train] Iter 13620 | loss 2.5134 | loss(rot) 2.2593 | loss(pos) 0.2529 | loss(seq) 0.0012 | grad 4.4643 | lr 0.0010 | time_forward 4.0700 | time_backward 6.0460 |
[2023-09-02 19:43:18,154::train::INFO] [train] Iter 13621 | loss 2.0997 | loss(rot) 1.8132 | loss(pos) 0.2099 | loss(seq) 0.0766 | grad 4.7427 | lr 0.0010 | time_forward 4.0150 | time_backward 5.8790 |
[2023-09-02 19:43:26,559::train::INFO] [train] Iter 13622 | loss 0.7901 | loss(rot) 0.0472 | loss(pos) 0.7318 | loss(seq) 0.0110 | grad 4.6499 | lr 0.0010 | time_forward 3.5660 | time_backward 4.8350 |
[2023-09-02 19:43:29,279::train::INFO] [train] Iter 13623 | loss 2.1432 | loss(rot) 1.8228 | loss(pos) 0.1435 | loss(seq) 0.1768 | grad 4.8194 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4710 |
[2023-09-02 19:43:39,511::train::INFO] [train] Iter 13624 | loss 2.1345 | loss(rot) 1.8196 | loss(pos) 0.3142 | loss(seq) 0.0006 | grad 4.0566 | lr 0.0010 | time_forward 4.3540 | time_backward 5.8760 |
[2023-09-02 19:43:48,086::train::INFO] [train] Iter 13625 | loss 1.3443 | loss(rot) 0.4974 | loss(pos) 0.4704 | loss(seq) 0.3765 | grad 5.3077 | lr 0.0010 | time_forward 3.6140 | time_backward 4.9570 |
[2023-09-02 19:43:56,867::train::INFO] [train] Iter 13626 | loss 0.5534 | loss(rot) 0.1423 | loss(pos) 0.1666 | loss(seq) 0.2445 | grad 3.8688 | lr 0.0010 | time_forward 3.6870 | time_backward 5.0900 |
[2023-09-02 19:44:06,889::train::INFO] [train] Iter 13627 | loss 1.6801 | loss(rot) 1.2146 | loss(pos) 0.1946 | loss(seq) 0.2709 | grad 3.0667 | lr 0.0010 | time_forward 4.0080 | time_backward 6.0110 |
[2023-09-02 19:44:15,574::train::INFO] [train] Iter 13628 | loss 1.2307 | loss(rot) 0.6004 | loss(pos) 0.2435 | loss(seq) 0.3868 | grad 4.3351 | lr 0.0010 | time_forward 3.6550 | time_backward 5.0260 |
[2023-09-02 19:44:18,262::train::INFO] [train] Iter 13629 | loss 2.1661 | loss(rot) 1.3230 | loss(pos) 0.2450 | loss(seq) 0.5982 | grad 4.1247 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4210 |
[2023-09-02 19:44:28,345::train::INFO] [train] Iter 13630 | loss 1.3891 | loss(rot) 0.8173 | loss(pos) 0.1578 | loss(seq) 0.4141 | grad 4.8328 | lr 0.0010 | time_forward 4.0910 | time_backward 5.9890 |
[2023-09-02 19:44:37,532::train::INFO] [train] Iter 13631 | loss 0.8314 | loss(rot) 0.1752 | loss(pos) 0.3583 | loss(seq) 0.2979 | grad 4.1366 | lr 0.0010 | time_forward 3.8820 | time_backward 5.3030 |
[2023-09-02 19:44:44,106::train::INFO] [train] Iter 13632 | loss 1.0085 | loss(rot) 0.3007 | loss(pos) 0.1570 | loss(seq) 0.5508 | grad 3.7065 | lr 0.0010 | time_forward 2.8090 | time_backward 3.7610 |
[2023-09-02 19:44:52,208::train::INFO] [train] Iter 13633 | loss 1.9851 | loss(rot) 1.3932 | loss(pos) 0.2163 | loss(seq) 0.3757 | grad 5.8659 | lr 0.0010 | time_forward 3.3660 | time_backward 4.7330 |
[2023-09-02 19:45:01,275::train::INFO] [train] Iter 13634 | loss 1.0978 | loss(rot) 0.5841 | loss(pos) 0.3095 | loss(seq) 0.2041 | grad 4.2976 | lr 0.0010 | time_forward 3.7970 | time_backward 5.2660 |
[2023-09-02 19:45:03,944::train::INFO] [train] Iter 13635 | loss 1.7493 | loss(rot) 1.5272 | loss(pos) 0.1265 | loss(seq) 0.0957 | grad 4.7078 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4420 |
[2023-09-02 19:45:13,835::train::INFO] [train] Iter 13636 | loss 0.9226 | loss(rot) 0.8058 | loss(pos) 0.1167 | loss(seq) 0.0000 | grad 5.7720 | lr 0.0010 | time_forward 3.9680 | time_backward 5.9190 |
[2023-09-02 19:45:16,508::train::INFO] [train] Iter 13637 | loss 1.4155 | loss(rot) 0.6616 | loss(pos) 0.2536 | loss(seq) 0.5003 | grad 4.9493 | lr 0.0010 | time_forward 1.2620 | time_backward 1.3950 |
[2023-09-02 19:45:24,994::train::INFO] [train] Iter 13638 | loss 1.3597 | loss(rot) 0.5114 | loss(pos) 0.3884 | loss(seq) 0.4599 | grad 5.5808 | lr 0.0010 | time_forward 3.6130 | time_backward 4.8690 |
[2023-09-02 19:45:33,085::train::INFO] [train] Iter 13639 | loss 1.2235 | loss(rot) 0.8118 | loss(pos) 0.0465 | loss(seq) 0.3652 | grad 4.6023 | lr 0.0010 | time_forward 3.3800 | time_backward 4.7080 |
[2023-09-02 19:45:35,726::train::INFO] [train] Iter 13640 | loss 1.3590 | loss(rot) 0.8272 | loss(pos) 0.1642 | loss(seq) 0.3677 | grad 3.6453 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3930 |
[2023-09-02 19:45:44,997::train::INFO] [train] Iter 13641 | loss 1.3464 | loss(rot) 0.8893 | loss(pos) 0.0953 | loss(seq) 0.3618 | grad 5.6153 | lr 0.0010 | time_forward 3.8820 | time_backward 5.3850 |
[2023-09-02 19:45:54,030::train::INFO] [train] Iter 13642 | loss 0.8812 | loss(rot) 0.2778 | loss(pos) 0.5839 | loss(seq) 0.0195 | grad 7.0040 | lr 0.0010 | time_forward 3.7750 | time_backward 5.2550 |
[2023-09-02 19:46:03,976::train::INFO] [train] Iter 13643 | loss 1.7378 | loss(rot) 1.4910 | loss(pos) 0.2435 | loss(seq) 0.0033 | grad 5.5821 | lr 0.0010 | time_forward 4.1320 | time_backward 5.8100 |
[2023-09-02 19:46:11,919::train::INFO] [train] Iter 13644 | loss 2.0663 | loss(rot) 1.4411 | loss(pos) 0.2443 | loss(seq) 0.3809 | grad 3.5992 | lr 0.0010 | time_forward 3.3670 | time_backward 4.5730 |
[2023-09-02 19:46:14,701::train::INFO] [train] Iter 13645 | loss 1.7449 | loss(rot) 0.8435 | loss(pos) 0.4382 | loss(seq) 0.4633 | grad 4.1913 | lr 0.0010 | time_forward 1.3840 | time_backward 1.3940 |
[2023-09-02 19:46:24,172::train::INFO] [train] Iter 13646 | loss 0.9912 | loss(rot) 0.2959 | loss(pos) 0.3079 | loss(seq) 0.3874 | grad 4.0627 | lr 0.0010 | time_forward 4.1470 | time_backward 5.2870 |
[2023-09-02 19:46:26,851::train::INFO] [train] Iter 13647 | loss 1.8243 | loss(rot) 1.6543 | loss(pos) 0.1700 | loss(seq) 0.0000 | grad 5.7632 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4340 |
[2023-09-02 19:46:29,051::train::INFO] [train] Iter 13648 | loss 2.3136 | loss(rot) 1.3703 | loss(pos) 0.5152 | loss(seq) 0.4281 | grad 5.3624 | lr 0.0010 | time_forward 1.0360 | time_backward 1.1610 |
[2023-09-02 19:46:37,766::train::INFO] [train] Iter 13649 | loss 0.8339 | loss(rot) 0.2113 | loss(pos) 0.3716 | loss(seq) 0.2510 | grad 3.2130 | lr 0.0010 | time_forward 3.7280 | time_backward 4.9580 |
[2023-09-02 19:46:46,024::train::INFO] [train] Iter 13650 | loss 1.1728 | loss(rot) 0.5312 | loss(pos) 0.1534 | loss(seq) 0.4882 | grad 4.7668 | lr 0.0010 | time_forward 3.4730 | time_backward 4.7810 |
[2023-09-02 19:46:55,454::train::INFO] [train] Iter 13651 | loss 1.4366 | loss(rot) 1.2844 | loss(pos) 0.1522 | loss(seq) 0.0000 | grad 5.6519 | lr 0.0010 | time_forward 3.9030 | time_backward 5.5230 |
[2023-09-02 19:46:58,124::train::INFO] [train] Iter 13652 | loss 1.9689 | loss(rot) 1.2608 | loss(pos) 0.1263 | loss(seq) 0.5818 | grad 3.2237 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4220 |
[2023-09-02 19:47:00,881::train::INFO] [train] Iter 13653 | loss 1.0690 | loss(rot) 0.1817 | loss(pos) 0.2563 | loss(seq) 0.6310 | grad 3.4686 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4750 |
[2023-09-02 19:47:08,914::train::INFO] [train] Iter 13654 | loss 1.1265 | loss(rot) 0.8510 | loss(pos) 0.1332 | loss(seq) 0.1424 | grad 4.2732 | lr 0.0010 | time_forward 3.4110 | time_backward 4.6170 |
[2023-09-02 19:47:17,018::train::INFO] [train] Iter 13655 | loss 1.9012 | loss(rot) 1.3806 | loss(pos) 0.1072 | loss(seq) 0.4134 | grad 5.0023 | lr 0.0010 | time_forward 3.4250 | time_backward 4.6760 |
[2023-09-02 19:47:26,290::train::INFO] [train] Iter 13656 | loss 2.2643 | loss(rot) 2.1843 | loss(pos) 0.0789 | loss(seq) 0.0011 | grad 4.3657 | lr 0.0010 | time_forward 3.8740 | time_backward 5.3960 |
[2023-09-02 19:47:35,205::train::INFO] [train] Iter 13657 | loss 0.8058 | loss(rot) 0.1009 | loss(pos) 0.6664 | loss(seq) 0.0385 | grad 6.6634 | lr 0.0010 | time_forward 3.7370 | time_backward 5.1740 |
[2023-09-02 19:47:37,945::train::INFO] [train] Iter 13658 | loss 1.1954 | loss(rot) 0.2327 | loss(pos) 0.9463 | loss(seq) 0.0164 | grad 5.6037 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4330 |
[2023-09-02 19:47:41,394::train::INFO] [train] Iter 13659 | loss 1.7903 | loss(rot) 1.2686 | loss(pos) 0.1408 | loss(seq) 0.3808 | grad 2.3418 | lr 0.0010 | time_forward 1.4960 | time_backward 1.9500 |
[2023-09-02 19:47:45,592::train::INFO] [train] Iter 13660 | loss 1.8586 | loss(rot) 1.4846 | loss(pos) 0.2783 | loss(seq) 0.0958 | grad 6.0698 | lr 0.0010 | time_forward 1.4060 | time_backward 1.8690 |
[2023-09-02 19:47:55,214::train::INFO] [train] Iter 13661 | loss 2.2964 | loss(rot) 1.6645 | loss(pos) 0.3518 | loss(seq) 0.2801 | grad 4.6516 | lr 0.0010 | time_forward 3.9920 | time_backward 5.6270 |
[2023-09-02 19:48:06,173::train::INFO] [train] Iter 13662 | loss 1.0822 | loss(rot) 0.8683 | loss(pos) 0.1638 | loss(seq) 0.0501 | grad 4.7712 | lr 0.0010 | time_forward 4.5370 | time_backward 6.4020 |
[2023-09-02 19:48:15,168::train::INFO] [train] Iter 13663 | loss 1.4198 | loss(rot) 0.8005 | loss(pos) 0.0931 | loss(seq) 0.5261 | grad 6.6572 | lr 0.0010 | time_forward 3.5400 | time_backward 5.4510 |
[2023-09-02 19:48:20,097::train::INFO] [train] Iter 13664 | loss 0.8136 | loss(rot) 0.5714 | loss(pos) 0.1212 | loss(seq) 0.1211 | grad 5.2359 | lr 0.0010 | time_forward 2.1020 | time_backward 2.8230 |
[2023-09-02 19:48:22,876::train::INFO] [train] Iter 13665 | loss 2.0538 | loss(rot) 1.9456 | loss(pos) 0.0802 | loss(seq) 0.0280 | grad 7.7065 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4710 |
[2023-09-02 19:48:30,533::train::INFO] [train] Iter 13666 | loss 1.0768 | loss(rot) 0.6611 | loss(pos) 0.0518 | loss(seq) 0.3639 | grad 4.0524 | lr 0.0010 | time_forward 3.0760 | time_backward 4.5770 |
[2023-09-02 19:48:39,922::train::INFO] [train] Iter 13667 | loss 2.8506 | loss(rot) 1.9393 | loss(pos) 0.3729 | loss(seq) 0.5384 | grad 5.7371 | lr 0.0010 | time_forward 3.7940 | time_backward 5.5930 |
[2023-09-02 19:48:49,860::train::INFO] [train] Iter 13668 | loss 0.6836 | loss(rot) 0.1631 | loss(pos) 0.4513 | loss(seq) 0.0692 | grad 2.9903 | lr 0.0010 | time_forward 4.0220 | time_backward 5.9120 |
[2023-09-02 19:48:59,484::train::INFO] [train] Iter 13669 | loss 2.3909 | loss(rot) 1.6598 | loss(pos) 0.1900 | loss(seq) 0.5410 | grad 5.0226 | lr 0.0010 | time_forward 4.0080 | time_backward 5.6120 |
[2023-09-02 19:49:01,782::train::INFO] [train] Iter 13670 | loss 1.6659 | loss(rot) 0.8366 | loss(pos) 0.3292 | loss(seq) 0.5001 | grad 3.7952 | lr 0.0010 | time_forward 1.0690 | time_backward 1.2260 |
[2023-09-02 19:49:04,537::train::INFO] [train] Iter 13671 | loss 1.7784 | loss(rot) 1.3869 | loss(pos) 0.1181 | loss(seq) 0.2734 | grad 4.5474 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4490 |
[2023-09-02 19:49:07,268::train::INFO] [train] Iter 13672 | loss 1.2643 | loss(rot) 0.4157 | loss(pos) 0.4884 | loss(seq) 0.3603 | grad 5.9217 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4500 |
[2023-09-02 19:49:10,027::train::INFO] [train] Iter 13673 | loss 2.0963 | loss(rot) 1.9590 | loss(pos) 0.0847 | loss(seq) 0.0526 | grad 5.5171 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4390 |
[2023-09-02 19:49:19,092::train::INFO] [train] Iter 13674 | loss 0.5215 | loss(rot) 0.4063 | loss(pos) 0.0783 | loss(seq) 0.0368 | grad 3.4153 | lr 0.0010 | time_forward 3.6480 | time_backward 5.4130 |
[2023-09-02 19:49:29,308::train::INFO] [train] Iter 13675 | loss 1.4516 | loss(rot) 1.0908 | loss(pos) 0.1126 | loss(seq) 0.2482 | grad 4.0859 | lr 0.0010 | time_forward 4.1460 | time_backward 6.0670 |
[2023-09-02 19:49:32,101::train::INFO] [train] Iter 13676 | loss 1.4631 | loss(rot) 0.5480 | loss(pos) 0.3970 | loss(seq) 0.5181 | grad 4.7376 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4950 |
[2023-09-02 19:49:42,087::train::INFO] [train] Iter 13677 | loss 2.9938 | loss(rot) 0.0239 | loss(pos) 2.9699 | loss(seq) 0.0000 | grad 7.1496 | lr 0.0010 | time_forward 4.1000 | time_backward 5.8820 |
[2023-09-02 19:49:52,032::train::INFO] [train] Iter 13678 | loss 1.5225 | loss(rot) 0.0344 | loss(pos) 1.4830 | loss(seq) 0.0050 | grad 5.8230 | lr 0.0010 | time_forward 3.9480 | time_backward 5.9930 |
[2023-09-02 19:50:00,892::train::INFO] [train] Iter 13679 | loss 1.7420 | loss(rot) 1.3919 | loss(pos) 0.0650 | loss(seq) 0.2850 | grad 4.0898 | lr 0.0010 | time_forward 3.5020 | time_backward 5.3550 |
[2023-09-02 19:50:04,348::train::INFO] [train] Iter 13680 | loss 1.6834 | loss(rot) 1.5920 | loss(pos) 0.0907 | loss(seq) 0.0007 | grad 4.9226 | lr 0.0010 | time_forward 1.4350 | time_backward 2.0170 |
[2023-09-02 19:50:07,703::train::INFO] [train] Iter 13681 | loss 1.2295 | loss(rot) 0.4587 | loss(pos) 0.4752 | loss(seq) 0.2955 | grad 3.4439 | lr 0.0010 | time_forward 1.4880 | time_backward 1.8640 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.