text
stringlengths 56
1.16k
|
---|
[2023-09-02 17:53:59,125::train::INFO] [train] Iter 12683 | loss 0.9893 | loss(rot) 0.7596 | loss(pos) 0.1090 | loss(seq) 0.1207 | grad 4.7884 | lr 0.0010 | time_forward 3.7870 | time_backward 5.3230 |
[2023-09-02 17:54:02,004::train::INFO] [train] Iter 12684 | loss 1.9181 | loss(rot) 0.8263 | loss(pos) 0.6966 | loss(seq) 0.3952 | grad 4.1994 | lr 0.0010 | time_forward 1.3380 | time_backward 1.5370 |
[2023-09-02 17:54:05,620::train::INFO] [train] Iter 12685 | loss 1.2049 | loss(rot) 0.0568 | loss(pos) 1.1444 | loss(seq) 0.0036 | grad 3.6612 | lr 0.0010 | time_forward 1.5590 | time_backward 2.0530 |
[2023-09-02 17:54:15,787::train::INFO] [train] Iter 12686 | loss 3.4577 | loss(rot) 0.0119 | loss(pos) 3.4451 | loss(seq) 0.0007 | grad 8.4207 | lr 0.0010 | time_forward 3.4220 | time_backward 6.7410 |
[2023-09-02 17:54:21,184::train::INFO] [train] Iter 12687 | loss 1.4633 | loss(rot) 0.9067 | loss(pos) 0.0937 | loss(seq) 0.4629 | grad 5.0833 | lr 0.0010 | time_forward 2.9940 | time_backward 2.4000 |
[2023-09-02 17:54:24,729::train::INFO] [train] Iter 12688 | loss 2.1579 | loss(rot) 2.0596 | loss(pos) 0.0982 | loss(seq) 0.0001 | grad 3.8040 | lr 0.0010 | time_forward 1.5410 | time_backward 2.0010 |
[2023-09-02 17:54:35,585::train::INFO] [train] Iter 12689 | loss 0.7906 | loss(rot) 0.1485 | loss(pos) 0.5985 | loss(seq) 0.0436 | grad 2.6365 | lr 0.0010 | time_forward 4.5610 | time_backward 6.2910 |
[2023-09-02 17:54:42,199::train::INFO] [train] Iter 12690 | loss 1.2711 | loss(rot) 0.6568 | loss(pos) 0.1907 | loss(seq) 0.4236 | grad 2.6653 | lr 0.0010 | time_forward 2.7460 | time_backward 3.8640 |
[2023-09-02 17:54:52,589::train::INFO] [train] Iter 12691 | loss 2.0531 | loss(rot) 1.5364 | loss(pos) 0.2245 | loss(seq) 0.2922 | grad 5.8138 | lr 0.0010 | time_forward 3.8380 | time_backward 6.5480 |
[2023-09-02 17:55:01,546::train::INFO] [train] Iter 12692 | loss 0.9262 | loss(rot) 0.3834 | loss(pos) 0.1552 | loss(seq) 0.3876 | grad 4.3662 | lr 0.0010 | time_forward 3.8020 | time_backward 5.1510 |
[2023-09-02 17:55:12,571::train::INFO] [train] Iter 12693 | loss 2.0140 | loss(rot) 1.3516 | loss(pos) 0.1220 | loss(seq) 0.5404 | grad 5.6427 | lr 0.0010 | time_forward 4.3150 | time_backward 6.7070 |
[2023-09-02 17:55:15,141::train::INFO] [train] Iter 12694 | loss 1.7950 | loss(rot) 1.0903 | loss(pos) 0.1495 | loss(seq) 0.5552 | grad 4.7421 | lr 0.0010 | time_forward 1.2190 | time_backward 1.3300 |
[2023-09-02 17:55:18,034::train::INFO] [train] Iter 12695 | loss 1.7324 | loss(rot) 1.4033 | loss(pos) 0.0959 | loss(seq) 0.2331 | grad 3.4731 | lr 0.0010 | time_forward 1.3310 | time_backward 1.5350 |
[2023-09-02 17:55:20,851::train::INFO] [train] Iter 12696 | loss 1.0204 | loss(rot) 0.3331 | loss(pos) 0.6563 | loss(seq) 0.0311 | grad 4.2104 | lr 0.0010 | time_forward 1.3050 | time_backward 1.5080 |
[2023-09-02 17:55:23,734::train::INFO] [train] Iter 12697 | loss 1.9835 | loss(rot) 1.6584 | loss(pos) 0.1416 | loss(seq) 0.1834 | grad 4.7301 | lr 0.0010 | time_forward 1.3790 | time_backward 1.5000 |
[2023-09-02 17:55:34,357::train::INFO] [train] Iter 12698 | loss 1.6758 | loss(rot) 0.3053 | loss(pos) 1.0116 | loss(seq) 0.3589 | grad 4.3111 | lr 0.0010 | time_forward 4.3900 | time_backward 6.2290 |
[2023-09-02 17:55:44,121::train::INFO] [train] Iter 12699 | loss 1.7854 | loss(rot) 1.3549 | loss(pos) 0.1610 | loss(seq) 0.2694 | grad 2.9696 | lr 0.0010 | time_forward 4.1200 | time_backward 5.6400 |
[2023-09-02 17:55:46,769::train::INFO] [train] Iter 12700 | loss 1.6030 | loss(rot) 1.2203 | loss(pos) 0.0621 | loss(seq) 0.3206 | grad 5.0701 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4100 |
[2023-09-02 17:55:55,585::train::INFO] [train] Iter 12701 | loss 0.9624 | loss(rot) 0.7823 | loss(pos) 0.1584 | loss(seq) 0.0217 | grad 6.1219 | lr 0.0010 | time_forward 3.7980 | time_backward 5.0150 |
[2023-09-02 17:56:08,292::train::INFO] [train] Iter 12702 | loss 1.5942 | loss(rot) 0.9260 | loss(pos) 0.1511 | loss(seq) 0.5170 | grad 3.8223 | lr 0.0010 | time_forward 5.6290 | time_backward 7.0750 |
[2023-09-02 17:56:11,149::train::INFO] [train] Iter 12703 | loss 0.9508 | loss(rot) 0.2696 | loss(pos) 0.4509 | loss(seq) 0.2302 | grad 4.0177 | lr 0.0010 | time_forward 1.3380 | time_backward 1.5150 |
[2023-09-02 17:56:13,939::train::INFO] [train] Iter 12704 | loss 1.4251 | loss(rot) 0.5964 | loss(pos) 0.3578 | loss(seq) 0.4709 | grad 4.3780 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4670 |
[2023-09-02 17:56:16,681::train::INFO] [train] Iter 12705 | loss 2.6257 | loss(rot) 0.0184 | loss(pos) 2.6054 | loss(seq) 0.0019 | grad 10.5444 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4510 |
[2023-09-02 17:56:27,813::train::INFO] [train] Iter 12706 | loss 1.3390 | loss(rot) 0.6181 | loss(pos) 0.3882 | loss(seq) 0.3327 | grad 3.7699 | lr 0.0010 | time_forward 4.6970 | time_backward 6.4310 |
[2023-09-02 17:56:38,427::train::INFO] [train] Iter 12707 | loss 1.1451 | loss(rot) 0.0583 | loss(pos) 1.0764 | loss(seq) 0.0104 | grad 6.2448 | lr 0.0010 | time_forward 4.5810 | time_backward 6.0300 |
[2023-09-02 17:56:48,350::train::INFO] [train] Iter 12708 | loss 1.1739 | loss(rot) 0.4752 | loss(pos) 0.3378 | loss(seq) 0.3609 | grad 2.8593 | lr 0.0010 | time_forward 4.1560 | time_backward 5.7630 |
[2023-09-02 17:56:51,161::train::INFO] [train] Iter 12709 | loss 1.0285 | loss(rot) 0.2097 | loss(pos) 0.6560 | loss(seq) 0.1629 | grad 5.8351 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4820 |
[2023-09-02 17:56:53,891::train::INFO] [train] Iter 12710 | loss 1.2039 | loss(rot) 0.3228 | loss(pos) 0.6094 | loss(seq) 0.2718 | grad 4.3266 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4480 |
[2023-09-02 17:57:04,009::train::INFO] [train] Iter 12711 | loss 1.8421 | loss(rot) 0.7673 | loss(pos) 0.7010 | loss(seq) 0.3738 | grad 8.4106 | lr 0.0010 | time_forward 4.1350 | time_backward 5.9790 |
[2023-09-02 17:57:12,716::train::INFO] [train] Iter 12712 | loss 1.3418 | loss(rot) 1.1083 | loss(pos) 0.2021 | loss(seq) 0.0313 | grad 4.7201 | lr 0.0010 | time_forward 3.6010 | time_backward 5.0960 |
[2023-09-02 17:57:21,859::train::INFO] [train] Iter 12713 | loss 0.8725 | loss(rot) 0.6548 | loss(pos) 0.2081 | loss(seq) 0.0097 | grad 6.0482 | lr 0.0010 | time_forward 3.8320 | time_backward 5.3070 |
[2023-09-02 17:57:31,789::train::INFO] [train] Iter 12714 | loss 2.0460 | loss(rot) 1.9135 | loss(pos) 0.1103 | loss(seq) 0.0222 | grad 4.2995 | lr 0.0010 | time_forward 4.2190 | time_backward 5.7080 |
[2023-09-02 17:57:34,003::train::INFO] [train] Iter 12715 | loss 2.1680 | loss(rot) 1.6904 | loss(pos) 0.1761 | loss(seq) 0.3016 | grad 6.3815 | lr 0.0010 | time_forward 1.0480 | time_backward 1.1620 |
[2023-09-02 17:57:36,641::train::INFO] [train] Iter 12716 | loss 0.9865 | loss(rot) 0.5141 | loss(pos) 0.1204 | loss(seq) 0.3520 | grad 6.2164 | lr 0.0010 | time_forward 1.2530 | time_backward 1.3830 |
[2023-09-02 17:57:43,821::train::INFO] [train] Iter 12717 | loss 0.8107 | loss(rot) 0.0578 | loss(pos) 0.7349 | loss(seq) 0.0180 | grad 3.7940 | lr 0.0010 | time_forward 2.9470 | time_backward 4.2290 |
[2023-09-02 17:57:52,811::train::INFO] [train] Iter 12718 | loss 1.4229 | loss(rot) 0.2077 | loss(pos) 0.9579 | loss(seq) 0.2573 | grad 6.9530 | lr 0.0010 | time_forward 3.7880 | time_backward 5.1990 |
[2023-09-02 17:57:55,413::train::INFO] [train] Iter 12719 | loss 1.1770 | loss(rot) 0.7722 | loss(pos) 0.0729 | loss(seq) 0.3318 | grad 3.2831 | lr 0.0010 | time_forward 1.2040 | time_backward 1.3940 |
[2023-09-02 17:58:05,098::train::INFO] [train] Iter 12720 | loss 2.3729 | loss(rot) 1.6919 | loss(pos) 0.2759 | loss(seq) 0.4051 | grad 3.8750 | lr 0.0010 | time_forward 3.8680 | time_backward 5.8140 |
[2023-09-02 17:58:07,779::train::INFO] [train] Iter 12721 | loss 2.6208 | loss(rot) 1.6156 | loss(pos) 0.4906 | loss(seq) 0.5145 | grad 7.5114 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4400 |
[2023-09-02 17:58:17,432::train::INFO] [train] Iter 12722 | loss 0.7479 | loss(rot) 0.1386 | loss(pos) 0.5803 | loss(seq) 0.0291 | grad 3.6337 | lr 0.0010 | time_forward 3.7150 | time_backward 5.9350 |
[2023-09-02 17:58:27,100::train::INFO] [train] Iter 12723 | loss 2.8543 | loss(rot) 2.3385 | loss(pos) 0.5156 | loss(seq) 0.0001 | grad 4.1254 | lr 0.0010 | time_forward 3.8990 | time_backward 5.7660 |
[2023-09-02 17:58:35,533::train::INFO] [train] Iter 12724 | loss 3.3968 | loss(rot) 1.8116 | loss(pos) 1.0119 | loss(seq) 0.5733 | grad 4.6015 | lr 0.0010 | time_forward 3.3640 | time_backward 5.0650 |
[2023-09-02 17:58:43,658::train::INFO] [train] Iter 12725 | loss 1.0669 | loss(rot) 0.5171 | loss(pos) 0.1208 | loss(seq) 0.4290 | grad 3.4223 | lr 0.0010 | time_forward 3.3630 | time_backward 4.7590 |
[2023-09-02 17:58:51,758::train::INFO] [train] Iter 12726 | loss 1.7073 | loss(rot) 1.2566 | loss(pos) 0.4506 | loss(seq) 0.0001 | grad 8.4494 | lr 0.0010 | time_forward 3.3430 | time_backward 4.7530 |
[2023-09-02 17:59:01,057::train::INFO] [train] Iter 12727 | loss 1.8805 | loss(rot) 1.1932 | loss(pos) 0.2548 | loss(seq) 0.4325 | grad 4.3352 | lr 0.0010 | time_forward 3.9250 | time_backward 5.3700 |
[2023-09-02 17:59:09,643::train::INFO] [train] Iter 12728 | loss 2.1002 | loss(rot) 1.9116 | loss(pos) 0.1886 | loss(seq) 0.0000 | grad 4.2400 | lr 0.0010 | time_forward 3.6280 | time_backward 4.9400 |
[2023-09-02 17:59:12,319::train::INFO] [train] Iter 12729 | loss 1.2826 | loss(rot) 0.8621 | loss(pos) 0.0932 | loss(seq) 0.3273 | grad 4.4569 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4410 |
[2023-09-02 17:59:19,757::train::INFO] [train] Iter 12730 | loss 0.8822 | loss(rot) 0.3557 | loss(pos) 0.1864 | loss(seq) 0.3401 | grad 3.6311 | lr 0.0010 | time_forward 3.1390 | time_backward 4.2960 |
[2023-09-02 17:59:22,512::train::INFO] [train] Iter 12731 | loss 1.4068 | loss(rot) 0.6816 | loss(pos) 0.3301 | loss(seq) 0.3951 | grad 6.2530 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4650 |
[2023-09-02 17:59:25,359::train::INFO] [train] Iter 12732 | loss 2.7847 | loss(rot) 2.4862 | loss(pos) 0.2364 | loss(seq) 0.0621 | grad 5.3717 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4790 |
[2023-09-02 17:59:34,039::train::INFO] [train] Iter 12733 | loss 2.2868 | loss(rot) 1.7696 | loss(pos) 0.1919 | loss(seq) 0.3252 | grad 5.1535 | lr 0.0010 | time_forward 3.7050 | time_backward 4.9700 |
[2023-09-02 17:59:42,905::train::INFO] [train] Iter 12734 | loss 1.3662 | loss(rot) 0.5511 | loss(pos) 0.3819 | loss(seq) 0.4332 | grad 4.8308 | lr 0.0010 | time_forward 3.6510 | time_backward 5.2110 |
[2023-09-02 17:59:51,993::train::INFO] [train] Iter 12735 | loss 0.7351 | loss(rot) 0.3908 | loss(pos) 0.0330 | loss(seq) 0.3113 | grad 3.6500 | lr 0.0010 | time_forward 3.8390 | time_backward 5.2460 |
[2023-09-02 17:59:54,481::train::INFO] [train] Iter 12736 | loss 2.3527 | loss(rot) 2.0538 | loss(pos) 0.2990 | loss(seq) 0.0000 | grad 8.5102 | lr 0.0010 | time_forward 1.1710 | time_backward 1.3120 |
[2023-09-02 18:00:03,402::train::INFO] [train] Iter 12737 | loss 1.6900 | loss(rot) 0.9565 | loss(pos) 0.4175 | loss(seq) 0.3160 | grad 4.6714 | lr 0.0010 | time_forward 3.7630 | time_backward 5.1350 |
[2023-09-02 18:00:11,560::train::INFO] [train] Iter 12738 | loss 0.9330 | loss(rot) 0.0954 | loss(pos) 0.6669 | loss(seq) 0.1706 | grad 3.2357 | lr 0.0010 | time_forward 3.4170 | time_backward 4.7370 |
[2023-09-02 18:00:18,825::train::INFO] [train] Iter 12739 | loss 1.3318 | loss(rot) 0.5528 | loss(pos) 0.4225 | loss(seq) 0.3565 | grad 5.8532 | lr 0.0010 | time_forward 3.0650 | time_backward 4.1970 |
[2023-09-02 18:00:26,251::train::INFO] [train] Iter 12740 | loss 2.1255 | loss(rot) 1.9382 | loss(pos) 0.1338 | loss(seq) 0.0535 | grad 7.3354 | lr 0.0010 | time_forward 2.9710 | time_backward 4.4510 |
[2023-09-02 18:00:34,560::train::INFO] [train] Iter 12741 | loss 1.6845 | loss(rot) 1.0532 | loss(pos) 0.0572 | loss(seq) 0.5742 | grad 4.1605 | lr 0.0010 | time_forward 3.4950 | time_backward 4.8120 |
[2023-09-02 18:00:42,765::train::INFO] [train] Iter 12742 | loss 0.6119 | loss(rot) 0.2637 | loss(pos) 0.2877 | loss(seq) 0.0606 | grad 4.0734 | lr 0.0010 | time_forward 3.5980 | time_backward 4.6030 |
[2023-09-02 18:00:50,541::train::INFO] [train] Iter 12743 | loss 2.5425 | loss(rot) 2.2363 | loss(pos) 0.3062 | loss(seq) 0.0000 | grad 4.6983 | lr 0.0010 | time_forward 3.2340 | time_backward 4.5390 |
[2023-09-02 18:01:00,000::train::INFO] [train] Iter 12744 | loss 1.9979 | loss(rot) 1.4988 | loss(pos) 0.1582 | loss(seq) 0.3409 | grad 3.6014 | lr 0.0010 | time_forward 3.5830 | time_backward 5.8720 |
[2023-09-02 18:01:09,757::train::INFO] [train] Iter 12745 | loss 2.5888 | loss(rot) 2.1395 | loss(pos) 0.1917 | loss(seq) 0.2577 | grad 4.9004 | lr 0.0010 | time_forward 3.7120 | time_backward 6.0420 |
[2023-09-02 18:01:17,749::train::INFO] [train] Iter 12746 | loss 1.1798 | loss(rot) 0.4668 | loss(pos) 0.2195 | loss(seq) 0.4935 | grad 5.0222 | lr 0.0010 | time_forward 3.4110 | time_backward 4.5780 |
[2023-09-02 18:01:23,723::train::INFO] [train] Iter 12747 | loss 0.8051 | loss(rot) 0.3214 | loss(pos) 0.3019 | loss(seq) 0.1818 | grad 2.8606 | lr 0.0010 | time_forward 2.6510 | time_backward 3.3180 |
[2023-09-02 18:01:33,178::train::INFO] [train] Iter 12748 | loss 0.7037 | loss(rot) 0.2236 | loss(pos) 0.2319 | loss(seq) 0.2482 | grad 3.2389 | lr 0.0010 | time_forward 4.0020 | time_backward 5.4510 |
[2023-09-02 18:01:35,924::train::INFO] [train] Iter 12749 | loss 1.2354 | loss(rot) 1.1345 | loss(pos) 0.1008 | loss(seq) 0.0000 | grad 8.7305 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4890 |
[2023-09-02 18:01:38,249::train::INFO] [train] Iter 12750 | loss 2.5883 | loss(rot) 0.0671 | loss(pos) 2.5212 | loss(seq) 0.0000 | grad 8.2134 | lr 0.0010 | time_forward 1.0910 | time_backward 1.2310 |
[2023-09-02 18:01:47,516::train::INFO] [train] Iter 12751 | loss 1.5754 | loss(rot) 1.3242 | loss(pos) 0.0730 | loss(seq) 0.1781 | grad 5.1421 | lr 0.0010 | time_forward 3.9120 | time_backward 5.3510 |
[2023-09-02 18:01:57,135::train::INFO] [train] Iter 12752 | loss 1.6091 | loss(rot) 0.5901 | loss(pos) 0.3744 | loss(seq) 0.6446 | grad 3.9152 | lr 0.0010 | time_forward 3.8120 | time_backward 5.8030 |
[2023-09-02 18:01:59,792::train::INFO] [train] Iter 12753 | loss 0.9039 | loss(rot) 0.1368 | loss(pos) 0.5289 | loss(seq) 0.2382 | grad 4.3747 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4090 |
[2023-09-02 18:02:02,432::train::INFO] [train] Iter 12754 | loss 1.8846 | loss(rot) 0.3460 | loss(pos) 1.1566 | loss(seq) 0.3820 | grad 7.1619 | lr 0.0010 | time_forward 1.2590 | time_backward 1.3780 |
[2023-09-02 18:02:10,885::train::INFO] [train] Iter 12755 | loss 2.2588 | loss(rot) 2.0057 | loss(pos) 0.2511 | loss(seq) 0.0020 | grad 5.3692 | lr 0.0010 | time_forward 3.6450 | time_backward 4.8040 |
[2023-09-02 18:02:21,203::train::INFO] [train] Iter 12756 | loss 1.1200 | loss(rot) 0.2060 | loss(pos) 0.4799 | loss(seq) 0.4341 | grad 4.1324 | lr 0.0010 | time_forward 4.1450 | time_backward 6.1700 |
[2023-09-02 18:02:30,295::train::INFO] [train] Iter 12757 | loss 3.0848 | loss(rot) 0.0267 | loss(pos) 3.0581 | loss(seq) 0.0000 | grad 8.1082 | lr 0.0010 | time_forward 3.8000 | time_backward 5.2880 |
[2023-09-02 18:02:40,303::train::INFO] [train] Iter 12758 | loss 2.2499 | loss(rot) 0.2296 | loss(pos) 2.0182 | loss(seq) 0.0022 | grad 4.3494 | lr 0.0010 | time_forward 4.1830 | time_backward 5.8210 |
[2023-09-02 18:02:47,540::train::INFO] [train] Iter 12759 | loss 2.2337 | loss(rot) 1.4701 | loss(pos) 0.3866 | loss(seq) 0.3769 | grad 11.0618 | lr 0.0010 | time_forward 3.0480 | time_backward 4.1850 |
[2023-09-02 18:02:50,275::train::INFO] [train] Iter 12760 | loss 1.8929 | loss(rot) 1.0193 | loss(pos) 0.2557 | loss(seq) 0.6180 | grad 4.1513 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4820 |
[2023-09-02 18:03:00,638::train::INFO] [train] Iter 12761 | loss 3.2202 | loss(rot) 2.8072 | loss(pos) 0.2083 | loss(seq) 0.2047 | grad 5.0320 | lr 0.0010 | time_forward 4.2090 | time_backward 6.1500 |
[2023-09-02 18:03:03,410::train::INFO] [train] Iter 12762 | loss 1.6197 | loss(rot) 1.4534 | loss(pos) 0.1663 | loss(seq) 0.0000 | grad 4.6802 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4820 |
[2023-09-02 18:03:13,797::train::INFO] [train] Iter 12763 | loss 2.0790 | loss(rot) 1.5230 | loss(pos) 0.3177 | loss(seq) 0.2384 | grad 6.3560 | lr 0.0010 | time_forward 4.0990 | time_backward 6.2840 |
[2023-09-02 18:03:16,583::train::INFO] [train] Iter 12764 | loss 1.6694 | loss(rot) 0.9552 | loss(pos) 0.1850 | loss(seq) 0.5292 | grad 3.6013 | lr 0.0010 | time_forward 1.2750 | time_backward 1.5070 |
[2023-09-02 18:03:19,385::train::INFO] [train] Iter 12765 | loss 1.5023 | loss(rot) 0.8238 | loss(pos) 0.1749 | loss(seq) 0.5037 | grad 4.7669 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4970 |
[2023-09-02 18:03:22,194::train::INFO] [train] Iter 12766 | loss 1.3532 | loss(rot) 1.1900 | loss(pos) 0.1629 | loss(seq) 0.0003 | grad 7.1257 | lr 0.0010 | time_forward 1.2970 | time_backward 1.5090 |
[2023-09-02 18:03:25,718::train::INFO] [train] Iter 12767 | loss 2.3603 | loss(rot) 0.0248 | loss(pos) 2.3341 | loss(seq) 0.0014 | grad 4.3464 | lr 0.0010 | time_forward 1.4470 | time_backward 2.0610 |
[2023-09-02 18:03:28,482::train::INFO] [train] Iter 12768 | loss 0.7634 | loss(rot) 0.1682 | loss(pos) 0.5411 | loss(seq) 0.0542 | grad 5.2552 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4980 |
[2023-09-02 18:03:31,281::train::INFO] [train] Iter 12769 | loss 3.9105 | loss(rot) 0.3729 | loss(pos) 3.5174 | loss(seq) 0.0202 | grad 11.5836 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4920 |
[2023-09-02 18:03:40,990::train::INFO] [train] Iter 12770 | loss 1.9906 | loss(rot) 0.0788 | loss(pos) 1.8817 | loss(seq) 0.0301 | grad 9.3139 | lr 0.0010 | time_forward 4.0390 | time_backward 5.6660 |
[2023-09-02 18:03:51,331::train::INFO] [train] Iter 12771 | loss 2.8926 | loss(rot) 0.0249 | loss(pos) 2.8663 | loss(seq) 0.0013 | grad 6.6983 | lr 0.0010 | time_forward 4.0820 | time_backward 6.2560 |
[2023-09-02 18:03:54,100::train::INFO] [train] Iter 12772 | loss 0.7559 | loss(rot) 0.1195 | loss(pos) 0.3555 | loss(seq) 0.2810 | grad 4.4813 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4700 |
[2023-09-02 18:03:57,539::train::INFO] [train] Iter 12773 | loss 1.7851 | loss(rot) 1.0849 | loss(pos) 0.1694 | loss(seq) 0.5308 | grad 3.5689 | lr 0.0010 | time_forward 1.4540 | time_backward 1.9830 |
[2023-09-02 18:04:07,769::train::INFO] [train] Iter 12774 | loss 1.5595 | loss(rot) 0.0998 | loss(pos) 1.4539 | loss(seq) 0.0058 | grad 3.4882 | lr 0.0010 | time_forward 4.2290 | time_backward 5.9970 |
[2023-09-02 18:04:11,172::train::INFO] [train] Iter 12775 | loss 0.8621 | loss(rot) 0.1622 | loss(pos) 0.4889 | loss(seq) 0.2110 | grad 2.8101 | lr 0.0010 | time_forward 1.4320 | time_backward 1.9670 |
[2023-09-02 18:04:20,153::train::INFO] [train] Iter 12776 | loss 1.4771 | loss(rot) 1.2698 | loss(pos) 0.1764 | loss(seq) 0.0310 | grad 4.9956 | lr 0.0010 | time_forward 3.9490 | time_backward 5.0300 |
[2023-09-02 18:04:22,862::train::INFO] [train] Iter 12777 | loss 2.2685 | loss(rot) 1.5144 | loss(pos) 0.3179 | loss(seq) 0.4363 | grad 3.2259 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4670 |
[2023-09-02 18:04:31,881::train::INFO] [train] Iter 12778 | loss 0.8043 | loss(rot) 0.0803 | loss(pos) 0.7157 | loss(seq) 0.0083 | grad 4.4724 | lr 0.0010 | time_forward 3.7520 | time_backward 5.2310 |
[2023-09-02 18:04:40,647::train::INFO] [train] Iter 12779 | loss 1.1747 | loss(rot) 0.4338 | loss(pos) 0.6702 | loss(seq) 0.0707 | grad 5.8660 | lr 0.0010 | time_forward 3.6180 | time_backward 5.1450 |
[2023-09-02 18:04:50,837::train::INFO] [train] Iter 12780 | loss 1.9303 | loss(rot) 1.0806 | loss(pos) 0.2737 | loss(seq) 0.5759 | grad 4.0227 | lr 0.0010 | time_forward 3.9790 | time_backward 6.2080 |
[2023-09-02 18:05:00,922::train::INFO] [train] Iter 12781 | loss 0.6178 | loss(rot) 0.2546 | loss(pos) 0.3100 | loss(seq) 0.0531 | grad 6.0026 | lr 0.0010 | time_forward 4.0610 | time_backward 6.0200 |
[2023-09-02 18:05:10,463::train::INFO] [train] Iter 12782 | loss 1.7840 | loss(rot) 0.5101 | loss(pos) 0.7801 | loss(seq) 0.4938 | grad 5.3336 | lr 0.0010 | time_forward 3.8610 | time_backward 5.6770 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.