text
stringlengths
56
1.16k
[2023-09-02 19:05:38,382::train::INFO] [train] Iter 13282 | loss 0.8942 | loss(rot) 0.2132 | loss(pos) 0.6082 | loss(seq) 0.0728 | grad 4.3999 | lr 0.0010 | time_forward 4.4960 | time_backward 5.8870
[2023-09-02 19:05:46,583::train::INFO] [train] Iter 13283 | loss 1.0362 | loss(rot) 0.0916 | loss(pos) 0.9218 | loss(seq) 0.0228 | grad 4.6391 | lr 0.0010 | time_forward 3.3970 | time_backward 4.8010
[2023-09-02 19:05:49,281::train::INFO] [train] Iter 13284 | loss 0.8169 | loss(rot) 0.3162 | loss(pos) 0.4405 | loss(seq) 0.0602 | grad 4.0339 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4360
[2023-09-02 19:05:58,049::train::INFO] [train] Iter 13285 | loss 1.6511 | loss(rot) 1.4044 | loss(pos) 0.2465 | loss(seq) 0.0001 | grad 5.1612 | lr 0.0010 | time_forward 3.7390 | time_backward 5.0260
[2023-09-02 19:06:06,114::train::INFO] [train] Iter 13286 | loss 1.3963 | loss(rot) 0.0390 | loss(pos) 0.8657 | loss(seq) 0.4915 | grad 5.9268 | lr 0.0010 | time_forward 3.3160 | time_backward 4.7440
[2023-09-02 19:06:16,425::train::INFO] [train] Iter 13287 | loss 1.4534 | loss(rot) 1.3037 | loss(pos) 0.1343 | loss(seq) 0.0153 | grad 4.5900 | lr 0.0010 | time_forward 4.1220 | time_backward 6.1860
[2023-09-02 19:06:25,806::train::INFO] [train] Iter 13288 | loss 0.9614 | loss(rot) 0.6238 | loss(pos) 0.2454 | loss(seq) 0.0922 | grad 4.0497 | lr 0.0010 | time_forward 3.9150 | time_backward 5.4630
[2023-09-02 19:06:34,699::train::INFO] [train] Iter 13289 | loss 0.7805 | loss(rot) 0.7087 | loss(pos) 0.0711 | loss(seq) 0.0007 | grad 4.9207 | lr 0.0010 | time_forward 3.7570 | time_backward 5.1340
[2023-09-02 19:06:43,132::train::INFO] [train] Iter 13290 | loss 0.5133 | loss(rot) 0.1657 | loss(pos) 0.2434 | loss(seq) 0.1041 | grad 3.7442 | lr 0.0010 | time_forward 3.5250 | time_backward 4.9040
[2023-09-02 19:06:53,308::train::INFO] [train] Iter 13291 | loss 2.5323 | loss(rot) 2.3409 | loss(pos) 0.1902 | loss(seq) 0.0012 | grad 5.2615 | lr 0.0010 | time_forward 4.2290 | time_backward 5.9430
[2023-09-02 19:07:00,781::train::INFO] [train] Iter 13292 | loss 2.3890 | loss(rot) 1.5137 | loss(pos) 0.4859 | loss(seq) 0.3894 | grad 6.5147 | lr 0.0010 | time_forward 3.1040 | time_backward 4.3510
[2023-09-02 19:07:10,740::train::INFO] [train] Iter 13293 | loss 2.0980 | loss(rot) 1.5658 | loss(pos) 0.1498 | loss(seq) 0.3824 | grad 6.8019 | lr 0.0010 | time_forward 4.2080 | time_backward 5.7470
[2023-09-02 19:07:13,431::train::INFO] [train] Iter 13294 | loss 1.2986 | loss(rot) 1.1193 | loss(pos) 0.1273 | loss(seq) 0.0520 | grad 13.3176 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4380
[2023-09-02 19:07:21,822::train::INFO] [train] Iter 13295 | loss 1.3204 | loss(rot) 0.8091 | loss(pos) 0.1813 | loss(seq) 0.3300 | grad 6.2878 | lr 0.0010 | time_forward 3.6930 | time_backward 4.6960
[2023-09-02 19:07:31,965::train::INFO] [train] Iter 13296 | loss 1.3378 | loss(rot) 0.4315 | loss(pos) 0.2705 | loss(seq) 0.6358 | grad 3.3770 | lr 0.0010 | time_forward 4.0610 | time_backward 6.0780
[2023-09-02 19:07:35,431::train::INFO] [train] Iter 13297 | loss 2.1769 | loss(rot) 1.4083 | loss(pos) 0.2654 | loss(seq) 0.5032 | grad 5.1818 | lr 0.0010 | time_forward 1.4600 | time_backward 2.0040
[2023-09-02 19:07:44,439::train::INFO] [train] Iter 13298 | loss 1.3718 | loss(rot) 0.8656 | loss(pos) 0.0848 | loss(seq) 0.4214 | grad 3.8579 | lr 0.0010 | time_forward 3.8690 | time_backward 5.1350
[2023-09-02 19:07:52,664::train::INFO] [train] Iter 13299 | loss 2.1741 | loss(rot) 1.3148 | loss(pos) 0.5700 | loss(seq) 0.2893 | grad 4.9988 | lr 0.0010 | time_forward 3.3940 | time_backward 4.8270
[2023-09-02 19:08:01,884::train::INFO] [train] Iter 13300 | loss 2.4940 | loss(rot) 1.6785 | loss(pos) 0.3181 | loss(seq) 0.4974 | grad 4.5896 | lr 0.0010 | time_forward 3.8500 | time_backward 5.3660
[2023-09-02 19:08:11,993::train::INFO] [train] Iter 13301 | loss 1.3497 | loss(rot) 0.2773 | loss(pos) 0.9066 | loss(seq) 0.1658 | grad 6.3747 | lr 0.0010 | time_forward 4.0890 | time_backward 6.0160
[2023-09-02 19:08:21,635::train::INFO] [train] Iter 13302 | loss 1.6478 | loss(rot) 0.9710 | loss(pos) 0.1495 | loss(seq) 0.5273 | grad 4.4088 | lr 0.0010 | time_forward 4.0580 | time_backward 5.5810
[2023-09-02 19:08:24,359::train::INFO] [train] Iter 13303 | loss 1.4379 | loss(rot) 0.9637 | loss(pos) 0.1301 | loss(seq) 0.3440 | grad 6.5770 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4450
[2023-09-02 19:08:34,492::train::INFO] [train] Iter 13304 | loss 1.1513 | loss(rot) 0.2333 | loss(pos) 0.6807 | loss(seq) 0.2373 | grad 5.4878 | lr 0.0010 | time_forward 4.3270 | time_backward 5.8020
[2023-09-02 19:08:42,973::train::INFO] [train] Iter 13305 | loss 1.4167 | loss(rot) 0.2380 | loss(pos) 0.7953 | loss(seq) 0.3833 | grad 7.9738 | lr 0.0010 | time_forward 3.5860 | time_backward 4.8910
[2023-09-02 19:08:52,826::train::INFO] [train] Iter 13306 | loss 1.9376 | loss(rot) 1.4089 | loss(pos) 0.1413 | loss(seq) 0.3873 | grad 4.2836 | lr 0.0010 | time_forward 4.0780 | time_backward 5.7720
[2023-09-02 19:08:55,550::train::INFO] [train] Iter 13307 | loss 2.2570 | loss(rot) 0.4384 | loss(pos) 1.8144 | loss(seq) 0.0042 | grad 12.2915 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4250
[2023-09-02 19:09:04,638::train::INFO] [train] Iter 13308 | loss 1.5016 | loss(rot) 1.3294 | loss(pos) 0.1721 | loss(seq) 0.0000 | grad 5.5039 | lr 0.0010 | time_forward 3.8210 | time_backward 5.2640
[2023-09-02 19:09:07,356::train::INFO] [train] Iter 13309 | loss 0.9439 | loss(rot) 0.6063 | loss(pos) 0.1179 | loss(seq) 0.2197 | grad 4.1053 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4590
[2023-09-02 19:09:13,300::train::INFO] [train] Iter 13310 | loss 1.4301 | loss(rot) 1.1589 | loss(pos) 0.1132 | loss(seq) 0.1580 | grad 5.6293 | lr 0.0010 | time_forward 2.5280 | time_backward 3.3960
[2023-09-02 19:09:23,331::train::INFO] [train] Iter 13311 | loss 2.0427 | loss(rot) 1.5793 | loss(pos) 0.4322 | loss(seq) 0.0312 | grad 7.8731 | lr 0.0010 | time_forward 4.1280 | time_backward 5.8990
[2023-09-02 19:09:31,560::train::INFO] [train] Iter 13312 | loss 1.9878 | loss(rot) 1.7962 | loss(pos) 0.1586 | loss(seq) 0.0330 | grad 5.1661 | lr 0.0010 | time_forward 3.4530 | time_backward 4.7720
[2023-09-02 19:09:38,718::train::INFO] [train] Iter 13313 | loss 2.1560 | loss(rot) 2.0001 | loss(pos) 0.1511 | loss(seq) 0.0047 | grad 7.5076 | lr 0.0010 | time_forward 3.0480 | time_backward 4.1070
[2023-09-02 19:09:41,406::train::INFO] [train] Iter 13314 | loss 1.5168 | loss(rot) 0.7553 | loss(pos) 0.2400 | loss(seq) 0.5216 | grad 3.3610 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4350
[2023-09-02 19:09:50,127::train::INFO] [train] Iter 13315 | loss 1.3306 | loss(rot) 0.0397 | loss(pos) 1.2833 | loss(seq) 0.0077 | grad 9.1335 | lr 0.0010 | time_forward 3.6330 | time_backward 5.0850
[2023-09-02 19:09:52,392::train::INFO] [train] Iter 13316 | loss 0.7441 | loss(rot) 0.5259 | loss(pos) 0.1509 | loss(seq) 0.0673 | grad 3.6932 | lr 0.0010 | time_forward 1.0610 | time_backward 1.2010
[2023-09-02 19:10:02,269::train::INFO] [train] Iter 13317 | loss 1.1656 | loss(rot) 0.8354 | loss(pos) 0.1275 | loss(seq) 0.2027 | grad 3.9749 | lr 0.0010 | time_forward 4.0970 | time_backward 5.7760
[2023-09-02 19:10:12,216::train::INFO] [train] Iter 13318 | loss 1.8645 | loss(rot) 1.0434 | loss(pos) 0.4798 | loss(seq) 0.3414 | grad 4.5901 | lr 0.0010 | time_forward 4.1590 | time_backward 5.7850
[2023-09-02 19:10:14,908::train::INFO] [train] Iter 13319 | loss 1.1118 | loss(rot) 0.3601 | loss(pos) 0.2513 | loss(seq) 0.5004 | grad 4.0918 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4520
[2023-09-02 19:10:23,161::train::INFO] [train] Iter 13320 | loss 1.2371 | loss(rot) 0.8969 | loss(pos) 0.1438 | loss(seq) 0.1965 | grad 4.2905 | lr 0.0010 | time_forward 3.4870 | time_backward 4.7630
[2023-09-02 19:10:33,257::train::INFO] [train] Iter 13321 | loss 1.3610 | loss(rot) 0.4011 | loss(pos) 0.4720 | loss(seq) 0.4880 | grad 3.4002 | lr 0.0010 | time_forward 4.3990 | time_backward 5.6910
[2023-09-02 19:10:35,990::train::INFO] [train] Iter 13322 | loss 1.3631 | loss(rot) 0.6645 | loss(pos) 0.2885 | loss(seq) 0.4101 | grad 2.7796 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4710
[2023-09-02 19:10:38,672::train::INFO] [train] Iter 13323 | loss 1.5071 | loss(rot) 0.3702 | loss(pos) 0.2908 | loss(seq) 0.8460 | grad 4.8315 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4320
[2023-09-02 19:10:46,652::train::INFO] [train] Iter 13324 | loss 2.9474 | loss(rot) 2.0086 | loss(pos) 0.4189 | loss(seq) 0.5198 | grad 4.3386 | lr 0.0010 | time_forward 3.3740 | time_backward 4.6020
[2023-09-02 19:10:56,538::train::INFO] [train] Iter 13325 | loss 1.7852 | loss(rot) 1.3925 | loss(pos) 0.3927 | loss(seq) 0.0000 | grad 5.7880 | lr 0.0010 | time_forward 4.0170 | time_backward 5.8660
[2023-09-02 19:10:59,284::train::INFO] [train] Iter 13326 | loss 0.9846 | loss(rot) 0.5845 | loss(pos) 0.1819 | loss(seq) 0.2182 | grad 3.2292 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4890
[2023-09-02 19:11:08,490::train::INFO] [train] Iter 13327 | loss 0.9488 | loss(rot) 0.7562 | loss(pos) 0.1554 | loss(seq) 0.0372 | grad 7.0146 | lr 0.0010 | time_forward 3.8960 | time_backward 5.3080
[2023-09-02 19:11:18,391::train::INFO] [train] Iter 13328 | loss 1.4406 | loss(rot) 1.3451 | loss(pos) 0.0951 | loss(seq) 0.0003 | grad 22.3856 | lr 0.0010 | time_forward 3.9610 | time_backward 5.9360
[2023-09-02 19:11:21,697::train::INFO] [train] Iter 13329 | loss 1.2842 | loss(rot) 0.6052 | loss(pos) 0.2406 | loss(seq) 0.4383 | grad 2.7489 | lr 0.0010 | time_forward 1.4120 | time_backward 1.8920
[2023-09-02 19:11:30,753::train::INFO] [train] Iter 13330 | loss 1.9808 | loss(rot) 1.6695 | loss(pos) 0.2518 | loss(seq) 0.0595 | grad 8.0262 | lr 0.0010 | time_forward 3.8900 | time_backward 5.1630
[2023-09-02 19:11:38,957::train::INFO] [train] Iter 13331 | loss 0.6281 | loss(rot) 0.2867 | loss(pos) 0.3097 | loss(seq) 0.0318 | grad 3.2608 | lr 0.0010 | time_forward 3.3900 | time_backward 4.8100
[2023-09-02 19:11:41,664::train::INFO] [train] Iter 13332 | loss 2.9257 | loss(rot) 2.0675 | loss(pos) 0.6742 | loss(seq) 0.1840 | grad 34.6491 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4650
[2023-09-02 19:11:48,893::train::INFO] [train] Iter 13333 | loss 1.1137 | loss(rot) 0.3727 | loss(pos) 0.4138 | loss(seq) 0.3272 | grad 3.6842 | lr 0.0010 | time_forward 3.0990 | time_backward 4.1280
[2023-09-02 19:11:59,073::train::INFO] [train] Iter 13334 | loss 1.7487 | loss(rot) 1.1467 | loss(pos) 0.1527 | loss(seq) 0.4493 | grad 6.7593 | lr 0.0010 | time_forward 4.0730 | time_backward 6.1030
[2023-09-02 19:12:07,257::train::INFO] [train] Iter 13335 | loss 0.6733 | loss(rot) 0.2084 | loss(pos) 0.3432 | loss(seq) 0.1218 | grad 3.9264 | lr 0.0010 | time_forward 3.4200 | time_backward 4.7600
[2023-09-02 19:12:17,528::train::INFO] [train] Iter 13336 | loss 1.9035 | loss(rot) 0.7345 | loss(pos) 0.6508 | loss(seq) 0.5182 | grad 4.0814 | lr 0.0010 | time_forward 4.3070 | time_backward 5.9600
[2023-09-02 19:12:27,871::train::INFO] [train] Iter 13337 | loss 1.4009 | loss(rot) 0.6030 | loss(pos) 0.2410 | loss(seq) 0.5569 | grad 7.2855 | lr 0.0010 | time_forward 4.0940 | time_backward 6.2450
[2023-09-02 19:12:36,566::train::INFO] [train] Iter 13338 | loss 1.4880 | loss(rot) 0.8437 | loss(pos) 0.1808 | loss(seq) 0.4635 | grad 3.8433 | lr 0.0010 | time_forward 3.6220 | time_backward 5.0700
[2023-09-02 19:12:38,914::train::INFO] [train] Iter 13339 | loss 1.9430 | loss(rot) 1.2133 | loss(pos) 0.3320 | loss(seq) 0.3977 | grad 3.6364 | lr 0.0010 | time_forward 1.0690 | time_backward 1.2760
[2023-09-02 19:12:49,001::train::INFO] [train] Iter 13340 | loss 0.7472 | loss(rot) 0.2814 | loss(pos) 0.1878 | loss(seq) 0.2781 | grad 2.8811 | lr 0.0010 | time_forward 4.1010 | time_backward 5.9830
[2023-09-02 19:12:51,818::train::INFO] [train] Iter 13341 | loss 1.4741 | loss(rot) 0.8320 | loss(pos) 0.0992 | loss(seq) 0.5429 | grad 4.3016 | lr 0.0010 | time_forward 1.2850 | time_backward 1.5290
[2023-09-02 19:13:01,084::train::INFO] [train] Iter 13342 | loss 1.5964 | loss(rot) 1.1257 | loss(pos) 0.1229 | loss(seq) 0.3477 | grad 5.7450 | lr 0.0010 | time_forward 3.8700 | time_backward 5.3930
[2023-09-02 19:13:09,904::train::INFO] [train] Iter 13343 | loss 2.2898 | loss(rot) 1.4951 | loss(pos) 0.3203 | loss(seq) 0.4744 | grad 5.2111 | lr 0.0010 | time_forward 3.6630 | time_backward 5.1540
[2023-09-02 19:13:12,630::train::INFO] [train] Iter 13344 | loss 1.6065 | loss(rot) 1.4308 | loss(pos) 0.1757 | loss(seq) 0.0000 | grad 5.0186 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4940
[2023-09-02 19:13:15,488::train::INFO] [train] Iter 13345 | loss 1.7771 | loss(rot) 1.5878 | loss(pos) 0.1432 | loss(seq) 0.0461 | grad 9.0133 | lr 0.0010 | time_forward 1.3540 | time_backward 1.5000
[2023-09-02 19:13:26,043::train::INFO] [train] Iter 13346 | loss 2.2173 | loss(rot) 1.7840 | loss(pos) 0.1456 | loss(seq) 0.2877 | grad 8.0448 | lr 0.0010 | time_forward 4.3460 | time_backward 6.2050
[2023-09-02 19:13:36,717::train::INFO] [train] Iter 13347 | loss 1.7698 | loss(rot) 1.5839 | loss(pos) 0.1004 | loss(seq) 0.0856 | grad 13.0892 | lr 0.0010 | time_forward 4.4810 | time_backward 6.1890
[2023-09-02 19:13:45,340::train::INFO] [train] Iter 13348 | loss 1.4974 | loss(rot) 1.3943 | loss(pos) 0.0734 | loss(seq) 0.0297 | grad 6.5746 | lr 0.0010 | time_forward 3.5760 | time_backward 5.0440
[2023-09-02 19:13:56,175::train::INFO] [train] Iter 13349 | loss 1.7586 | loss(rot) 1.6004 | loss(pos) 0.1490 | loss(seq) 0.0092 | grad 6.1098 | lr 0.0010 | time_forward 4.3240 | time_backward 6.5080
[2023-09-02 19:14:05,451::train::INFO] [train] Iter 13350 | loss 1.0347 | loss(rot) 0.4854 | loss(pos) 0.1906 | loss(seq) 0.3586 | grad 3.1555 | lr 0.0010 | time_forward 3.8850 | time_backward 5.3870
[2023-09-02 19:14:16,057::train::INFO] [train] Iter 13351 | loss 2.3280 | loss(rot) 2.0297 | loss(pos) 0.2982 | loss(seq) 0.0000 | grad 5.2731 | lr 0.0010 | time_forward 4.4030 | time_backward 6.2000
[2023-09-02 19:14:26,482::train::INFO] [train] Iter 13352 | loss 1.2357 | loss(rot) 0.4281 | loss(pos) 0.3456 | loss(seq) 0.4620 | grad 3.3301 | lr 0.0010 | time_forward 4.1300 | time_backward 6.2910
[2023-09-02 19:14:37,071::train::INFO] [train] Iter 13353 | loss 2.0805 | loss(rot) 0.6714 | loss(pos) 0.8662 | loss(seq) 0.5429 | grad 6.8258 | lr 0.0010 | time_forward 4.2450 | time_backward 6.3400
[2023-09-02 19:14:39,916::train::INFO] [train] Iter 13354 | loss 1.3554 | loss(rot) 0.1114 | loss(pos) 0.5067 | loss(seq) 0.7373 | grad 2.8545 | lr 0.0010 | time_forward 1.3110 | time_backward 1.5300
[2023-09-02 19:14:49,191::train::INFO] [train] Iter 13355 | loss 2.0271 | loss(rot) 1.2898 | loss(pos) 0.3386 | loss(seq) 0.3987 | grad 5.0779 | lr 0.0010 | time_forward 4.0300 | time_backward 5.2420
[2023-09-02 19:14:51,944::train::INFO] [train] Iter 13356 | loss 2.4575 | loss(rot) 2.2164 | loss(pos) 0.2166 | loss(seq) 0.0245 | grad 5.1746 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4890
[2023-09-02 19:15:02,119::train::INFO] [train] Iter 13357 | loss 1.3513 | loss(rot) 0.0309 | loss(pos) 1.3196 | loss(seq) 0.0008 | grad 5.4364 | lr 0.0010 | time_forward 4.1230 | time_backward 6.0480
[2023-09-02 19:15:08,679::train::INFO] [train] Iter 13358 | loss 1.3354 | loss(rot) 0.3990 | loss(pos) 0.7443 | loss(seq) 0.1921 | grad 6.8715 | lr 0.0010 | time_forward 2.8280 | time_backward 3.7280
[2023-09-02 19:15:11,341::train::INFO] [train] Iter 13359 | loss 1.2250 | loss(rot) 0.9816 | loss(pos) 0.2269 | loss(seq) 0.0166 | grad 5.6527 | lr 0.0010 | time_forward 1.2230 | time_backward 1.4350
[2023-09-02 19:15:14,033::train::INFO] [train] Iter 13360 | loss 1.6188 | loss(rot) 0.8877 | loss(pos) 0.1738 | loss(seq) 0.5572 | grad 3.9326 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4290
[2023-09-02 19:15:21,576::train::INFO] [train] Iter 13361 | loss 1.5191 | loss(rot) 0.9040 | loss(pos) 0.1622 | loss(seq) 0.4529 | grad 4.3220 | lr 0.0010 | time_forward 3.2330 | time_backward 4.3060
[2023-09-02 19:15:30,906::train::INFO] [train] Iter 13362 | loss 2.0868 | loss(rot) 1.7766 | loss(pos) 0.2982 | loss(seq) 0.0120 | grad 4.6616 | lr 0.0010 | time_forward 3.8750 | time_backward 5.4510
[2023-09-02 19:15:33,586::train::INFO] [train] Iter 13363 | loss 0.9471 | loss(rot) 0.8759 | loss(pos) 0.0700 | loss(seq) 0.0013 | grad 17.0338 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4370
[2023-09-02 19:15:43,333::train::INFO] [train] Iter 13364 | loss 1.0281 | loss(rot) 0.2010 | loss(pos) 0.7971 | loss(seq) 0.0300 | grad 3.5828 | lr 0.0010 | time_forward 3.9810 | time_backward 5.7620
[2023-09-02 19:15:53,345::train::INFO] [train] Iter 13365 | loss 1.9090 | loss(rot) 0.6094 | loss(pos) 0.9114 | loss(seq) 0.3882 | grad 6.6872 | lr 0.0010 | time_forward 4.2970 | time_backward 5.7110
[2023-09-02 19:16:01,727::train::INFO] [train] Iter 13366 | loss 1.6378 | loss(rot) 1.5715 | loss(pos) 0.0662 | loss(seq) 0.0000 | grad 10.1080 | lr 0.0010 | time_forward 3.4570 | time_backward 4.9230
[2023-09-02 19:16:10,858::train::INFO] [train] Iter 13367 | loss 0.8598 | loss(rot) 0.6450 | loss(pos) 0.0772 | loss(seq) 0.1376 | grad 4.1698 | lr 0.0010 | time_forward 3.7780 | time_backward 5.3500
[2023-09-02 19:16:13,604::train::INFO] [train] Iter 13368 | loss 1.6246 | loss(rot) 1.2872 | loss(pos) 0.1196 | loss(seq) 0.2177 | grad 3.7031 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4520
[2023-09-02 19:16:22,451::train::INFO] [train] Iter 13369 | loss 1.2019 | loss(rot) 0.5173 | loss(pos) 0.2879 | loss(seq) 0.3966 | grad 4.2553 | lr 0.0010 | time_forward 3.6030 | time_backward 5.2400
[2023-09-02 19:16:33,671::train::INFO] [train] Iter 13370 | loss 0.7435 | loss(rot) 0.0888 | loss(pos) 0.3795 | loss(seq) 0.2752 | grad 3.1588 | lr 0.0010 | time_forward 5.2780 | time_backward 5.9400
[2023-09-02 19:16:43,400::train::INFO] [train] Iter 13371 | loss 1.4003 | loss(rot) 1.2665 | loss(pos) 0.0701 | loss(seq) 0.0637 | grad 4.9436 | lr 0.0010 | time_forward 3.9600 | time_backward 5.7650
[2023-09-02 19:16:46,461::train::INFO] [train] Iter 13372 | loss 1.5898 | loss(rot) 0.3564 | loss(pos) 0.5955 | loss(seq) 0.6380 | grad 4.0712 | lr 0.0010 | time_forward 1.4670 | time_backward 1.5900
[2023-09-02 19:16:54,884::train::INFO] [train] Iter 13373 | loss 1.0644 | loss(rot) 0.6188 | loss(pos) 0.1767 | loss(seq) 0.2689 | grad 3.6665 | lr 0.0010 | time_forward 3.5780 | time_backward 4.8410
[2023-09-02 19:16:57,669::train::INFO] [train] Iter 13374 | loss 1.1434 | loss(rot) 0.9769 | loss(pos) 0.1654 | loss(seq) 0.0012 | grad 5.6839 | lr 0.0010 | time_forward 1.2760 | time_backward 1.5050
[2023-09-02 19:17:07,890::train::INFO] [train] Iter 13375 | loss 2.9096 | loss(rot) 2.7809 | loss(pos) 0.1257 | loss(seq) 0.0031 | grad 2.8788 | lr 0.0010 | time_forward 4.1660 | time_backward 6.0510
[2023-09-02 19:17:11,293::train::INFO] [train] Iter 13376 | loss 2.3869 | loss(rot) 1.4932 | loss(pos) 0.4199 | loss(seq) 0.4738 | grad 4.0474 | lr 0.0010 | time_forward 1.4730 | time_backward 1.9270
[2023-09-02 19:17:21,592::train::INFO] [train] Iter 13377 | loss 1.5871 | loss(rot) 1.4453 | loss(pos) 0.1405 | loss(seq) 0.0013 | grad 5.6636 | lr 0.0010 | time_forward 4.1650 | time_backward 6.1180
[2023-09-02 19:17:31,838::train::INFO] [train] Iter 13378 | loss 1.7802 | loss(rot) 1.5592 | loss(pos) 0.2210 | loss(seq) 0.0000 | grad 4.2881 | lr 0.0010 | time_forward 4.3190 | time_backward 5.9240
[2023-09-02 19:17:41,959::train::INFO] [train] Iter 13379 | loss 1.6084 | loss(rot) 0.6896 | loss(pos) 0.3582 | loss(seq) 0.5605 | grad 4.7369 | lr 0.0010 | time_forward 4.0590 | time_backward 6.0590
[2023-09-02 19:17:44,801::train::INFO] [train] Iter 13380 | loss 1.4581 | loss(rot) 0.5730 | loss(pos) 0.6101 | loss(seq) 0.2749 | grad 5.1925 | lr 0.0010 | time_forward 1.2790 | time_backward 1.5600
[2023-09-02 19:17:54,864::train::INFO] [train] Iter 13381 | loss 2.0066 | loss(rot) 1.6367 | loss(pos) 0.1996 | loss(seq) 0.1703 | grad 4.1295 | lr 0.0010 | time_forward 4.1720 | time_backward 5.8870