text
stringlengths 56
1.16k
|
---|
[2023-09-02 18:18:09,139::train::INFO] [train] Iter 12883 | loss 2.5747 | loss(rot) 2.2601 | loss(pos) 0.1266 | loss(seq) 0.1880 | grad 4.7933 | lr 0.0010 | time_forward 3.3630 | time_backward 4.7980 |
[2023-09-02 18:18:19,204::train::INFO] [train] Iter 12884 | loss 0.9023 | loss(rot) 0.2966 | loss(pos) 0.1848 | loss(seq) 0.4208 | grad 3.5453 | lr 0.0010 | time_forward 4.0120 | time_backward 6.0490 |
[2023-09-02 18:18:29,248::train::INFO] [train] Iter 12885 | loss 1.9809 | loss(rot) 1.7635 | loss(pos) 0.1544 | loss(seq) 0.0630 | grad 5.1875 | lr 0.0010 | time_forward 4.1770 | time_backward 5.8640 |
[2023-09-02 18:18:37,968::train::INFO] [train] Iter 12886 | loss 1.7587 | loss(rot) 0.7198 | loss(pos) 0.9987 | loss(seq) 0.0402 | grad 7.2902 | lr 0.0010 | time_forward 3.7610 | time_backward 4.9550 |
[2023-09-02 18:18:47,174::train::INFO] [train] Iter 12887 | loss 1.3836 | loss(rot) 0.8593 | loss(pos) 0.1849 | loss(seq) 0.3394 | grad 6.3300 | lr 0.0010 | time_forward 3.9850 | time_backward 5.2180 |
[2023-09-02 18:18:55,447::train::INFO] [train] Iter 12888 | loss 1.2216 | loss(rot) 1.0609 | loss(pos) 0.1077 | loss(seq) 0.0530 | grad 5.0704 | lr 0.0010 | time_forward 3.6650 | time_backward 4.6040 |
[2023-09-02 18:19:02,783::train::INFO] [train] Iter 12889 | loss 1.3901 | loss(rot) 1.2783 | loss(pos) 0.1096 | loss(seq) 0.0022 | grad 7.7347 | lr 0.0010 | time_forward 3.2570 | time_backward 4.0760 |
[2023-09-02 18:19:05,429::train::INFO] [train] Iter 12890 | loss 1.1579 | loss(rot) 0.3138 | loss(pos) 0.2988 | loss(seq) 0.5454 | grad 3.6327 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4180 |
[2023-09-02 18:19:08,187::train::INFO] [train] Iter 12891 | loss 1.4244 | loss(rot) 0.8883 | loss(pos) 0.1036 | loss(seq) 0.4324 | grad 4.6251 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4550 |
[2023-09-02 18:19:11,599::train::INFO] [train] Iter 12892 | loss 2.2957 | loss(rot) 1.9256 | loss(pos) 0.2636 | loss(seq) 0.1066 | grad 4.5267 | lr 0.0010 | time_forward 1.4840 | time_backward 1.9250 |
[2023-09-02 18:19:22,024::train::INFO] [train] Iter 12893 | loss 1.8228 | loss(rot) 1.6216 | loss(pos) 0.2011 | loss(seq) 0.0001 | grad 6.5131 | lr 0.0010 | time_forward 4.1110 | time_backward 6.3100 |
[2023-09-02 18:19:31,438::train::INFO] [train] Iter 12894 | loss 0.8055 | loss(rot) 0.0639 | loss(pos) 0.4877 | loss(seq) 0.2539 | grad 4.5873 | lr 0.0010 | time_forward 3.9320 | time_backward 5.4780 |
[2023-09-02 18:19:39,849::train::INFO] [train] Iter 12895 | loss 1.3467 | loss(rot) 0.6011 | loss(pos) 0.3356 | loss(seq) 0.4100 | grad 5.7322 | lr 0.0010 | time_forward 3.5320 | time_backward 4.8760 |
[2023-09-02 18:19:49,161::train::INFO] [train] Iter 12896 | loss 0.9231 | loss(rot) 0.3901 | loss(pos) 0.3962 | loss(seq) 0.1367 | grad 4.7876 | lr 0.0010 | time_forward 3.9270 | time_backward 5.3810 |
[2023-09-02 18:19:58,136::train::INFO] [train] Iter 12897 | loss 1.1482 | loss(rot) 1.0582 | loss(pos) 0.0744 | loss(seq) 0.0155 | grad 4.2499 | lr 0.0010 | time_forward 3.7470 | time_backward 5.2240 |
[2023-09-02 18:20:06,645::train::INFO] [train] Iter 12898 | loss 1.8394 | loss(rot) 0.0395 | loss(pos) 1.7995 | loss(seq) 0.0004 | grad 5.8988 | lr 0.0010 | time_forward 3.5440 | time_backward 4.9620 |
[2023-09-02 18:20:15,633::train::INFO] [train] Iter 12899 | loss 1.8167 | loss(rot) 1.5324 | loss(pos) 0.1459 | loss(seq) 0.1384 | grad 6.3042 | lr 0.0010 | time_forward 3.7690 | time_backward 5.2160 |
[2023-09-02 18:20:25,853::train::INFO] [train] Iter 12900 | loss 1.7913 | loss(rot) 0.8991 | loss(pos) 0.6382 | loss(seq) 0.2540 | grad 4.2215 | lr 0.0010 | time_forward 4.0590 | time_backward 6.1580 |
[2023-09-02 18:20:28,561::train::INFO] [train] Iter 12901 | loss 1.5759 | loss(rot) 0.6806 | loss(pos) 0.5297 | loss(seq) 0.3655 | grad 5.4187 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4430 |
[2023-09-02 18:20:31,339::train::INFO] [train] Iter 12902 | loss 1.0991 | loss(rot) 0.9452 | loss(pos) 0.1538 | loss(seq) 0.0000 | grad 4.9559 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4700 |
[2023-09-02 18:20:34,095::train::INFO] [train] Iter 12903 | loss 1.1732 | loss(rot) 0.5086 | loss(pos) 0.2133 | loss(seq) 0.4513 | grad 3.3354 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4630 |
[2023-09-02 18:20:43,414::train::INFO] [train] Iter 12904 | loss 1.5161 | loss(rot) 0.8985 | loss(pos) 0.1218 | loss(seq) 0.4958 | grad 4.0918 | lr 0.0010 | time_forward 3.9360 | time_backward 5.3790 |
[2023-09-02 18:20:52,336::train::INFO] [train] Iter 12905 | loss 1.2066 | loss(rot) 0.0884 | loss(pos) 1.0985 | loss(seq) 0.0196 | grad 7.1094 | lr 0.0010 | time_forward 3.6820 | time_backward 5.2380 |
[2023-09-02 18:21:01,845::train::INFO] [train] Iter 12906 | loss 2.5543 | loss(rot) 0.0371 | loss(pos) 2.5164 | loss(seq) 0.0007 | grad 7.9588 | lr 0.0010 | time_forward 3.8990 | time_backward 5.6060 |
[2023-09-02 18:21:04,659::train::INFO] [train] Iter 12907 | loss 1.0266 | loss(rot) 0.7899 | loss(pos) 0.2303 | loss(seq) 0.0064 | grad 4.3561 | lr 0.0010 | time_forward 1.2830 | time_backward 1.5280 |
[2023-09-02 18:21:15,050::train::INFO] [train] Iter 12908 | loss 1.5240 | loss(rot) 1.3742 | loss(pos) 0.1445 | loss(seq) 0.0053 | grad 4.4903 | lr 0.0010 | time_forward 4.2540 | time_backward 6.1330 |
[2023-09-02 18:21:17,803::train::INFO] [train] Iter 12909 | loss 1.6266 | loss(rot) 0.4771 | loss(pos) 0.5556 | loss(seq) 0.5939 | grad 6.0567 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4630 |
[2023-09-02 18:21:26,572::train::INFO] [train] Iter 12910 | loss 1.1763 | loss(rot) 0.0896 | loss(pos) 1.0827 | loss(seq) 0.0040 | grad 6.6295 | lr 0.0010 | time_forward 3.7160 | time_backward 5.0500 |
[2023-09-02 18:21:34,745::train::INFO] [train] Iter 12911 | loss 5.1483 | loss(rot) 0.0712 | loss(pos) 5.0771 | loss(seq) 0.0000 | grad 12.1925 | lr 0.0010 | time_forward 3.3520 | time_backward 4.8170 |
[2023-09-02 18:21:43,462::train::INFO] [train] Iter 12912 | loss 1.1771 | loss(rot) 0.1893 | loss(pos) 0.7030 | loss(seq) 0.2849 | grad 5.5192 | lr 0.0010 | time_forward 3.5980 | time_backward 5.1150 |
[2023-09-02 18:21:51,756::train::INFO] [train] Iter 12913 | loss 1.4557 | loss(rot) 0.9331 | loss(pos) 0.1325 | loss(seq) 0.3901 | grad 8.2753 | lr 0.0010 | time_forward 3.4580 | time_backward 4.8330 |
[2023-09-02 18:21:54,511::train::INFO] [train] Iter 12914 | loss 1.1818 | loss(rot) 0.5513 | loss(pos) 0.2602 | loss(seq) 0.3703 | grad 5.4182 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4720 |
[2023-09-02 18:22:04,813::train::INFO] [train] Iter 12915 | loss 1.5097 | loss(rot) 0.7718 | loss(pos) 0.3993 | loss(seq) 0.3386 | grad 5.1471 | lr 0.0010 | time_forward 4.2520 | time_backward 6.0470 |
[2023-09-02 18:22:07,557::train::INFO] [train] Iter 12916 | loss 1.0575 | loss(rot) 0.8392 | loss(pos) 0.1704 | loss(seq) 0.0479 | grad 5.9146 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4850 |
[2023-09-02 18:22:10,326::train::INFO] [train] Iter 12917 | loss 1.2901 | loss(rot) 0.0590 | loss(pos) 1.2194 | loss(seq) 0.0117 | grad 11.3417 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4750 |
[2023-09-02 18:22:20,487::train::INFO] [train] Iter 12918 | loss 1.4343 | loss(rot) 1.2869 | loss(pos) 0.0950 | loss(seq) 0.0523 | grad 3.9197 | lr 0.0010 | time_forward 4.1450 | time_backward 6.0110 |
[2023-09-02 18:22:27,961::train::INFO] [train] Iter 12919 | loss 1.2072 | loss(rot) 0.4018 | loss(pos) 0.1855 | loss(seq) 0.6199 | grad 3.9839 | lr 0.0010 | time_forward 3.1890 | time_backward 4.2820 |
[2023-09-02 18:22:38,080::train::INFO] [train] Iter 12920 | loss 1.3999 | loss(rot) 1.2593 | loss(pos) 0.1404 | loss(seq) 0.0001 | grad 5.6866 | lr 0.0010 | time_forward 4.0990 | time_backward 6.0170 |
[2023-09-02 18:22:41,500::train::INFO] [train] Iter 12921 | loss 1.3420 | loss(rot) 0.5986 | loss(pos) 0.4120 | loss(seq) 0.3314 | grad 2.7814 | lr 0.0010 | time_forward 1.4340 | time_backward 1.9820 |
[2023-09-02 18:22:50,334::train::INFO] [train] Iter 12922 | loss 0.8408 | loss(rot) 0.1960 | loss(pos) 0.4239 | loss(seq) 0.2209 | grad 4.0844 | lr 0.0010 | time_forward 3.6920 | time_backward 5.1340 |
[2023-09-02 18:22:59,511::train::INFO] [train] Iter 12923 | loss 2.1296 | loss(rot) 1.9520 | loss(pos) 0.1713 | loss(seq) 0.0063 | grad 6.4565 | lr 0.0010 | time_forward 3.8210 | time_backward 5.3520 |
[2023-09-02 18:23:02,174::train::INFO] [train] Iter 12924 | loss 1.0049 | loss(rot) 0.6529 | loss(pos) 0.2331 | loss(seq) 0.1189 | grad 2.8532 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4120 |
[2023-09-02 18:23:04,672::train::INFO] [train] Iter 12925 | loss 1.9864 | loss(rot) 1.4285 | loss(pos) 0.1906 | loss(seq) 0.3672 | grad 4.5622 | lr 0.0010 | time_forward 1.1920 | time_backward 1.3030 |
[2023-09-02 18:23:07,338::train::INFO] [train] Iter 12926 | loss 1.7532 | loss(rot) 1.5597 | loss(pos) 0.1254 | loss(seq) 0.0682 | grad 4.6716 | lr 0.0010 | time_forward 1.2640 | time_backward 1.3980 |
[2023-09-02 18:23:14,815::train::INFO] [train] Iter 12927 | loss 1.9500 | loss(rot) 1.5490 | loss(pos) 0.2571 | loss(seq) 0.1439 | grad 5.2330 | lr 0.0010 | time_forward 3.1110 | time_backward 4.3630 |
[2023-09-02 18:23:17,475::train::INFO] [train] Iter 12928 | loss 2.4554 | loss(rot) 0.0820 | loss(pos) 2.3729 | loss(seq) 0.0005 | grad 8.2180 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4230 |
[2023-09-02 18:23:26,277::train::INFO] [train] Iter 12929 | loss 2.0691 | loss(rot) 0.9901 | loss(pos) 0.5772 | loss(seq) 0.5018 | grad 4.7599 | lr 0.0010 | time_forward 3.6700 | time_backward 5.1280 |
[2023-09-02 18:23:32,875::train::INFO] [train] Iter 12930 | loss 0.5307 | loss(rot) 0.1608 | loss(pos) 0.3276 | loss(seq) 0.0422 | grad 2.7603 | lr 0.0010 | time_forward 2.7210 | time_backward 3.8750 |
[2023-09-02 18:23:43,935::train::INFO] [train] Iter 12931 | loss 1.3592 | loss(rot) 0.4306 | loss(pos) 0.6240 | loss(seq) 0.3047 | grad 4.0563 | lr 0.0010 | time_forward 4.5750 | time_backward 6.4820 |
[2023-09-02 18:23:54,015::train::INFO] [train] Iter 12932 | loss 1.4576 | loss(rot) 0.9680 | loss(pos) 0.4896 | loss(seq) 0.0000 | grad 4.3659 | lr 0.0010 | time_forward 4.0660 | time_backward 6.0100 |
[2023-09-02 18:23:56,838::train::INFO] [train] Iter 12933 | loss 2.5848 | loss(rot) 2.4285 | loss(pos) 0.1531 | loss(seq) 0.0031 | grad 5.0802 | lr 0.0010 | time_forward 1.2880 | time_backward 1.5330 |
[2023-09-02 18:24:05,670::train::INFO] [train] Iter 12934 | loss 1.7148 | loss(rot) 1.5690 | loss(pos) 0.0785 | loss(seq) 0.0673 | grad 4.0765 | lr 0.0010 | time_forward 3.7280 | time_backward 5.1010 |
[2023-09-02 18:24:12,112::train::INFO] [train] Iter 12935 | loss 2.7282 | loss(rot) 1.3593 | loss(pos) 0.7654 | loss(seq) 0.6035 | grad 6.1403 | lr 0.0010 | time_forward 2.6940 | time_backward 3.7430 |
[2023-09-02 18:24:14,798::train::INFO] [train] Iter 12936 | loss 0.8681 | loss(rot) 0.3753 | loss(pos) 0.2098 | loss(seq) 0.2830 | grad 4.4016 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4330 |
[2023-09-02 18:24:17,551::train::INFO] [train] Iter 12937 | loss 1.0830 | loss(rot) 0.4693 | loss(pos) 0.3806 | loss(seq) 0.2331 | grad 3.7227 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4600 |
[2023-09-02 18:24:26,224::train::INFO] [train] Iter 12938 | loss 1.6909 | loss(rot) 0.6939 | loss(pos) 0.4212 | loss(seq) 0.5759 | grad 3.6309 | lr 0.0010 | time_forward 3.6080 | time_backward 5.0220 |
[2023-09-02 18:24:36,345::train::INFO] [train] Iter 12939 | loss 2.3744 | loss(rot) 2.1361 | loss(pos) 0.0866 | loss(seq) 0.1517 | grad 4.5830 | lr 0.0010 | time_forward 4.0520 | time_backward 6.0650 |
[2023-09-02 18:24:39,077::train::INFO] [train] Iter 12940 | loss 2.2280 | loss(rot) 1.7248 | loss(pos) 0.0993 | loss(seq) 0.4039 | grad 5.2228 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4600 |
[2023-09-02 18:24:49,087::train::INFO] [train] Iter 12941 | loss 1.9648 | loss(rot) 1.1864 | loss(pos) 0.2798 | loss(seq) 0.4986 | grad 7.0901 | lr 0.0010 | time_forward 4.1580 | time_backward 5.8490 |
[2023-09-02 18:24:57,381::train::INFO] [train] Iter 12942 | loss 2.0082 | loss(rot) 1.3919 | loss(pos) 0.1617 | loss(seq) 0.4545 | grad 4.1628 | lr 0.0010 | time_forward 3.5060 | time_backward 4.7840 |
[2023-09-02 18:25:06,680::train::INFO] [train] Iter 12943 | loss 1.0215 | loss(rot) 0.0705 | loss(pos) 0.9486 | loss(seq) 0.0024 | grad 6.4270 | lr 0.0010 | time_forward 3.8800 | time_backward 5.4150 |
[2023-09-02 18:25:15,206::train::INFO] [train] Iter 12944 | loss 1.4697 | loss(rot) 0.6030 | loss(pos) 0.3915 | loss(seq) 0.4752 | grad 3.6525 | lr 0.0010 | time_forward 3.5650 | time_backward 4.9590 |
[2023-09-02 18:25:24,591::train::INFO] [train] Iter 12945 | loss 1.2333 | loss(rot) 0.4809 | loss(pos) 0.3028 | loss(seq) 0.4495 | grad 2.4110 | lr 0.0010 | time_forward 3.9050 | time_backward 5.4760 |
[2023-09-02 18:25:33,841::train::INFO] [train] Iter 12946 | loss 1.4835 | loss(rot) 1.3612 | loss(pos) 0.1222 | loss(seq) 0.0000 | grad 5.0177 | lr 0.0010 | time_forward 3.8690 | time_backward 5.3770 |
[2023-09-02 18:25:43,889::train::INFO] [train] Iter 12947 | loss 2.4521 | loss(rot) 1.9054 | loss(pos) 0.2201 | loss(seq) 0.3265 | grad 12.5411 | lr 0.0010 | time_forward 4.1210 | time_backward 5.9240 |
[2023-09-02 18:25:53,233::train::INFO] [train] Iter 12948 | loss 1.2253 | loss(rot) 0.0279 | loss(pos) 1.1919 | loss(seq) 0.0054 | grad 5.4366 | lr 0.0010 | time_forward 3.9730 | time_backward 5.3670 |
[2023-09-02 18:26:01,963::train::INFO] [train] Iter 12949 | loss 2.5152 | loss(rot) 2.1570 | loss(pos) 0.1805 | loss(seq) 0.1777 | grad 4.8805 | lr 0.0010 | time_forward 3.6640 | time_backward 5.0630 |
[2023-09-02 18:26:12,160::train::INFO] [train] Iter 12950 | loss 2.4708 | loss(rot) 0.0340 | loss(pos) 2.4332 | loss(seq) 0.0036 | grad 8.7553 | lr 0.0010 | time_forward 4.2380 | time_backward 5.8090 |
[2023-09-02 18:26:19,487::train::INFO] [train] Iter 12951 | loss 2.1304 | loss(rot) 1.5407 | loss(pos) 0.1886 | loss(seq) 0.4012 | grad 5.1856 | lr 0.0010 | time_forward 3.0270 | time_backward 4.2070 |
[2023-09-02 18:26:22,205::train::INFO] [train] Iter 12952 | loss 1.0922 | loss(rot) 0.4026 | loss(pos) 0.2279 | loss(seq) 0.4617 | grad 3.1968 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4500 |
[2023-09-02 18:26:32,025::train::INFO] [train] Iter 12953 | loss 0.9484 | loss(rot) 0.6738 | loss(pos) 0.2611 | loss(seq) 0.0135 | grad 5.6488 | lr 0.0010 | time_forward 4.0180 | time_backward 5.7670 |
[2023-09-02 18:26:41,262::train::INFO] [train] Iter 12954 | loss 0.9913 | loss(rot) 0.4404 | loss(pos) 0.2923 | loss(seq) 0.2586 | grad 3.9819 | lr 0.0010 | time_forward 3.9020 | time_backward 5.3150 |
[2023-09-02 18:26:43,980::train::INFO] [train] Iter 12955 | loss 1.5227 | loss(rot) 0.8765 | loss(pos) 0.1796 | loss(seq) 0.4666 | grad 3.6418 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4600 |
[2023-09-02 18:26:52,469::train::INFO] [train] Iter 12956 | loss 2.8917 | loss(rot) 0.5226 | loss(pos) 2.3596 | loss(seq) 0.0095 | grad 6.9733 | lr 0.0010 | time_forward 3.5050 | time_backward 4.9800 |
[2023-09-02 18:27:01,958::train::INFO] [train] Iter 12957 | loss 0.7431 | loss(rot) 0.2278 | loss(pos) 0.3295 | loss(seq) 0.1858 | grad 3.7428 | lr 0.0010 | time_forward 3.9050 | time_backward 5.5800 |
[2023-09-02 18:27:11,309::train::INFO] [train] Iter 12958 | loss 1.7017 | loss(rot) 0.9111 | loss(pos) 0.2727 | loss(seq) 0.5179 | grad 4.1838 | lr 0.0010 | time_forward 3.9300 | time_backward 5.4180 |
[2023-09-02 18:27:13,574::train::INFO] [train] Iter 12959 | loss 2.4218 | loss(rot) 1.9251 | loss(pos) 0.4419 | loss(seq) 0.0548 | grad 6.2328 | lr 0.0010 | time_forward 1.0540 | time_backward 1.2080 |
[2023-09-02 18:27:21,093::train::INFO] [train] Iter 12960 | loss 2.1871 | loss(rot) 2.0026 | loss(pos) 0.1363 | loss(seq) 0.0481 | grad 5.2986 | lr 0.0010 | time_forward 3.1480 | time_backward 4.3510 |
[2023-09-02 18:27:23,812::train::INFO] [train] Iter 12961 | loss 1.6970 | loss(rot) 0.9726 | loss(pos) 0.2072 | loss(seq) 0.5172 | grad 4.2305 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4590 |
[2023-09-02 18:27:33,744::train::INFO] [train] Iter 12962 | loss 1.1596 | loss(rot) 0.4047 | loss(pos) 0.2594 | loss(seq) 0.4955 | grad 3.2830 | lr 0.0010 | time_forward 3.9720 | time_backward 5.9570 |
[2023-09-02 18:27:36,432::train::INFO] [train] Iter 12963 | loss 1.6069 | loss(rot) 0.1147 | loss(pos) 1.4852 | loss(seq) 0.0070 | grad 7.3117 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4280 |
[2023-09-02 18:27:45,024::train::INFO] [train] Iter 12964 | loss 1.3956 | loss(rot) 0.8313 | loss(pos) 0.2446 | loss(seq) 0.3197 | grad 3.2434 | lr 0.0010 | time_forward 3.6690 | time_backward 4.9210 |
[2023-09-02 18:27:47,719::train::INFO] [train] Iter 12965 | loss 1.7175 | loss(rot) 1.4171 | loss(pos) 0.1073 | loss(seq) 0.1931 | grad 7.5290 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4370 |
[2023-09-02 18:27:55,170::train::INFO] [train] Iter 12966 | loss 1.7455 | loss(rot) 0.0986 | loss(pos) 1.6374 | loss(seq) 0.0095 | grad 6.0332 | lr 0.0010 | time_forward 3.1150 | time_backward 4.3290 |
[2023-09-02 18:27:58,523::train::INFO] [train] Iter 12967 | loss 2.6926 | loss(rot) 2.4645 | loss(pos) 0.2214 | loss(seq) 0.0068 | grad 2.9946 | lr 0.0010 | time_forward 1.3790 | time_backward 1.9710 |
[2023-09-02 18:28:00,804::train::INFO] [train] Iter 12968 | loss 1.4991 | loss(rot) 1.2977 | loss(pos) 0.1676 | loss(seq) 0.0337 | grad 4.9269 | lr 0.0010 | time_forward 1.0480 | time_backward 1.2290 |
[2023-09-02 18:28:03,501::train::INFO] [train] Iter 12969 | loss 1.3253 | loss(rot) 0.3545 | loss(pos) 0.5281 | loss(seq) 0.4427 | grad 3.1441 | lr 0.0010 | time_forward 1.2380 | time_backward 1.4570 |
[2023-09-02 18:28:09,484::train::INFO] [train] Iter 12970 | loss 1.1696 | loss(rot) 0.5525 | loss(pos) 0.3618 | loss(seq) 0.2553 | grad 5.7322 | lr 0.0010 | time_forward 2.5690 | time_backward 3.4100 |
[2023-09-02 18:28:11,368::train::INFO] [train] Iter 12971 | loss 2.4650 | loss(rot) 1.7378 | loss(pos) 0.2851 | loss(seq) 0.4422 | grad 5.1067 | lr 0.0010 | time_forward 0.8570 | time_backward 1.0240 |
[2023-09-02 18:28:19,581::train::INFO] [train] Iter 12972 | loss 1.4873 | loss(rot) 0.7867 | loss(pos) 0.2493 | loss(seq) 0.4512 | grad 4.6462 | lr 0.0010 | time_forward 3.4260 | time_backward 4.7850 |
[2023-09-02 18:28:22,959::train::INFO] [train] Iter 12973 | loss 1.2870 | loss(rot) 0.3793 | loss(pos) 0.5651 | loss(seq) 0.3426 | grad 3.5501 | lr 0.0010 | time_forward 1.4120 | time_backward 1.9150 |
[2023-09-02 18:28:31,694::train::INFO] [train] Iter 12974 | loss 2.6806 | loss(rot) 2.5954 | loss(pos) 0.0852 | loss(seq) 0.0000 | grad 5.9022 | lr 0.0010 | time_forward 3.7140 | time_backward 5.0190 |
[2023-09-02 18:28:39,907::train::INFO] [train] Iter 12975 | loss 1.5386 | loss(rot) 1.4624 | loss(pos) 0.0751 | loss(seq) 0.0012 | grad 4.6202 | lr 0.0010 | time_forward 3.4670 | time_backward 4.7420 |
[2023-09-02 18:28:42,608::train::INFO] [train] Iter 12976 | loss 3.2297 | loss(rot) 3.0593 | loss(pos) 0.1705 | loss(seq) 0.0000 | grad 4.6514 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4620 |
[2023-09-02 18:28:45,321::train::INFO] [train] Iter 12977 | loss 1.8009 | loss(rot) 0.0172 | loss(pos) 1.7819 | loss(seq) 0.0018 | grad 6.7414 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4210 |
[2023-09-02 18:28:53,552::train::INFO] [train] Iter 12978 | loss 1.6866 | loss(rot) 1.5459 | loss(pos) 0.1406 | loss(seq) 0.0001 | grad 4.4871 | lr 0.0010 | time_forward 3.4470 | time_backward 4.7810 |
[2023-09-02 18:29:02,836::train::INFO] [train] Iter 12979 | loss 2.2095 | loss(rot) 1.9895 | loss(pos) 0.0608 | loss(seq) 0.1593 | grad 5.6409 | lr 0.0010 | time_forward 3.8800 | time_backward 5.4000 |
[2023-09-02 18:29:11,472::train::INFO] [train] Iter 12980 | loss 1.1554 | loss(rot) 0.6016 | loss(pos) 0.2727 | loss(seq) 0.2810 | grad 4.6053 | lr 0.0010 | time_forward 3.7030 | time_backward 4.9300 |
[2023-09-02 18:29:20,456::train::INFO] [train] Iter 12981 | loss 2.2108 | loss(rot) 1.5995 | loss(pos) 0.1442 | loss(seq) 0.4670 | grad 7.1988 | lr 0.0010 | time_forward 3.8020 | time_backward 5.1790 |
[2023-09-02 18:29:28,701::train::INFO] [train] Iter 12982 | loss 1.4874 | loss(rot) 1.4096 | loss(pos) 0.0777 | loss(seq) 0.0001 | grad 11.5403 | lr 0.0010 | time_forward 3.4470 | time_backward 4.7940 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.