text
stringlengths 56
1.16k
|
---|
[2023-09-02 18:29:38,952::train::INFO] [train] Iter 12983 | loss 0.9531 | loss(rot) 0.1926 | loss(pos) 0.5829 | loss(seq) 0.1776 | grad 3.6248 | lr 0.0010 | time_forward 4.1200 | time_backward 6.1270 |
[2023-09-02 18:29:41,726::train::INFO] [train] Iter 12984 | loss 1.5300 | loss(rot) 0.8624 | loss(pos) 0.2982 | loss(seq) 0.3694 | grad 4.6893 | lr 0.0010 | time_forward 1.2690 | time_backward 1.5010 |
[2023-09-02 18:29:44,568::train::INFO] [train] Iter 12985 | loss 2.1733 | loss(rot) 1.9337 | loss(pos) 0.0981 | loss(seq) 0.1415 | grad 5.7940 | lr 0.0010 | time_forward 1.3180 | time_backward 1.5200 |
[2023-09-02 18:29:53,312::train::INFO] [train] Iter 12986 | loss 0.9636 | loss(rot) 0.8479 | loss(pos) 0.1156 | loss(seq) 0.0000 | grad 4.8321 | lr 0.0010 | time_forward 3.5650 | time_backward 5.1420 |
[2023-09-02 18:29:56,085::train::INFO] [train] Iter 12987 | loss 1.5157 | loss(rot) 0.6751 | loss(pos) 0.2248 | loss(seq) 0.6157 | grad 3.8877 | lr 0.0010 | time_forward 1.2670 | time_backward 1.5020 |
[2023-09-02 18:30:06,320::train::INFO] [train] Iter 12988 | loss 1.9695 | loss(rot) 1.4919 | loss(pos) 0.1104 | loss(seq) 0.3672 | grad 4.2078 | lr 0.0010 | time_forward 4.0970 | time_backward 6.1350 |
[2023-09-02 18:30:09,056::train::INFO] [train] Iter 12989 | loss 2.2966 | loss(rot) 1.6650 | loss(pos) 0.1659 | loss(seq) 0.4657 | grad 4.0029 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4670 |
[2023-09-02 18:30:18,065::train::INFO] [train] Iter 12990 | loss 2.0076 | loss(rot) 1.9409 | loss(pos) 0.0634 | loss(seq) 0.0033 | grad 6.7378 | lr 0.0010 | time_forward 3.7100 | time_backward 5.2960 |
[2023-09-02 18:30:28,083::train::INFO] [train] Iter 12991 | loss 1.7739 | loss(rot) 0.9693 | loss(pos) 0.2374 | loss(seq) 0.5672 | grad 3.3478 | lr 0.0010 | time_forward 4.0490 | time_backward 5.9650 |
[2023-09-02 18:30:36,971::train::INFO] [train] Iter 12992 | loss 0.4115 | loss(rot) 0.0309 | loss(pos) 0.3718 | loss(seq) 0.0088 | grad 3.2865 | lr 0.0010 | time_forward 3.7080 | time_backward 5.1780 |
[2023-09-02 18:30:48,037::train::INFO] [train] Iter 12993 | loss 2.3936 | loss(rot) 1.5005 | loss(pos) 0.2892 | loss(seq) 0.6039 | grad 3.1910 | lr 0.0010 | time_forward 4.5540 | time_backward 6.5080 |
[2023-09-02 18:30:57,438::train::INFO] [train] Iter 12994 | loss 1.1186 | loss(rot) 0.1972 | loss(pos) 0.6689 | loss(seq) 0.2525 | grad 5.1088 | lr 0.0010 | time_forward 3.9420 | time_backward 5.4560 |
[2023-09-02 18:31:00,186::train::INFO] [train] Iter 12995 | loss 0.9770 | loss(rot) 0.5572 | loss(pos) 0.3275 | loss(seq) 0.0923 | grad 7.2452 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4630 |
[2023-09-02 18:31:09,112::train::INFO] [train] Iter 12996 | loss 1.5435 | loss(rot) 0.6749 | loss(pos) 0.4857 | loss(seq) 0.3829 | grad 3.1106 | lr 0.0010 | time_forward 3.7240 | time_backward 5.1990 |
[2023-09-02 18:31:17,707::train::INFO] [train] Iter 12997 | loss 0.6882 | loss(rot) 0.3111 | loss(pos) 0.1695 | loss(seq) 0.2076 | grad 3.3090 | lr 0.0010 | time_forward 3.6240 | time_backward 4.9670 |
[2023-09-02 18:31:27,986::train::INFO] [train] Iter 12998 | loss 0.6963 | loss(rot) 0.1710 | loss(pos) 0.4411 | loss(seq) 0.0843 | grad 3.4033 | lr 0.0010 | time_forward 4.3420 | time_backward 5.9330 |
[2023-09-02 18:31:37,468::train::INFO] [train] Iter 12999 | loss 1.9950 | loss(rot) 1.8400 | loss(pos) 0.1054 | loss(seq) 0.0496 | grad 5.9020 | lr 0.0010 | time_forward 4.0140 | time_backward 5.4650 |
[2023-09-02 18:31:40,206::train::INFO] [train] Iter 13000 | loss 1.0640 | loss(rot) 0.2275 | loss(pos) 0.8260 | loss(seq) 0.0105 | grad 4.6381 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4570 |
[2023-09-02 18:32:17,661::train::INFO] [val] Iter 13000 | loss 1.7813 | loss(rot) 1.0823 | loss(pos) 0.5086 | loss(seq) 0.1904 |
[2023-09-02 18:32:25,623::train::INFO] [train] Iter 13001 | loss 1.6757 | loss(rot) 1.3758 | loss(pos) 0.1025 | loss(seq) 0.1974 | grad 3.7237 | lr 0.0010 | time_forward 3.2220 | time_backward 4.4480 |
[2023-09-02 18:32:36,049::train::INFO] [train] Iter 13002 | loss 1.6887 | loss(rot) 1.0710 | loss(pos) 0.1612 | loss(seq) 0.4565 | grad 7.8714 | lr 0.0010 | time_forward 4.1120 | time_backward 6.3110 |
[2023-09-02 18:32:46,089::train::INFO] [train] Iter 13003 | loss 1.2030 | loss(rot) 1.1284 | loss(pos) 0.0642 | loss(seq) 0.0104 | grad 4.2395 | lr 0.0010 | time_forward 4.0970 | time_backward 5.9400 |
[2023-09-02 18:32:48,823::train::INFO] [train] Iter 13004 | loss 1.9682 | loss(rot) 1.6795 | loss(pos) 0.1108 | loss(seq) 0.1779 | grad 5.2831 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4530 |
[2023-09-02 18:32:58,439::train::INFO] [train] Iter 13005 | loss 0.8797 | loss(rot) 0.2878 | loss(pos) 0.5323 | loss(seq) 0.0595 | grad 3.9160 | lr 0.0010 | time_forward 3.7510 | time_backward 5.8620 |
[2023-09-02 18:33:08,340::train::INFO] [train] Iter 13006 | loss 2.7138 | loss(rot) 2.5903 | loss(pos) 0.1232 | loss(seq) 0.0003 | grad 3.3919 | lr 0.0010 | time_forward 4.0190 | time_backward 5.8790 |
[2023-09-02 18:33:11,010::train::INFO] [train] Iter 13007 | loss 1.7989 | loss(rot) 1.1643 | loss(pos) 0.1327 | loss(seq) 0.5019 | grad 4.5263 | lr 0.0010 | time_forward 1.2060 | time_backward 1.4600 |
[2023-09-02 18:33:13,771::train::INFO] [train] Iter 13008 | loss 1.2913 | loss(rot) 0.0414 | loss(pos) 1.2423 | loss(seq) 0.0076 | grad 7.1323 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4750 |
[2023-09-02 18:33:23,901::train::INFO] [train] Iter 13009 | loss 2.1723 | loss(rot) 2.0054 | loss(pos) 0.1668 | loss(seq) 0.0000 | grad 7.0602 | lr 0.0010 | time_forward 4.1210 | time_backward 6.0060 |
[2023-09-02 18:33:32,584::train::INFO] [train] Iter 13010 | loss 1.3423 | loss(rot) 1.2271 | loss(pos) 0.1021 | loss(seq) 0.0130 | grad 8.8646 | lr 0.0010 | time_forward 3.6680 | time_backward 5.0110 |
[2023-09-02 18:33:42,493::train::INFO] [train] Iter 13011 | loss 1.9495 | loss(rot) 1.0605 | loss(pos) 0.3856 | loss(seq) 0.5034 | grad 3.1818 | lr 0.0010 | time_forward 3.9810 | time_backward 5.9250 |
[2023-09-02 18:33:51,080::train::INFO] [train] Iter 13012 | loss 2.0417 | loss(rot) 1.7996 | loss(pos) 0.0883 | loss(seq) 0.1538 | grad 5.7536 | lr 0.0010 | time_forward 3.6630 | time_backward 4.9200 |
[2023-09-02 18:34:00,380::train::INFO] [train] Iter 13013 | loss 1.9204 | loss(rot) 1.7800 | loss(pos) 0.1305 | loss(seq) 0.0099 | grad 6.3032 | lr 0.0010 | time_forward 3.5360 | time_backward 5.7610 |
[2023-09-02 18:34:07,256::train::INFO] [train] Iter 13014 | loss 1.0462 | loss(rot) 0.1294 | loss(pos) 0.8984 | loss(seq) 0.0184 | grad 6.7384 | lr 0.0010 | time_forward 2.7150 | time_backward 4.1580 |
[2023-09-02 18:34:17,142::train::INFO] [train] Iter 13015 | loss 0.9328 | loss(rot) 0.0274 | loss(pos) 0.9011 | loss(seq) 0.0042 | grad 3.7106 | lr 0.0010 | time_forward 3.8880 | time_backward 5.9960 |
[2023-09-02 18:34:24,333::train::INFO] [train] Iter 13016 | loss 2.1467 | loss(rot) 1.7295 | loss(pos) 0.4124 | loss(seq) 0.0048 | grad 10.1657 | lr 0.0010 | time_forward 3.0920 | time_backward 4.0960 |
[2023-09-02 18:34:31,617::train::INFO] [train] Iter 13017 | loss 2.3413 | loss(rot) 1.9849 | loss(pos) 0.3562 | loss(seq) 0.0001 | grad 6.7755 | lr 0.0010 | time_forward 3.0230 | time_backward 4.2570 |
[2023-09-02 18:34:38,529::train::INFO] [train] Iter 13018 | loss 2.3326 | loss(rot) 1.8110 | loss(pos) 0.1098 | loss(seq) 0.4118 | grad 6.6871 | lr 0.0010 | time_forward 2.7010 | time_backward 4.2080 |
[2023-09-02 18:34:41,012::train::INFO] [train] Iter 13019 | loss 1.8620 | loss(rot) 0.4199 | loss(pos) 1.3661 | loss(seq) 0.0760 | grad 9.3682 | lr 0.0010 | time_forward 1.1640 | time_backward 1.3150 |
[2023-09-02 18:34:43,707::train::INFO] [train] Iter 13020 | loss 0.9612 | loss(rot) 0.7945 | loss(pos) 0.1580 | loss(seq) 0.0087 | grad 6.4784 | lr 0.0010 | time_forward 1.2230 | time_backward 1.4500 |
[2023-09-02 18:34:53,206::train::INFO] [train] Iter 13021 | loss 1.5061 | loss(rot) 0.7505 | loss(pos) 0.2971 | loss(seq) 0.4585 | grad 3.7433 | lr 0.0010 | time_forward 3.8400 | time_backward 5.6560 |
[2023-09-02 18:34:55,996::train::INFO] [train] Iter 13022 | loss 0.8951 | loss(rot) 0.6659 | loss(pos) 0.0299 | loss(seq) 0.1993 | grad 5.4584 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4940 |
[2023-09-02 18:35:04,072::train::INFO] [train] Iter 13023 | loss 2.6876 | loss(rot) 2.3402 | loss(pos) 0.3462 | loss(seq) 0.0012 | grad 7.0334 | lr 0.0010 | time_forward 3.4390 | time_backward 4.6330 |
[2023-09-02 18:35:11,972::train::INFO] [train] Iter 13024 | loss 3.0907 | loss(rot) 1.7679 | loss(pos) 0.9183 | loss(seq) 0.4044 | grad 5.6202 | lr 0.0010 | time_forward 3.2790 | time_backward 4.6180 |
[2023-09-02 18:35:21,594::train::INFO] [train] Iter 13025 | loss 2.9377 | loss(rot) 1.7867 | loss(pos) 0.6515 | loss(seq) 0.4995 | grad 6.3364 | lr 0.0010 | time_forward 3.9090 | time_backward 5.7100 |
[2023-09-02 18:35:30,020::train::INFO] [train] Iter 13026 | loss 1.5933 | loss(rot) 0.8031 | loss(pos) 0.2364 | loss(seq) 0.5539 | grad 5.5657 | lr 0.0010 | time_forward 3.5500 | time_backward 4.8710 |
[2023-09-02 18:35:37,281::train::INFO] [train] Iter 13027 | loss 1.7883 | loss(rot) 1.0758 | loss(pos) 0.2866 | loss(seq) 0.4260 | grad 7.3086 | lr 0.0010 | time_forward 3.1230 | time_backward 4.1360 |
[2023-09-02 18:35:45,375::train::INFO] [train] Iter 13028 | loss 0.7877 | loss(rot) 0.1878 | loss(pos) 0.5657 | loss(seq) 0.0341 | grad 5.1672 | lr 0.0010 | time_forward 3.4860 | time_backward 4.6050 |
[2023-09-02 18:35:53,927::train::INFO] [train] Iter 13029 | loss 1.0793 | loss(rot) 0.3831 | loss(pos) 0.2472 | loss(seq) 0.4491 | grad 3.1049 | lr 0.0010 | time_forward 3.6740 | time_backward 4.8750 |
[2023-09-02 18:36:04,023::train::INFO] [train] Iter 13030 | loss 0.8773 | loss(rot) 0.2321 | loss(pos) 0.3712 | loss(seq) 0.2740 | grad 4.1895 | lr 0.0010 | time_forward 4.2400 | time_backward 5.8520 |
[2023-09-02 18:36:12,452::train::INFO] [train] Iter 13031 | loss 1.4389 | loss(rot) 0.9583 | loss(pos) 0.1277 | loss(seq) 0.3529 | grad 4.8160 | lr 0.0010 | time_forward 3.6790 | time_backward 4.7470 |
[2023-09-02 18:36:15,109::train::INFO] [train] Iter 13032 | loss 1.0054 | loss(rot) 0.3845 | loss(pos) 0.1692 | loss(seq) 0.4517 | grad 4.2781 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4110 |
[2023-09-02 18:36:24,550::train::INFO] [train] Iter 13033 | loss 1.6660 | loss(rot) 1.1927 | loss(pos) 0.1924 | loss(seq) 0.2809 | grad 4.0879 | lr 0.0010 | time_forward 4.0380 | time_backward 5.3990 |
[2023-09-02 18:36:34,036::train::INFO] [train] Iter 13034 | loss 1.5458 | loss(rot) 0.0253 | loss(pos) 1.5139 | loss(seq) 0.0066 | grad 10.7880 | lr 0.0010 | time_forward 3.7240 | time_backward 5.7590 |
[2023-09-02 18:36:42,225::train::INFO] [train] Iter 13035 | loss 2.0122 | loss(rot) 0.4586 | loss(pos) 1.5355 | loss(seq) 0.0181 | grad 7.9429 | lr 0.0010 | time_forward 3.5110 | time_backward 4.6750 |
[2023-09-02 18:36:44,876::train::INFO] [train] Iter 13036 | loss 2.1923 | loss(rot) 1.9905 | loss(pos) 0.2018 | loss(seq) 0.0000 | grad 4.4911 | lr 0.0010 | time_forward 1.2520 | time_backward 1.3960 |
[2023-09-02 18:36:47,514::train::INFO] [train] Iter 13037 | loss 2.6679 | loss(rot) 2.2621 | loss(pos) 0.1788 | loss(seq) 0.2271 | grad 6.4937 | lr 0.0010 | time_forward 1.2490 | time_backward 1.3860 |
[2023-09-02 18:36:50,706::train::INFO] [train] Iter 13038 | loss 2.6193 | loss(rot) 2.3613 | loss(pos) 0.2576 | loss(seq) 0.0003 | grad 6.0723 | lr 0.0010 | time_forward 1.4190 | time_backward 1.7690 |
[2023-09-02 18:36:58,797::train::INFO] [train] Iter 13039 | loss 1.4816 | loss(rot) 0.6683 | loss(pos) 0.2448 | loss(seq) 0.5685 | grad 4.0279 | lr 0.0010 | time_forward 3.1680 | time_backward 4.9080 |
[2023-09-02 18:37:01,427::train::INFO] [train] Iter 13040 | loss 1.3327 | loss(rot) 1.1849 | loss(pos) 0.0870 | loss(seq) 0.0608 | grad 7.0441 | lr 0.0010 | time_forward 1.2340 | time_backward 1.3930 |
[2023-09-02 18:37:09,554::train::INFO] [train] Iter 13041 | loss 0.8585 | loss(rot) 0.6867 | loss(pos) 0.0951 | loss(seq) 0.0767 | grad 9.7596 | lr 0.0010 | time_forward 3.5270 | time_backward 4.5970 |
[2023-09-02 18:37:17,798::train::INFO] [train] Iter 13042 | loss 2.1215 | loss(rot) 1.9851 | loss(pos) 0.1330 | loss(seq) 0.0034 | grad 4.9831 | lr 0.0010 | time_forward 3.3270 | time_backward 4.9020 |
[2023-09-02 18:37:26,516::train::INFO] [train] Iter 13043 | loss 2.0070 | loss(rot) 1.8864 | loss(pos) 0.1108 | loss(seq) 0.0097 | grad 7.5162 | lr 0.0010 | time_forward 3.8170 | time_backward 4.8970 |
[2023-09-02 18:37:35,111::train::INFO] [train] Iter 13044 | loss 1.1457 | loss(rot) 0.1586 | loss(pos) 0.2983 | loss(seq) 0.6888 | grad 4.1869 | lr 0.0010 | time_forward 3.6690 | time_backward 4.9230 |
[2023-09-02 18:37:37,810::train::INFO] [train] Iter 13045 | loss 1.5345 | loss(rot) 0.6960 | loss(pos) 0.4296 | loss(seq) 0.4090 | grad 6.1786 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4290 |
[2023-09-02 18:37:45,898::train::INFO] [train] Iter 13046 | loss 1.4038 | loss(rot) 0.9178 | loss(pos) 0.1169 | loss(seq) 0.3692 | grad 3.8990 | lr 0.0010 | time_forward 3.3280 | time_backward 4.7560 |
[2023-09-02 18:37:48,607::train::INFO] [train] Iter 13047 | loss 1.0495 | loss(rot) 0.2938 | loss(pos) 0.7266 | loss(seq) 0.0291 | grad 5.0288 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4560 |
[2023-09-02 18:37:57,033::train::INFO] [train] Iter 13048 | loss 1.6386 | loss(rot) 0.6707 | loss(pos) 0.2417 | loss(seq) 0.7262 | grad 4.6525 | lr 0.0010 | time_forward 3.6340 | time_backward 4.7880 |
[2023-09-02 18:38:05,322::train::INFO] [train] Iter 13049 | loss 1.3834 | loss(rot) 1.1685 | loss(pos) 0.2147 | loss(seq) 0.0001 | grad 5.5937 | lr 0.0010 | time_forward 3.5610 | time_backward 4.7250 |
[2023-09-02 18:38:07,921::train::INFO] [train] Iter 13050 | loss 1.2373 | loss(rot) 0.2818 | loss(pos) 0.6127 | loss(seq) 0.3428 | grad 4.5008 | lr 0.0010 | time_forward 1.1930 | time_backward 1.4030 |
[2023-09-02 18:38:17,853::train::INFO] [train] Iter 13051 | loss 1.9109 | loss(rot) 1.5153 | loss(pos) 0.1903 | loss(seq) 0.2053 | grad 4.1894 | lr 0.0010 | time_forward 4.0300 | time_backward 5.8990 |
[2023-09-02 18:38:25,718::train::INFO] [train] Iter 13052 | loss 2.0279 | loss(rot) 1.4235 | loss(pos) 0.1821 | loss(seq) 0.4223 | grad 6.6010 | lr 0.0010 | time_forward 3.2380 | time_backward 4.6230 |
[2023-09-02 18:38:28,411::train::INFO] [train] Iter 13053 | loss 3.6378 | loss(rot) 2.9704 | loss(pos) 0.6673 | loss(seq) 0.0001 | grad 5.2787 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4300 |
[2023-09-02 18:38:37,880::train::INFO] [train] Iter 13054 | loss 1.6559 | loss(rot) 1.3296 | loss(pos) 0.1360 | loss(seq) 0.1903 | grad 4.2030 | lr 0.0010 | time_forward 3.6290 | time_backward 5.8370 |
[2023-09-02 18:38:40,535::train::INFO] [train] Iter 13055 | loss 1.4407 | loss(rot) 1.2845 | loss(pos) 0.0493 | loss(seq) 0.1069 | grad 5.5743 | lr 0.0010 | time_forward 1.2220 | time_backward 1.4110 |
[2023-09-02 18:38:50,246::train::INFO] [train] Iter 13056 | loss 1.6080 | loss(rot) 0.7786 | loss(pos) 0.2875 | loss(seq) 0.5419 | grad 3.1140 | lr 0.0010 | time_forward 3.9150 | time_backward 5.7940 |
[2023-09-02 18:38:58,643::train::INFO] [train] Iter 13057 | loss 2.2930 | loss(rot) 1.4411 | loss(pos) 0.3392 | loss(seq) 0.5127 | grad 3.1696 | lr 0.0010 | time_forward 3.3310 | time_backward 5.0630 |
[2023-09-02 18:39:01,313::train::INFO] [train] Iter 13058 | loss 1.7109 | loss(rot) 1.6320 | loss(pos) 0.0777 | loss(seq) 0.0013 | grad 4.5676 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4360 |
[2023-09-02 18:39:03,937::train::INFO] [train] Iter 13059 | loss 1.1363 | loss(rot) 0.2531 | loss(pos) 0.8414 | loss(seq) 0.0418 | grad 6.4865 | lr 0.0010 | time_forward 1.2270 | time_backward 1.3930 |
[2023-09-02 18:39:13,044::train::INFO] [train] Iter 13060 | loss 0.7070 | loss(rot) 0.3188 | loss(pos) 0.2971 | loss(seq) 0.0911 | grad 5.2447 | lr 0.0010 | time_forward 3.8790 | time_backward 5.2250 |
[2023-09-02 18:39:22,706::train::INFO] [train] Iter 13061 | loss 1.5347 | loss(rot) 0.0353 | loss(pos) 1.4987 | loss(seq) 0.0006 | grad 3.6619 | lr 0.0010 | time_forward 3.7950 | time_backward 5.8650 |
[2023-09-02 18:39:25,143::train::INFO] [train] Iter 13062 | loss 1.8593 | loss(rot) 1.3383 | loss(pos) 0.1157 | loss(seq) 0.4053 | grad 5.2516 | lr 0.0010 | time_forward 1.1470 | time_backward 1.2860 |
[2023-09-02 18:39:35,444::train::INFO] [train] Iter 13063 | loss 2.1256 | loss(rot) 1.8392 | loss(pos) 0.2864 | loss(seq) 0.0000 | grad 3.5849 | lr 0.0010 | time_forward 4.2660 | time_backward 6.0310 |
[2023-09-02 18:39:38,189::train::INFO] [train] Iter 13064 | loss 0.8980 | loss(rot) 0.3689 | loss(pos) 0.1319 | loss(seq) 0.3971 | grad 2.9309 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4650 |
[2023-09-02 18:39:40,924::train::INFO] [train] Iter 13065 | loss 0.7214 | loss(rot) 0.1837 | loss(pos) 0.4885 | loss(seq) 0.0491 | grad 3.8902 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4500 |
[2023-09-02 18:39:49,672::train::INFO] [train] Iter 13066 | loss 0.9035 | loss(rot) 0.1379 | loss(pos) 0.3233 | loss(seq) 0.4423 | grad 3.7455 | lr 0.0010 | time_forward 3.6990 | time_backward 5.0450 |
[2023-09-02 18:39:59,646::train::INFO] [train] Iter 13067 | loss 2.3116 | loss(rot) 1.4440 | loss(pos) 0.3244 | loss(seq) 0.5432 | grad 4.6189 | lr 0.0010 | time_forward 4.0990 | time_backward 5.8730 |
[2023-09-02 18:40:02,289::train::INFO] [train] Iter 13068 | loss 1.7147 | loss(rot) 1.5711 | loss(pos) 0.1305 | loss(seq) 0.0131 | grad 4.9474 | lr 0.0010 | time_forward 1.2190 | time_backward 1.4200 |
[2023-09-02 18:40:11,121::train::INFO] [train] Iter 13069 | loss 2.5884 | loss(rot) 1.7898 | loss(pos) 0.2393 | loss(seq) 0.5594 | grad 4.5076 | lr 0.0010 | time_forward 3.6780 | time_backward 5.1520 |
[2023-09-02 18:40:13,760::train::INFO] [train] Iter 13070 | loss 1.1220 | loss(rot) 0.9317 | loss(pos) 0.1904 | loss(seq) 0.0000 | grad 4.8360 | lr 0.0010 | time_forward 1.2380 | time_backward 1.3980 |
[2023-09-02 18:40:23,397::train::INFO] [train] Iter 13071 | loss 0.6454 | loss(rot) 0.2453 | loss(pos) 0.3405 | loss(seq) 0.0596 | grad 4.6759 | lr 0.0010 | time_forward 4.0710 | time_backward 5.5620 |
[2023-09-02 18:40:33,402::train::INFO] [train] Iter 13072 | loss 2.1558 | loss(rot) 1.8768 | loss(pos) 0.1694 | loss(seq) 0.1096 | grad 3.5683 | lr 0.0010 | time_forward 3.9940 | time_backward 6.0070 |
[2023-09-02 18:40:42,369::train::INFO] [train] Iter 13073 | loss 1.4225 | loss(rot) 0.6974 | loss(pos) 0.1675 | loss(seq) 0.5576 | grad 3.4501 | lr 0.0010 | time_forward 3.7530 | time_backward 5.2110 |
[2023-09-02 18:40:51,915::train::INFO] [train] Iter 13074 | loss 1.3909 | loss(rot) 1.2652 | loss(pos) 0.1251 | loss(seq) 0.0006 | grad 6.3137 | lr 0.0010 | time_forward 4.0510 | time_backward 5.4930 |
[2023-09-02 18:40:54,647::train::INFO] [train] Iter 13075 | loss 0.9829 | loss(rot) 0.0507 | loss(pos) 0.9165 | loss(seq) 0.0157 | grad 4.5990 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4580 |
[2023-09-02 18:40:57,338::train::INFO] [train] Iter 13076 | loss 1.4504 | loss(rot) 0.5186 | loss(pos) 0.3245 | loss(seq) 0.6074 | grad 4.2809 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4220 |
[2023-09-02 18:41:05,785::train::INFO] [train] Iter 13077 | loss 1.4914 | loss(rot) 1.3038 | loss(pos) 0.1802 | loss(seq) 0.0074 | grad 3.9605 | lr 0.0010 | time_forward 3.5740 | time_backward 4.8700 |
[2023-09-02 18:41:08,446::train::INFO] [train] Iter 13078 | loss 1.2281 | loss(rot) 1.1474 | loss(pos) 0.0807 | loss(seq) 0.0000 | grad 7.2363 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4070 |
[2023-09-02 18:41:17,150::train::INFO] [train] Iter 13079 | loss 0.6006 | loss(rot) 0.2804 | loss(pos) 0.2608 | loss(seq) 0.0594 | grad 2.9800 | lr 0.0010 | time_forward 3.6740 | time_backward 5.0280 |
[2023-09-02 18:41:25,144::train::INFO] [train] Iter 13080 | loss 1.8276 | loss(rot) 1.5580 | loss(pos) 0.2530 | loss(seq) 0.0165 | grad 6.8252 | lr 0.0010 | time_forward 3.3840 | time_backward 4.6060 |
[2023-09-02 18:41:33,312::train::INFO] [train] Iter 13081 | loss 1.6695 | loss(rot) 1.6001 | loss(pos) 0.0674 | loss(seq) 0.0020 | grad 5.5443 | lr 0.0010 | time_forward 3.4190 | time_backward 4.7470 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.