text
stringlengths
56
1.16k
[2023-09-02 18:41:42,254::train::INFO] [train] Iter 13082 | loss 2.3139 | loss(rot) 2.1934 | loss(pos) 0.1039 | loss(seq) 0.0165 | grad 3.6569 | lr 0.0010 | time_forward 3.6670 | time_backward 5.2710
[2023-09-02 18:41:52,357::train::INFO] [train] Iter 13083 | loss 0.9837 | loss(rot) 0.1821 | loss(pos) 0.7577 | loss(seq) 0.0439 | grad 4.2937 | lr 0.0010 | time_forward 4.0210 | time_backward 6.0790
[2023-09-02 18:42:02,220::train::INFO] [train] Iter 13084 | loss 2.0216 | loss(rot) 1.1802 | loss(pos) 0.2784 | loss(seq) 0.5631 | grad 4.7533 | lr 0.0010 | time_forward 4.0280 | time_backward 5.8310
[2023-09-02 18:42:12,482::train::INFO] [train] Iter 13085 | loss 2.1640 | loss(rot) 1.2980 | loss(pos) 0.4375 | loss(seq) 0.4284 | grad 3.8844 | lr 0.0010 | time_forward 4.0930 | time_backward 6.1660
[2023-09-02 18:42:21,150::train::INFO] [train] Iter 13086 | loss 1.9159 | loss(rot) 1.3982 | loss(pos) 0.1126 | loss(seq) 0.4051 | grad 4.9578 | lr 0.0010 | time_forward 3.7460 | time_backward 4.9190
[2023-09-02 18:42:28,911::train::INFO] [train] Iter 13087 | loss 1.6810 | loss(rot) 1.6282 | loss(pos) 0.0481 | loss(seq) 0.0047 | grad 4.1285 | lr 0.0010 | time_forward 3.3320 | time_backward 4.4250
[2023-09-02 18:42:36,987::train::INFO] [train] Iter 13088 | loss 0.6301 | loss(rot) 0.5394 | loss(pos) 0.0863 | loss(seq) 0.0044 | grad 4.7988 | lr 0.0010 | time_forward 3.3960 | time_backward 4.6770
[2023-09-02 18:42:46,288::train::INFO] [train] Iter 13089 | loss 1.5460 | loss(rot) 0.3714 | loss(pos) 1.1197 | loss(seq) 0.0549 | grad 5.2134 | lr 0.0010 | time_forward 3.8590 | time_backward 5.4380
[2023-09-02 18:42:48,938::train::INFO] [train] Iter 13090 | loss 1.6543 | loss(rot) 1.5436 | loss(pos) 0.0875 | loss(seq) 0.0233 | grad 5.0111 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4090
[2023-09-02 18:42:57,362::train::INFO] [train] Iter 13091 | loss 0.6757 | loss(rot) 0.1750 | loss(pos) 0.1055 | loss(seq) 0.3952 | grad 2.2308 | lr 0.0010 | time_forward 3.6740 | time_backward 4.7480
[2023-09-02 18:43:04,822::train::INFO] [train] Iter 13092 | loss 0.6299 | loss(rot) 0.1375 | loss(pos) 0.2479 | loss(seq) 0.2445 | grad 2.3954 | lr 0.0010 | time_forward 3.1340 | time_backward 4.3220
[2023-09-02 18:43:13,961::train::INFO] [train] Iter 13093 | loss 1.9756 | loss(rot) 1.7602 | loss(pos) 0.1993 | loss(seq) 0.0161 | grad 3.0408 | lr 0.0010 | time_forward 3.8830 | time_backward 5.2520
[2023-09-02 18:43:17,238::train::INFO] [train] Iter 13094 | loss 0.8057 | loss(rot) 0.2859 | loss(pos) 0.4536 | loss(seq) 0.0663 | grad 3.0120 | lr 0.0010 | time_forward 1.3910 | time_backward 1.8830
[2023-09-02 18:43:26,288::train::INFO] [train] Iter 13095 | loss 1.6239 | loss(rot) 1.4373 | loss(pos) 0.0805 | loss(seq) 0.1061 | grad 4.8897 | lr 0.0010 | time_forward 3.4420 | time_backward 5.6050
[2023-09-02 18:43:33,906::train::INFO] [train] Iter 13096 | loss 1.3232 | loss(rot) 0.5259 | loss(pos) 0.1773 | loss(seq) 0.6201 | grad 3.5701 | lr 0.0010 | time_forward 3.1160 | time_backward 4.4990
[2023-09-02 18:43:40,398::train::INFO] [train] Iter 13097 | loss 0.7073 | loss(rot) 0.2446 | loss(pos) 0.3090 | loss(seq) 0.1537 | grad 4.5083 | lr 0.0010 | time_forward 2.7990 | time_backward 3.6890
[2023-09-02 18:43:47,732::train::INFO] [train] Iter 13098 | loss 2.5007 | loss(rot) 0.0239 | loss(pos) 2.4680 | loss(seq) 0.0088 | grad 8.9009 | lr 0.0010 | time_forward 3.1070 | time_backward 4.2240
[2023-09-02 18:43:56,665::train::INFO] [train] Iter 13099 | loss 1.2180 | loss(rot) 0.9988 | loss(pos) 0.1172 | loss(seq) 0.1021 | grad 6.1062 | lr 0.0010 | time_forward 3.4480 | time_backward 5.4810
[2023-09-02 18:44:04,320::train::INFO] [train] Iter 13100 | loss 0.9597 | loss(rot) 0.1542 | loss(pos) 0.2545 | loss(seq) 0.5510 | grad 3.0286 | lr 0.0010 | time_forward 2.9610 | time_backward 4.6900
[2023-09-02 18:44:06,689::train::INFO] [train] Iter 13101 | loss 1.0451 | loss(rot) 0.4952 | loss(pos) 0.2180 | loss(seq) 0.3319 | grad 3.9585 | lr 0.0010 | time_forward 1.1300 | time_backward 1.2360
[2023-09-02 18:44:15,109::train::INFO] [train] Iter 13102 | loss 1.9504 | loss(rot) 1.8321 | loss(pos) 0.1043 | loss(seq) 0.0140 | grad 5.8990 | lr 0.0010 | time_forward 3.2900 | time_backward 5.1130
[2023-09-02 18:44:17,412::train::INFO] [train] Iter 13103 | loss 1.7398 | loss(rot) 0.7221 | loss(pos) 0.3886 | loss(seq) 0.6291 | grad 4.5125 | lr 0.0010 | time_forward 1.0650 | time_backward 1.2340
[2023-09-02 18:44:26,049::train::INFO] [train] Iter 13104 | loss 0.6180 | loss(rot) 0.0959 | loss(pos) 0.5007 | loss(seq) 0.0215 | grad 4.7848 | lr 0.0010 | time_forward 3.5180 | time_backward 5.1150
[2023-09-02 18:44:34,626::train::INFO] [train] Iter 13105 | loss 2.7176 | loss(rot) 2.4478 | loss(pos) 0.2422 | loss(seq) 0.0276 | grad 3.5429 | lr 0.0010 | time_forward 3.3010 | time_backward 5.2730
[2023-09-02 18:44:43,403::train::INFO] [train] Iter 13106 | loss 1.8034 | loss(rot) 1.6737 | loss(pos) 0.1267 | loss(seq) 0.0030 | grad 4.0167 | lr 0.0010 | time_forward 3.2800 | time_backward 5.4930
[2023-09-02 18:44:51,347::train::INFO] [train] Iter 13107 | loss 2.1017 | loss(rot) 1.6713 | loss(pos) 0.1367 | loss(seq) 0.2937 | grad 4.1614 | lr 0.0010 | time_forward 3.3720 | time_backward 4.5680
[2023-09-02 18:44:56,760::train::INFO] [train] Iter 13108 | loss 1.2335 | loss(rot) 0.5612 | loss(pos) 0.1860 | loss(seq) 0.4863 | grad 3.6580 | lr 0.0010 | time_forward 2.4220 | time_backward 2.9880
[2023-09-02 18:44:59,361::train::INFO] [train] Iter 13109 | loss 1.2795 | loss(rot) 1.1235 | loss(pos) 0.1497 | loss(seq) 0.0064 | grad 4.6353 | lr 0.0010 | time_forward 1.2060 | time_backward 1.3920
[2023-09-02 18:45:06,570::train::INFO] [train] Iter 13110 | loss 2.3739 | loss(rot) 2.1922 | loss(pos) 0.0881 | loss(seq) 0.0935 | grad 3.1232 | lr 0.0010 | time_forward 3.0690 | time_backward 4.1270
[2023-09-02 18:45:14,613::train::INFO] [train] Iter 13111 | loss 2.0548 | loss(rot) 1.2832 | loss(pos) 0.1949 | loss(seq) 0.5767 | grad 6.4580 | lr 0.0010 | time_forward 3.3330 | time_backward 4.7060
[2023-09-02 18:45:16,836::train::INFO] [train] Iter 13112 | loss 1.2804 | loss(rot) 1.0754 | loss(pos) 0.0756 | loss(seq) 0.1293 | grad 6.6017 | lr 0.0010 | time_forward 1.0470 | time_backward 1.1720
[2023-09-02 18:45:19,511::train::INFO] [train] Iter 13113 | loss 1.3385 | loss(rot) 0.8497 | loss(pos) 0.0769 | loss(seq) 0.4119 | grad 2.9965 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4090
[2023-09-02 18:45:21,710::train::INFO] [train] Iter 13114 | loss 2.8906 | loss(rot) 2.2123 | loss(pos) 0.2751 | loss(seq) 0.4031 | grad 5.7926 | lr 0.0010 | time_forward 1.0210 | time_backward 1.1740
[2023-09-02 18:45:29,740::train::INFO] [train] Iter 13115 | loss 1.1131 | loss(rot) 0.5949 | loss(pos) 0.1399 | loss(seq) 0.3783 | grad 3.9843 | lr 0.0010 | time_forward 3.4310 | time_backward 4.5950
[2023-09-02 18:45:31,849::train::INFO] [train] Iter 13116 | loss 2.3409 | loss(rot) 2.1584 | loss(pos) 0.0878 | loss(seq) 0.0948 | grad 4.4908 | lr 0.0010 | time_forward 0.9740 | time_backward 1.1310
[2023-09-02 18:45:40,118::train::INFO] [train] Iter 13117 | loss 1.3930 | loss(rot) 0.6015 | loss(pos) 0.3187 | loss(seq) 0.4729 | grad 4.3079 | lr 0.0010 | time_forward 3.4030 | time_backward 4.8620
[2023-09-02 18:45:47,561::train::INFO] [train] Iter 13118 | loss 1.3406 | loss(rot) 1.0075 | loss(pos) 0.0440 | loss(seq) 0.2891 | grad 4.6592 | lr 0.0010 | time_forward 3.1990 | time_backward 4.2410
[2023-09-02 18:45:50,224::train::INFO] [train] Iter 13119 | loss 0.9895 | loss(rot) 0.2736 | loss(pos) 0.4701 | loss(seq) 0.2457 | grad 3.7550 | lr 0.0010 | time_forward 1.2170 | time_backward 1.4430
[2023-09-02 18:45:57,732::train::INFO] [train] Iter 13120 | loss 0.9050 | loss(rot) 0.4943 | loss(pos) 0.3417 | loss(seq) 0.0691 | grad 9.0983 | lr 0.0010 | time_forward 3.1060 | time_backward 4.3980
[2023-09-02 18:46:01,844::train::INFO] [train] Iter 13121 | loss 1.8240 | loss(rot) 1.6124 | loss(pos) 0.0801 | loss(seq) 0.1315 | grad 3.1246 | lr 0.0010 | time_forward 1.7840 | time_backward 2.3250
[2023-09-02 18:46:09,532::train::INFO] [train] Iter 13122 | loss 2.2031 | loss(rot) 2.0366 | loss(pos) 0.1662 | loss(seq) 0.0003 | grad 5.1935 | lr 0.0010 | time_forward 3.1260 | time_backward 4.5320
[2023-09-02 18:46:12,212::train::INFO] [train] Iter 13123 | loss 1.6990 | loss(rot) 0.8484 | loss(pos) 0.4738 | loss(seq) 0.3768 | grad 4.4702 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4470
[2023-09-02 18:46:19,330::train::INFO] [train] Iter 13124 | loss 0.7933 | loss(rot) 0.1744 | loss(pos) 0.4036 | loss(seq) 0.2152 | grad 2.8271 | lr 0.0010 | time_forward 3.0500 | time_backward 4.0650
[2023-09-02 18:46:26,278::train::INFO] [train] Iter 13125 | loss 1.8728 | loss(rot) 1.3867 | loss(pos) 0.1290 | loss(seq) 0.3571 | grad 5.2444 | lr 0.0010 | time_forward 2.9780 | time_backward 3.9660
[2023-09-02 18:46:28,962::train::INFO] [train] Iter 13126 | loss 1.4535 | loss(rot) 1.2147 | loss(pos) 0.0491 | loss(seq) 0.1896 | grad 3.7595 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4510
[2023-09-02 18:46:31,669::train::INFO] [train] Iter 13127 | loss 1.0327 | loss(rot) 0.0961 | loss(pos) 0.7308 | loss(seq) 0.2059 | grad 6.6373 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4280
[2023-09-02 18:46:39,472::train::INFO] [train] Iter 13128 | loss 1.8175 | loss(rot) 1.0629 | loss(pos) 0.2985 | loss(seq) 0.4562 | grad 4.0751 | lr 0.0010 | time_forward 3.0780 | time_backward 4.7210
[2023-09-02 18:46:46,885::train::INFO] [train] Iter 13129 | loss 2.9641 | loss(rot) 1.9829 | loss(pos) 0.4105 | loss(seq) 0.5706 | grad 4.6669 | lr 0.0010 | time_forward 3.1340 | time_backward 4.2750
[2023-09-02 18:46:53,349::train::INFO] [train] Iter 13130 | loss 2.4908 | loss(rot) 1.9972 | loss(pos) 0.0686 | loss(seq) 0.4249 | grad 4.5463 | lr 0.0010 | time_forward 2.6690 | time_backward 3.7910
[2023-09-02 18:47:01,891::train::INFO] [train] Iter 13131 | loss 0.7705 | loss(rot) 0.1383 | loss(pos) 0.3360 | loss(seq) 0.2962 | grad 2.9644 | lr 0.0010 | time_forward 3.5150 | time_backward 5.0240
[2023-09-02 18:47:08,651::train::INFO] [train] Iter 13132 | loss 1.3772 | loss(rot) 1.2183 | loss(pos) 0.1320 | loss(seq) 0.0270 | grad 6.0216 | lr 0.0010 | time_forward 2.7670 | time_backward 3.9890
[2023-09-02 18:47:17,029::train::INFO] [train] Iter 13133 | loss 1.7723 | loss(rot) 0.9819 | loss(pos) 0.2062 | loss(seq) 0.5842 | grad 3.6513 | lr 0.0010 | time_forward 3.4470 | time_backward 4.9290
[2023-09-02 18:47:24,014::train::INFO] [train] Iter 13134 | loss 2.9978 | loss(rot) 2.4592 | loss(pos) 0.5317 | loss(seq) 0.0070 | grad 8.9500 | lr 0.0010 | time_forward 2.9930 | time_backward 3.9880
[2023-09-02 18:47:33,087::train::INFO] [train] Iter 13135 | loss 1.8997 | loss(rot) 0.0463 | loss(pos) 1.8496 | loss(seq) 0.0037 | grad 4.4572 | lr 0.0010 | time_forward 3.8330 | time_backward 5.2360
[2023-09-02 18:47:40,987::train::INFO] [train] Iter 13136 | loss 2.1163 | loss(rot) 1.6054 | loss(pos) 0.0755 | loss(seq) 0.4354 | grad 4.8499 | lr 0.0010 | time_forward 3.4890 | time_backward 4.4090
[2023-09-02 18:47:43,567::train::INFO] [train] Iter 13137 | loss 1.3675 | loss(rot) 0.8622 | loss(pos) 0.3428 | loss(seq) 0.1624 | grad 4.9486 | lr 0.0010 | time_forward 1.1830 | time_backward 1.3930
[2023-09-02 18:47:45,968::train::INFO] [train] Iter 13138 | loss 1.5928 | loss(rot) 0.5245 | loss(pos) 0.5610 | loss(seq) 0.5072 | grad 4.6626 | lr 0.0010 | time_forward 1.1570 | time_backward 1.2400
[2023-09-02 18:47:53,204::train::INFO] [train] Iter 13139 | loss 1.3783 | loss(rot) 1.2050 | loss(pos) 0.1431 | loss(seq) 0.0302 | grad 6.1642 | lr 0.0010 | time_forward 3.0080 | time_backward 4.2240
[2023-09-02 18:48:02,371::train::INFO] [train] Iter 13140 | loss 1.5682 | loss(rot) 0.8147 | loss(pos) 0.1757 | loss(seq) 0.5778 | grad 3.8265 | lr 0.0010 | time_forward 3.6240 | time_backward 5.5390
[2023-09-02 18:48:11,087::train::INFO] [train] Iter 13141 | loss 1.1968 | loss(rot) 0.4729 | loss(pos) 0.2878 | loss(seq) 0.4360 | grad 3.7637 | lr 0.0010 | time_forward 3.7070 | time_backward 4.9990
[2023-09-02 18:48:20,470::train::INFO] [train] Iter 13142 | loss 0.7058 | loss(rot) 0.0579 | loss(pos) 0.6335 | loss(seq) 0.0144 | grad 4.6241 | lr 0.0010 | time_forward 4.0080 | time_backward 5.3710
[2023-09-02 18:48:29,631::train::INFO] [train] Iter 13143 | loss 1.4950 | loss(rot) 0.2771 | loss(pos) 1.0471 | loss(seq) 0.1707 | grad 5.3424 | lr 0.0010 | time_forward 3.6920 | time_backward 5.4660
[2023-09-02 18:48:37,827::train::INFO] [train] Iter 13144 | loss 0.8749 | loss(rot) 0.0493 | loss(pos) 0.5816 | loss(seq) 0.2439 | grad 4.0747 | lr 0.0010 | time_forward 3.4040 | time_backward 4.7890
[2023-09-02 18:48:44,954::train::INFO] [train] Iter 13145 | loss 1.3157 | loss(rot) 0.6428 | loss(pos) 0.1817 | loss(seq) 0.4911 | grad 3.7209 | lr 0.0010 | time_forward 2.8040 | time_backward 4.3090
[2023-09-02 18:48:47,579::train::INFO] [train] Iter 13146 | loss 1.0189 | loss(rot) 0.9312 | loss(pos) 0.0856 | loss(seq) 0.0021 | grad 7.5981 | lr 0.0010 | time_forward 1.2360 | time_backward 1.3870
[2023-09-02 18:48:55,849::train::INFO] [train] Iter 13147 | loss 2.1041 | loss(rot) 1.5377 | loss(pos) 0.1165 | loss(seq) 0.4499 | grad 5.0549 | lr 0.0010 | time_forward 3.5410 | time_backward 4.7090
[2023-09-02 18:48:58,490::train::INFO] [train] Iter 13148 | loss 1.0337 | loss(rot) 0.3274 | loss(pos) 0.4941 | loss(seq) 0.2123 | grad 3.4749 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4050
[2023-09-02 18:49:06,412::train::INFO] [train] Iter 13149 | loss 1.6588 | loss(rot) 1.5633 | loss(pos) 0.0948 | loss(seq) 0.0007 | grad 4.7959 | lr 0.0010 | time_forward 3.3790 | time_backward 4.5400
[2023-09-02 18:49:14,693::train::INFO] [train] Iter 13150 | loss 0.8734 | loss(rot) 0.0759 | loss(pos) 0.7860 | loss(seq) 0.0115 | grad 4.2550 | lr 0.0010 | time_forward 3.4750 | time_backward 4.8020
[2023-09-02 18:49:22,843::train::INFO] [train] Iter 13151 | loss 1.7282 | loss(rot) 0.7448 | loss(pos) 0.3147 | loss(seq) 0.6687 | grad 3.6556 | lr 0.0010 | time_forward 3.5430 | time_backward 4.6030
[2023-09-02 18:49:25,477::train::INFO] [train] Iter 13152 | loss 1.0701 | loss(rot) 0.4093 | loss(pos) 0.6053 | loss(seq) 0.0555 | grad 5.2565 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4130
[2023-09-02 18:49:35,075::train::INFO] [train] Iter 13153 | loss 2.5442 | loss(rot) 1.8355 | loss(pos) 0.2309 | loss(seq) 0.4778 | grad 4.7331 | lr 0.0010 | time_forward 3.9910 | time_backward 5.6030
[2023-09-02 18:49:44,120::train::INFO] [train] Iter 13154 | loss 2.1279 | loss(rot) 1.4583 | loss(pos) 0.1624 | loss(seq) 0.5072 | grad 3.9184 | lr 0.0010 | time_forward 3.4860 | time_backward 5.5550
[2023-09-02 18:49:46,694::train::INFO] [train] Iter 13155 | loss 1.0380 | loss(rot) 0.1184 | loss(pos) 0.9057 | loss(seq) 0.0139 | grad 3.3368 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3910
[2023-09-02 18:49:55,072::train::INFO] [train] Iter 13156 | loss 0.9933 | loss(rot) 0.0694 | loss(pos) 0.9020 | loss(seq) 0.0220 | grad 7.4924 | lr 0.0010 | time_forward 3.5590 | time_backward 4.8150
[2023-09-02 18:49:57,768::train::INFO] [train] Iter 13157 | loss 1.2753 | loss(rot) 0.9054 | loss(pos) 0.0951 | loss(seq) 0.2749 | grad 3.2488 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4670
[2023-09-02 18:50:06,172::train::INFO] [train] Iter 13158 | loss 1.1539 | loss(rot) 0.9397 | loss(pos) 0.1228 | loss(seq) 0.0913 | grad 4.2461 | lr 0.0010 | time_forward 3.5150 | time_backward 4.8860
[2023-09-02 18:50:08,861::train::INFO] [train] Iter 13159 | loss 3.0072 | loss(rot) 2.2281 | loss(pos) 0.3032 | loss(seq) 0.4758 | grad 3.8058 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4460
[2023-09-02 18:50:18,243::train::INFO] [train] Iter 13160 | loss 2.0271 | loss(rot) 1.2488 | loss(pos) 0.2555 | loss(seq) 0.5229 | grad 4.8858 | lr 0.0010 | time_forward 3.8160 | time_backward 5.5630
[2023-09-02 18:50:25,257::train::INFO] [train] Iter 13161 | loss 2.2413 | loss(rot) 2.1517 | loss(pos) 0.0897 | loss(seq) 0.0000 | grad 5.2764 | lr 0.0010 | time_forward 2.7360 | time_backward 4.2620
[2023-09-02 18:50:26,961::train::INFO] [train] Iter 13162 | loss 3.1209 | loss(rot) 2.7473 | loss(pos) 0.1976 | loss(seq) 0.1760 | grad 6.5009 | lr 0.0010 | time_forward 0.7430 | time_backward 0.9570
[2023-09-02 18:50:29,600::train::INFO] [train] Iter 13163 | loss 1.8169 | loss(rot) 1.0968 | loss(pos) 0.1950 | loss(seq) 0.5251 | grad 3.3980 | lr 0.0010 | time_forward 1.1960 | time_backward 1.4390
[2023-09-02 18:50:35,831::train::INFO] [train] Iter 13164 | loss 2.3483 | loss(rot) 1.7305 | loss(pos) 0.1834 | loss(seq) 0.4345 | grad 5.1914 | lr 0.0010 | time_forward 2.4690 | time_backward 3.7570
[2023-09-02 18:50:45,053::train::INFO] [train] Iter 13165 | loss 1.4766 | loss(rot) 1.3835 | loss(pos) 0.0898 | loss(seq) 0.0033 | grad 4.0519 | lr 0.0010 | time_forward 3.4380 | time_backward 5.7800
[2023-09-02 18:50:52,628::train::INFO] [train] Iter 13166 | loss 1.2331 | loss(rot) 0.4646 | loss(pos) 0.2686 | loss(seq) 0.4999 | grad 4.1156 | lr 0.0010 | time_forward 3.2820 | time_backward 4.2900
[2023-09-02 18:51:00,598::train::INFO] [train] Iter 13167 | loss 1.0582 | loss(rot) 0.4658 | loss(pos) 0.3408 | loss(seq) 0.2516 | grad 3.6350 | lr 0.0010 | time_forward 3.4040 | time_backward 4.5620
[2023-09-02 18:51:08,370::train::INFO] [train] Iter 13168 | loss 1.7250 | loss(rot) 1.5944 | loss(pos) 0.1276 | loss(seq) 0.0030 | grad 11.7733 | lr 0.0010 | time_forward 3.3850 | time_backward 4.3840
[2023-09-02 18:51:16,249::train::INFO] [train] Iter 13169 | loss 1.0545 | loss(rot) 0.0311 | loss(pos) 1.0175 | loss(seq) 0.0059 | grad 5.9939 | lr 0.0010 | time_forward 3.3450 | time_backward 4.5300
[2023-09-02 18:51:23,685::train::INFO] [train] Iter 13170 | loss 0.6222 | loss(rot) 0.1538 | loss(pos) 0.4451 | loss(seq) 0.0233 | grad 2.8412 | lr 0.0010 | time_forward 3.0520 | time_backward 4.3800
[2023-09-02 18:51:26,250::train::INFO] [train] Iter 13171 | loss 2.0135 | loss(rot) 1.7793 | loss(pos) 0.2341 | loss(seq) 0.0000 | grad 6.2631 | lr 0.0010 | time_forward 1.1660 | time_backward 1.3970
[2023-09-02 18:51:34,237::train::INFO] [train] Iter 13172 | loss 1.7644 | loss(rot) 1.6112 | loss(pos) 0.1511 | loss(seq) 0.0020 | grad 7.0759 | lr 0.0010 | time_forward 3.5260 | time_backward 4.4570
[2023-09-02 18:51:36,370::train::INFO] [train] Iter 13173 | loss 1.0549 | loss(rot) 0.8758 | loss(pos) 0.1779 | loss(seq) 0.0012 | grad 6.3007 | lr 0.0010 | time_forward 0.9790 | time_backward 1.1500
[2023-09-02 18:51:43,913::train::INFO] [train] Iter 13174 | loss 1.9231 | loss(rot) 1.4902 | loss(pos) 0.1296 | loss(seq) 0.3032 | grad 18.7770 | lr 0.0010 | time_forward 3.2240 | time_backward 4.3160
[2023-09-02 18:51:46,631::train::INFO] [train] Iter 13175 | loss 0.9868 | loss(rot) 0.2277 | loss(pos) 0.5619 | loss(seq) 0.1972 | grad 4.4851 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4830
[2023-09-02 18:51:49,804::train::INFO] [train] Iter 13176 | loss 3.6676 | loss(rot) 0.0054 | loss(pos) 3.6622 | loss(seq) 0.0000 | grad 4.9368 | lr 0.0010 | time_forward 1.3840 | time_backward 1.7850
[2023-09-02 18:51:57,554::train::INFO] [train] Iter 13177 | loss 1.1332 | loss(rot) 0.2869 | loss(pos) 0.3796 | loss(seq) 0.4667 | grad 5.4978 | lr 0.0010 | time_forward 3.0220 | time_backward 4.7260
[2023-09-02 18:52:06,600::train::INFO] [train] Iter 13178 | loss 2.0115 | loss(rot) 1.8319 | loss(pos) 0.1784 | loss(seq) 0.0012 | grad 5.1725 | lr 0.0010 | time_forward 3.4950 | time_backward 5.5470
[2023-09-02 18:52:15,169::train::INFO] [train] Iter 13179 | loss 1.9632 | loss(rot) 1.2354 | loss(pos) 0.2387 | loss(seq) 0.4892 | grad 8.5382 | lr 0.0010 | time_forward 3.5480 | time_backward 5.0170
[2023-09-02 18:52:24,908::train::INFO] [train] Iter 13180 | loss 1.9009 | loss(rot) 1.1462 | loss(pos) 0.2373 | loss(seq) 0.5173 | grad 4.9331 | lr 0.0010 | time_forward 3.8850 | time_backward 5.8520
[2023-09-02 18:52:33,169::train::INFO] [train] Iter 13181 | loss 1.3899 | loss(rot) 0.7794 | loss(pos) 0.1977 | loss(seq) 0.4129 | grad 3.5723 | lr 0.0010 | time_forward 3.4880 | time_backward 4.7690