text
stringlengths 56
1.16k
|
---|
[2023-09-02 19:18:03,782::train::INFO] [train] Iter 13382 | loss 0.9306 | loss(rot) 0.5957 | loss(pos) 0.1432 | loss(seq) 0.1917 | grad 4.7259 | lr 0.0010 | time_forward 3.7610 | time_backward 5.1530 |
[2023-09-02 19:18:11,385::train::INFO] [train] Iter 13383 | loss 1.6134 | loss(rot) 0.2256 | loss(pos) 1.1754 | loss(seq) 0.2125 | grad 5.3701 | lr 0.0010 | time_forward 3.1880 | time_backward 4.4120 |
[2023-09-02 19:18:20,088::train::INFO] [train] Iter 13384 | loss 1.1691 | loss(rot) 0.7354 | loss(pos) 0.1478 | loss(seq) 0.2859 | grad 5.7543 | lr 0.0010 | time_forward 3.6170 | time_backward 5.0820 |
[2023-09-02 19:18:30,228::train::INFO] [train] Iter 13385 | loss 1.9121 | loss(rot) 0.1048 | loss(pos) 1.2274 | loss(seq) 0.5799 | grad 9.4388 | lr 0.0010 | time_forward 4.0350 | time_backward 6.1020 |
[2023-09-02 19:18:38,347::train::INFO] [train] Iter 13386 | loss 1.7704 | loss(rot) 1.2698 | loss(pos) 0.1537 | loss(seq) 0.3469 | grad 7.8512 | lr 0.0010 | time_forward 3.4190 | time_backward 4.6940 |
[2023-09-02 19:18:48,506::train::INFO] [train] Iter 13387 | loss 1.0562 | loss(rot) 0.4500 | loss(pos) 0.3154 | loss(seq) 0.2907 | grad 3.4167 | lr 0.0010 | time_forward 4.0340 | time_backward 6.1220 |
[2023-09-02 19:18:51,447::train::INFO] [train] Iter 13388 | loss 1.8267 | loss(rot) 1.6039 | loss(pos) 0.1678 | loss(seq) 0.0550 | grad 6.3714 | lr 0.0010 | time_forward 1.3650 | time_backward 1.5720 |
[2023-09-02 19:18:54,328::train::INFO] [train] Iter 13389 | loss 2.1605 | loss(rot) 1.8445 | loss(pos) 0.2431 | loss(seq) 0.0729 | grad 4.7050 | lr 0.0010 | time_forward 1.3430 | time_backward 1.5340 |
[2023-09-02 19:19:04,337::train::INFO] [train] Iter 13390 | loss 0.9117 | loss(rot) 0.2917 | loss(pos) 0.2767 | loss(seq) 0.3433 | grad 3.3198 | lr 0.0010 | time_forward 4.0570 | time_backward 5.9480 |
[2023-09-02 19:19:07,134::train::INFO] [train] Iter 13391 | loss 1.4049 | loss(rot) 0.7363 | loss(pos) 0.5786 | loss(seq) 0.0900 | grad 5.2045 | lr 0.0010 | time_forward 1.2590 | time_backward 1.5350 |
[2023-09-02 19:19:16,021::train::INFO] [train] Iter 13392 | loss 1.3473 | loss(rot) 1.1773 | loss(pos) 0.1555 | loss(seq) 0.0145 | grad 7.2653 | lr 0.0010 | time_forward 4.0080 | time_backward 4.8760 |
[2023-09-02 19:19:24,083::train::INFO] [train] Iter 13393 | loss 1.8011 | loss(rot) 1.5125 | loss(pos) 0.1845 | loss(seq) 0.1041 | grad 5.7506 | lr 0.0010 | time_forward 3.3730 | time_backward 4.6850 |
[2023-09-02 19:19:26,537::train::INFO] [train] Iter 13394 | loss 1.4987 | loss(rot) 1.3978 | loss(pos) 0.0959 | loss(seq) 0.0049 | grad 5.9835 | lr 0.0010 | time_forward 1.1790 | time_backward 1.2710 |
[2023-09-02 19:19:29,296::train::INFO] [train] Iter 13395 | loss 0.6176 | loss(rot) 0.1129 | loss(pos) 0.4858 | loss(seq) 0.0190 | grad 3.7519 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4740 |
[2023-09-02 19:19:39,067::train::INFO] [train] Iter 13396 | loss 1.5227 | loss(rot) 0.8934 | loss(pos) 0.2062 | loss(seq) 0.4231 | grad 3.9578 | lr 0.0010 | time_forward 3.8980 | time_backward 5.8700 |
[2023-09-02 19:19:44,630::train::INFO] [train] Iter 13397 | loss 1.1015 | loss(rot) 1.0070 | loss(pos) 0.0917 | loss(seq) 0.0028 | grad 6.5679 | lr 0.0010 | time_forward 2.3000 | time_backward 3.2600 |
[2023-09-02 19:19:54,450::train::INFO] [train] Iter 13398 | loss 0.9863 | loss(rot) 0.4977 | loss(pos) 0.1305 | loss(seq) 0.3580 | grad 3.7039 | lr 0.0010 | time_forward 4.0450 | time_backward 5.7710 |
[2023-09-02 19:19:57,107::train::INFO] [train] Iter 13399 | loss 2.9704 | loss(rot) 2.5430 | loss(pos) 0.4270 | loss(seq) 0.0003 | grad 6.5960 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4100 |
[2023-09-02 19:20:05,863::train::INFO] [train] Iter 13400 | loss 2.3745 | loss(rot) 1.6601 | loss(pos) 0.2647 | loss(seq) 0.4497 | grad 3.7794 | lr 0.0010 | time_forward 3.5950 | time_backward 5.1570 |
[2023-09-02 19:20:14,334::train::INFO] [train] Iter 13401 | loss 1.1573 | loss(rot) 0.4185 | loss(pos) 0.7061 | loss(seq) 0.0327 | grad 5.9462 | lr 0.0010 | time_forward 3.5280 | time_backward 4.9250 |
[2023-09-02 19:20:24,382::train::INFO] [train] Iter 13402 | loss 1.4114 | loss(rot) 1.1500 | loss(pos) 0.1807 | loss(seq) 0.0806 | grad 6.4373 | lr 0.0010 | time_forward 4.2040 | time_backward 5.8410 |
[2023-09-02 19:20:27,074::train::INFO] [train] Iter 13403 | loss 2.1605 | loss(rot) 2.0249 | loss(pos) 0.0825 | loss(seq) 0.0530 | grad 3.3643 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4510 |
[2023-09-02 19:20:34,741::train::INFO] [train] Iter 13404 | loss 2.1650 | loss(rot) 1.6264 | loss(pos) 0.1636 | loss(seq) 0.3749 | grad 6.9095 | lr 0.0010 | time_forward 3.1540 | time_backward 4.5100 |
[2023-09-02 19:20:43,892::train::INFO] [train] Iter 13405 | loss 2.0395 | loss(rot) 0.2166 | loss(pos) 1.7958 | loss(seq) 0.0272 | grad 9.0822 | lr 0.0010 | time_forward 3.8160 | time_backward 5.3330 |
[2023-09-02 19:20:53,664::train::INFO] [train] Iter 13406 | loss 1.8378 | loss(rot) 1.1155 | loss(pos) 0.1621 | loss(seq) 0.5601 | grad 3.0012 | lr 0.0010 | time_forward 3.9690 | time_backward 5.7970 |
[2023-09-02 19:21:03,309::train::INFO] [train] Iter 13407 | loss 1.8406 | loss(rot) 0.9360 | loss(pos) 0.3261 | loss(seq) 0.5785 | grad 4.0237 | lr 0.0010 | time_forward 3.9180 | time_backward 5.7230 |
[2023-09-02 19:21:05,976::train::INFO] [train] Iter 13408 | loss 0.9143 | loss(rot) 0.7200 | loss(pos) 0.0927 | loss(seq) 0.1016 | grad 3.3619 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4340 |
[2023-09-02 19:21:09,660::train::INFO] [train] Iter 13409 | loss 2.0764 | loss(rot) 0.8033 | loss(pos) 0.7739 | loss(seq) 0.4992 | grad 3.9451 | lr 0.0010 | time_forward 1.4690 | time_backward 2.2110 |
[2023-09-02 19:21:17,834::train::INFO] [train] Iter 13410 | loss 0.6954 | loss(rot) 0.1104 | loss(pos) 0.1534 | loss(seq) 0.4316 | grad 2.4796 | lr 0.0010 | time_forward 3.4560 | time_backward 4.7150 |
[2023-09-02 19:21:25,815::train::INFO] [train] Iter 13411 | loss 1.4639 | loss(rot) 1.3883 | loss(pos) 0.0480 | loss(seq) 0.0276 | grad 5.5556 | lr 0.0010 | time_forward 3.3850 | time_backward 4.5930 |
[2023-09-02 19:21:34,464::train::INFO] [train] Iter 13412 | loss 1.6411 | loss(rot) 0.0186 | loss(pos) 1.6206 | loss(seq) 0.0019 | grad 7.2639 | lr 0.0010 | time_forward 3.6250 | time_backward 5.0210 |
[2023-09-02 19:21:44,379::train::INFO] [train] Iter 13413 | loss 1.7561 | loss(rot) 0.9715 | loss(pos) 0.3845 | loss(seq) 0.4000 | grad 2.7382 | lr 0.0010 | time_forward 4.2450 | time_backward 5.6650 |
[2023-09-02 19:21:52,213::train::INFO] [train] Iter 13414 | loss 1.4337 | loss(rot) 0.0364 | loss(pos) 1.3934 | loss(seq) 0.0038 | grad 8.8430 | lr 0.0010 | time_forward 3.2910 | time_backward 4.5390 |
[2023-09-02 19:21:55,538::train::INFO] [train] Iter 13415 | loss 0.9572 | loss(rot) 0.2983 | loss(pos) 0.4225 | loss(seq) 0.2364 | grad 3.2932 | lr 0.0010 | time_forward 1.4860 | time_backward 1.8360 |
[2023-09-02 19:22:03,161::train::INFO] [train] Iter 13416 | loss 2.2375 | loss(rot) 1.8340 | loss(pos) 0.0639 | loss(seq) 0.3396 | grad 6.6230 | lr 0.0010 | time_forward 3.1510 | time_backward 4.4550 |
[2023-09-02 19:22:05,076::train::INFO] [train] Iter 13417 | loss 1.4218 | loss(rot) 1.2401 | loss(pos) 0.1196 | loss(seq) 0.0621 | grad 4.8689 | lr 0.0010 | time_forward 0.8600 | time_backward 1.0520 |
[2023-09-02 19:22:07,505::train::INFO] [train] Iter 13418 | loss 2.1203 | loss(rot) 1.9755 | loss(pos) 0.1354 | loss(seq) 0.0094 | grad 5.5567 | lr 0.0010 | time_forward 1.1450 | time_backward 1.2810 |
[2023-09-02 19:22:16,150::train::INFO] [train] Iter 13419 | loss 1.6672 | loss(rot) 0.4634 | loss(pos) 1.1841 | loss(seq) 0.0197 | grad 4.1142 | lr 0.0010 | time_forward 3.4430 | time_backward 5.1820 |
[2023-09-02 19:22:24,330::train::INFO] [train] Iter 13420 | loss 1.9893 | loss(rot) 0.0994 | loss(pos) 1.8659 | loss(seq) 0.0239 | grad 7.1823 | lr 0.0010 | time_forward 3.5960 | time_backward 4.5810 |
[2023-09-02 19:22:27,041::train::INFO] [train] Iter 13421 | loss 1.3079 | loss(rot) 0.5807 | loss(pos) 0.4247 | loss(seq) 0.3025 | grad 4.3032 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4650 |
[2023-09-02 19:22:35,986::train::INFO] [train] Iter 13422 | loss 1.0774 | loss(rot) 0.8807 | loss(pos) 0.1216 | loss(seq) 0.0752 | grad 7.3445 | lr 0.0010 | time_forward 3.5240 | time_backward 5.3900 |
[2023-09-02 19:22:47,270::train::INFO] [train] Iter 13423 | loss 1.6751 | loss(rot) 1.4644 | loss(pos) 0.2060 | loss(seq) 0.0046 | grad 4.0240 | lr 0.0010 | time_forward 3.8630 | time_backward 7.4180 |
[2023-09-02 19:22:49,882::train::INFO] [train] Iter 13424 | loss 0.6208 | loss(rot) 0.1037 | loss(pos) 0.4930 | loss(seq) 0.0241 | grad 3.7270 | lr 0.0010 | time_forward 1.2160 | time_backward 1.3920 |
[2023-09-02 19:22:59,474::train::INFO] [train] Iter 13425 | loss 2.2810 | loss(rot) 1.8909 | loss(pos) 0.2376 | loss(seq) 0.1525 | grad 6.1357 | lr 0.0010 | time_forward 3.5620 | time_backward 6.0260 |
[2023-09-02 19:23:08,506::train::INFO] [train] Iter 13426 | loss 1.9266 | loss(rot) 1.7236 | loss(pos) 0.1427 | loss(seq) 0.0602 | grad 5.6008 | lr 0.0010 | time_forward 3.7180 | time_backward 5.3110 |
[2023-09-02 19:23:16,618::train::INFO] [train] Iter 13427 | loss 1.6257 | loss(rot) 0.7966 | loss(pos) 0.3282 | loss(seq) 0.5008 | grad 3.8190 | lr 0.0010 | time_forward 3.7250 | time_backward 4.3830 |
[2023-09-02 19:23:23,478::train::INFO] [train] Iter 13428 | loss 1.2517 | loss(rot) 0.9903 | loss(pos) 0.0911 | loss(seq) 0.1703 | grad 7.6999 | lr 0.0010 | time_forward 2.7050 | time_backward 4.1510 |
[2023-09-02 19:23:25,716::train::INFO] [train] Iter 13429 | loss 0.5588 | loss(rot) 0.4481 | loss(pos) 0.0679 | loss(seq) 0.0427 | grad 3.9747 | lr 0.0010 | time_forward 1.0610 | time_backward 1.1740 |
[2023-09-02 19:23:28,816::train::INFO] [train] Iter 13430 | loss 2.0167 | loss(rot) 1.4087 | loss(pos) 0.1679 | loss(seq) 0.4401 | grad 5.2268 | lr 0.0010 | time_forward 1.3610 | time_backward 1.7350 |
[2023-09-02 19:23:36,465::train::INFO] [train] Iter 13431 | loss 2.2624 | loss(rot) 1.9598 | loss(pos) 0.1354 | loss(seq) 0.1672 | grad 4.3374 | lr 0.0010 | time_forward 3.1930 | time_backward 4.4530 |
[2023-09-02 19:23:45,836::train::INFO] [train] Iter 13432 | loss 2.8680 | loss(rot) 0.0114 | loss(pos) 2.8561 | loss(seq) 0.0006 | grad 11.4171 | lr 0.0010 | time_forward 5.0320 | time_backward 4.3360 |
[2023-09-02 19:23:55,769::train::INFO] [train] Iter 13433 | loss 1.2449 | loss(rot) 0.3376 | loss(pos) 0.4118 | loss(seq) 0.4955 | grad 2.7130 | lr 0.0010 | time_forward 4.7570 | time_backward 5.1720 |
[2023-09-02 19:24:05,153::train::INFO] [train] Iter 13434 | loss 2.6553 | loss(rot) 2.0646 | loss(pos) 0.1988 | loss(seq) 0.3919 | grad 5.1084 | lr 0.0010 | time_forward 4.2740 | time_backward 5.1070 |
[2023-09-02 19:24:13,573::train::INFO] [train] Iter 13435 | loss 1.2795 | loss(rot) 0.3824 | loss(pos) 0.5002 | loss(seq) 0.3969 | grad 3.9597 | lr 0.0010 | time_forward 3.1930 | time_backward 5.2240 |
[2023-09-02 19:24:21,846::train::INFO] [train] Iter 13436 | loss 1.9778 | loss(rot) 0.6928 | loss(pos) 0.6003 | loss(seq) 0.6847 | grad 4.8181 | lr 0.0010 | time_forward 3.4550 | time_backward 4.8140 |
[2023-09-02 19:24:24,401::train::INFO] [train] Iter 13437 | loss 0.8577 | loss(rot) 0.1367 | loss(pos) 0.3598 | loss(seq) 0.3612 | grad 3.6837 | lr 0.0010 | time_forward 1.1730 | time_backward 1.3790 |
[2023-09-02 19:24:26,825::train::INFO] [train] Iter 13438 | loss 1.8824 | loss(rot) 1.5423 | loss(pos) 0.0912 | loss(seq) 0.2490 | grad 19.4150 | lr 0.0010 | time_forward 1.1380 | time_backward 1.2680 |
[2023-09-02 19:24:33,902::train::INFO] [train] Iter 13439 | loss 0.6466 | loss(rot) 0.2660 | loss(pos) 0.2726 | loss(seq) 0.1080 | grad 3.2569 | lr 0.0010 | time_forward 2.9940 | time_backward 4.0650 |
[2023-09-02 19:24:40,533::train::INFO] [train] Iter 13440 | loss 1.0934 | loss(rot) 0.3530 | loss(pos) 0.1630 | loss(seq) 0.5774 | grad 4.1797 | lr 0.0010 | time_forward 2.8300 | time_backward 3.7980 |
[2023-09-02 19:24:43,168::train::INFO] [train] Iter 13441 | loss 1.1734 | loss(rot) 0.0777 | loss(pos) 1.0789 | loss(seq) 0.0168 | grad 6.1548 | lr 0.0010 | time_forward 1.2190 | time_backward 1.4130 |
[2023-09-02 19:24:45,741::train::INFO] [train] Iter 13442 | loss 2.4175 | loss(rot) 1.4749 | loss(pos) 0.4713 | loss(seq) 0.4713 | grad 4.0025 | lr 0.0010 | time_forward 1.1950 | time_backward 1.3750 |
[2023-09-02 19:24:47,858::train::INFO] [train] Iter 13443 | loss 0.6988 | loss(rot) 0.0470 | loss(pos) 0.4370 | loss(seq) 0.2149 | grad 2.8228 | lr 0.0010 | time_forward 0.9950 | time_backward 1.1190 |
[2023-09-02 19:24:56,692::train::INFO] [train] Iter 13444 | loss 2.7108 | loss(rot) 0.0208 | loss(pos) 2.6901 | loss(seq) 0.0000 | grad 7.0418 | lr 0.0010 | time_forward 3.4690 | time_backward 5.3610 |
[2023-09-02 19:25:04,848::train::INFO] [train] Iter 13445 | loss 0.7896 | loss(rot) 0.0921 | loss(pos) 0.6734 | loss(seq) 0.0241 | grad 5.0799 | lr 0.0010 | time_forward 3.5070 | time_backward 4.6460 |
[2023-09-02 19:25:13,446::train::INFO] [train] Iter 13446 | loss 1.8209 | loss(rot) 1.3020 | loss(pos) 0.1321 | loss(seq) 0.3867 | grad 4.1462 | lr 0.0010 | time_forward 3.5570 | time_backward 5.0380 |
[2023-09-02 19:25:16,098::train::INFO] [train] Iter 13447 | loss 0.9448 | loss(rot) 0.6310 | loss(pos) 0.3138 | loss(seq) 0.0000 | grad 4.7113 | lr 0.0010 | time_forward 1.2210 | time_backward 1.4280 |
[2023-09-02 19:25:18,767::train::INFO] [train] Iter 13448 | loss 1.0566 | loss(rot) 0.3271 | loss(pos) 0.6876 | loss(seq) 0.0418 | grad 3.4490 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4310 |
[2023-09-02 19:25:21,364::train::INFO] [train] Iter 13449 | loss 1.6896 | loss(rot) 1.3324 | loss(pos) 0.1277 | loss(seq) 0.2294 | grad 4.2039 | lr 0.0010 | time_forward 1.1750 | time_backward 1.4170 |
[2023-09-02 19:25:28,258::train::INFO] [train] Iter 13450 | loss 3.0163 | loss(rot) 2.8297 | loss(pos) 0.1659 | loss(seq) 0.0206 | grad 7.7047 | lr 0.0010 | time_forward 3.0030 | time_backward 3.8880 |
[2023-09-02 19:25:36,542::train::INFO] [train] Iter 13451 | loss 1.7354 | loss(rot) 1.4367 | loss(pos) 0.1009 | loss(seq) 0.1978 | grad 4.3003 | lr 0.0010 | time_forward 3.3780 | time_backward 4.9020 |
[2023-09-02 19:25:42,698::train::INFO] [train] Iter 13452 | loss 0.7180 | loss(rot) 0.0519 | loss(pos) 0.6553 | loss(seq) 0.0108 | grad 6.2614 | lr 0.0010 | time_forward 2.5420 | time_backward 3.6100 |
[2023-09-02 19:25:51,468::train::INFO] [train] Iter 13453 | loss 1.0264 | loss(rot) 0.2375 | loss(pos) 0.2702 | loss(seq) 0.5188 | grad 3.7166 | lr 0.0010 | time_forward 3.6920 | time_backward 5.0760 |
[2023-09-02 19:25:58,741::train::INFO] [train] Iter 13454 | loss 2.1037 | loss(rot) 1.6573 | loss(pos) 0.1294 | loss(seq) 0.3170 | grad 3.9416 | lr 0.0010 | time_forward 2.8840 | time_backward 4.3750 |
[2023-09-02 19:26:07,457::train::INFO] [train] Iter 13455 | loss 2.2416 | loss(rot) 1.4109 | loss(pos) 0.2333 | loss(seq) 0.5974 | grad 5.3675 | lr 0.0010 | time_forward 3.9180 | time_backward 4.7960 |
[2023-09-02 19:26:10,174::train::INFO] [train] Iter 13456 | loss 1.6159 | loss(rot) 1.4289 | loss(pos) 0.1708 | loss(seq) 0.0161 | grad 12.4590 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4760 |
[2023-09-02 19:26:12,894::train::INFO] [train] Iter 13457 | loss 2.3232 | loss(rot) 1.7156 | loss(pos) 0.2403 | loss(seq) 0.3673 | grad 6.7287 | lr 0.0010 | time_forward 1.2050 | time_backward 1.5130 |
[2023-09-02 19:26:19,632::train::INFO] [train] Iter 13458 | loss 1.4477 | loss(rot) 1.2721 | loss(pos) 0.1756 | loss(seq) 0.0000 | grad 4.2234 | lr 0.0010 | time_forward 2.8570 | time_backward 3.8760 |
[2023-09-02 19:26:22,369::train::INFO] [train] Iter 13459 | loss 1.8560 | loss(rot) 1.2641 | loss(pos) 0.1562 | loss(seq) 0.4357 | grad 4.2499 | lr 0.0010 | time_forward 1.1960 | time_backward 1.5370 |
[2023-09-02 19:26:24,791::train::INFO] [train] Iter 13460 | loss 1.1720 | loss(rot) 0.4239 | loss(pos) 0.1845 | loss(seq) 0.5636 | grad 3.4982 | lr 0.0010 | time_forward 1.1530 | time_backward 1.2650 |
[2023-09-02 19:26:32,721::train::INFO] [train] Iter 13461 | loss 1.5612 | loss(rot) 1.4218 | loss(pos) 0.1394 | loss(seq) 0.0000 | grad 3.7747 | lr 0.0010 | time_forward 3.3790 | time_backward 4.5470 |
[2023-09-02 19:26:41,309::train::INFO] [train] Iter 13462 | loss 1.4866 | loss(rot) 0.3018 | loss(pos) 0.3348 | loss(seq) 0.8500 | grad 5.1930 | lr 0.0010 | time_forward 3.5870 | time_backward 4.9970 |
[2023-09-02 19:26:48,694::train::INFO] [train] Iter 13463 | loss 1.6150 | loss(rot) 1.3310 | loss(pos) 0.1162 | loss(seq) 0.1678 | grad 4.6484 | lr 0.0010 | time_forward 3.1010 | time_backward 4.2800 |
[2023-09-02 19:26:51,956::train::INFO] [train] Iter 13464 | loss 2.3026 | loss(rot) 2.1908 | loss(pos) 0.1115 | loss(seq) 0.0003 | grad 3.5426 | lr 0.0010 | time_forward 1.3900 | time_backward 1.8700 |
[2023-09-02 19:27:00,583::train::INFO] [train] Iter 13465 | loss 1.1473 | loss(rot) 0.9626 | loss(pos) 0.1835 | loss(seq) 0.0013 | grad 3.7072 | lr 0.0010 | time_forward 3.3220 | time_backward 5.3020 |
[2023-09-02 19:27:03,264::train::INFO] [train] Iter 13466 | loss 2.0462 | loss(rot) 1.4611 | loss(pos) 0.1804 | loss(seq) 0.4047 | grad 4.6365 | lr 0.0010 | time_forward 1.2210 | time_backward 1.4570 |
[2023-09-02 19:27:11,023::train::INFO] [train] Iter 13467 | loss 1.4523 | loss(rot) 0.9053 | loss(pos) 0.2430 | loss(seq) 0.3041 | grad 7.6299 | lr 0.0010 | time_forward 3.3850 | time_backward 4.3700 |
[2023-09-02 19:27:19,697::train::INFO] [train] Iter 13468 | loss 1.4507 | loss(rot) 1.3370 | loss(pos) 0.0828 | loss(seq) 0.0309 | grad 4.4596 | lr 0.0010 | time_forward 3.9920 | time_backward 4.6790 |
[2023-09-02 19:27:22,416::train::INFO] [train] Iter 13469 | loss 1.8214 | loss(rot) 1.0919 | loss(pos) 0.2951 | loss(seq) 0.4344 | grad 7.6626 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4520 |
[2023-09-02 19:27:25,066::train::INFO] [train] Iter 13470 | loss 1.8828 | loss(rot) 1.6772 | loss(pos) 0.2057 | loss(seq) 0.0000 | grad 7.6640 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4060 |
[2023-09-02 19:27:27,670::train::INFO] [train] Iter 13471 | loss 1.4419 | loss(rot) 0.0727 | loss(pos) 1.3680 | loss(seq) 0.0013 | grad 4.9990 | lr 0.0010 | time_forward 1.1960 | time_backward 1.4050 |
[2023-09-02 19:27:30,351::train::INFO] [train] Iter 13472 | loss 0.9406 | loss(rot) 0.6802 | loss(pos) 0.1224 | loss(seq) 0.1381 | grad 3.4629 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4180 |
[2023-09-02 19:27:38,703::train::INFO] [train] Iter 13473 | loss 1.3553 | loss(rot) 0.9756 | loss(pos) 0.0809 | loss(seq) 0.2988 | grad 3.7166 | lr 0.0010 | time_forward 3.6970 | time_backward 4.6510 |
[2023-09-02 19:27:41,355::train::INFO] [train] Iter 13474 | loss 1.9986 | loss(rot) 1.8223 | loss(pos) 0.0547 | loss(seq) 0.1217 | grad 3.5124 | lr 0.0010 | time_forward 1.2030 | time_backward 1.4460 |
[2023-09-02 19:27:43,996::train::INFO] [train] Iter 13475 | loss 1.9105 | loss(rot) 0.0482 | loss(pos) 1.8600 | loss(seq) 0.0023 | grad 4.8630 | lr 0.0010 | time_forward 1.2200 | time_backward 1.4050 |
[2023-09-02 19:27:50,111::train::INFO] [train] Iter 13476 | loss 2.2129 | loss(rot) 2.0363 | loss(pos) 0.1753 | loss(seq) 0.0012 | grad 4.8331 | lr 0.0010 | time_forward 2.6190 | time_backward 3.4940 |
[2023-09-02 19:27:58,239::train::INFO] [train] Iter 13477 | loss 1.8395 | loss(rot) 1.5242 | loss(pos) 0.1629 | loss(seq) 0.1524 | grad 3.9404 | lr 0.0010 | time_forward 3.2390 | time_backward 4.8840 |
[2023-09-02 19:28:00,954::train::INFO] [train] Iter 13478 | loss 1.4747 | loss(rot) 0.7015 | loss(pos) 0.2213 | loss(seq) 0.5520 | grad 4.5829 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4680 |
[2023-09-02 19:28:09,072::train::INFO] [train] Iter 13479 | loss 0.5470 | loss(rot) 0.4138 | loss(pos) 0.0738 | loss(seq) 0.0594 | grad 3.6173 | lr 0.0010 | time_forward 3.2710 | time_backward 4.8430 |
[2023-09-02 19:28:17,734::train::INFO] [train] Iter 13480 | loss 0.9959 | loss(rot) 0.6544 | loss(pos) 0.0782 | loss(seq) 0.2633 | grad 3.1358 | lr 0.0010 | time_forward 3.3150 | time_backward 5.3450 |
[2023-09-02 19:28:26,384::train::INFO] [train] Iter 13481 | loss 1.3844 | loss(rot) 0.8375 | loss(pos) 0.1202 | loss(seq) 0.4266 | grad 4.0610 | lr 0.0010 | time_forward 3.5010 | time_backward 5.1460 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.