text
stringlengths 56
1.16k
|
---|
[2023-09-02 17:29:44,831::train::INFO] [train] Iter 12483 | loss 2.1239 | loss(rot) 1.9816 | loss(pos) 0.1328 | loss(seq) 0.0095 | grad 5.4427 | lr 0.0010 | time_forward 3.7640 | time_backward 7.7660 |
[2023-09-02 17:29:50,900::train::INFO] [train] Iter 12484 | loss 1.1249 | loss(rot) 0.6455 | loss(pos) 0.1193 | loss(seq) 0.3600 | grad 3.7295 | lr 0.0010 | time_forward 2.6090 | time_backward 3.4430 |
[2023-09-02 17:29:59,074::train::INFO] [train] Iter 12485 | loss 1.7915 | loss(rot) 0.5950 | loss(pos) 0.9385 | loss(seq) 0.2580 | grad 6.2201 | lr 0.0010 | time_forward 3.5630 | time_backward 4.6080 |
[2023-09-02 17:30:05,974::train::INFO] [train] Iter 12486 | loss 1.3091 | loss(rot) 0.7023 | loss(pos) 0.0976 | loss(seq) 0.5092 | grad 4.1985 | lr 0.0010 | time_forward 2.8840 | time_backward 4.0120 |
[2023-09-02 17:30:13,253::train::INFO] [train] Iter 12487 | loss 1.7554 | loss(rot) 0.9972 | loss(pos) 0.3644 | loss(seq) 0.3938 | grad 5.1430 | lr 0.0010 | time_forward 3.1040 | time_backward 4.1720 |
[2023-09-02 17:30:16,317::train::INFO] [train] Iter 12488 | loss 2.5814 | loss(rot) 2.0233 | loss(pos) 0.2617 | loss(seq) 0.2963 | grad 3.9981 | lr 0.0010 | time_forward 1.3400 | time_backward 1.7210 |
[2023-09-02 17:30:18,868::train::INFO] [train] Iter 12489 | loss 1.2039 | loss(rot) 0.2621 | loss(pos) 0.8537 | loss(seq) 0.0880 | grad 4.2073 | lr 0.0010 | time_forward 1.1600 | time_backward 1.3870 |
[2023-09-02 17:30:21,039::train::INFO] [train] Iter 12490 | loss 1.3717 | loss(rot) 0.8487 | loss(pos) 0.1236 | loss(seq) 0.3994 | grad 5.0349 | lr 0.0010 | time_forward 0.9990 | time_backward 1.1680 |
[2023-09-02 17:30:23,640::train::INFO] [train] Iter 12491 | loss 0.9423 | loss(rot) 0.0890 | loss(pos) 0.8081 | loss(seq) 0.0452 | grad 5.5426 | lr 0.0010 | time_forward 1.2270 | time_backward 1.3720 |
[2023-09-02 17:30:26,222::train::INFO] [train] Iter 12492 | loss 1.1201 | loss(rot) 0.9393 | loss(pos) 0.1735 | loss(seq) 0.0074 | grad 6.8881 | lr 0.0010 | time_forward 1.2010 | time_backward 1.3780 |
[2023-09-02 17:30:34,025::train::INFO] [train] Iter 12493 | loss 0.7034 | loss(rot) 0.0561 | loss(pos) 0.6300 | loss(seq) 0.0174 | grad 5.0701 | lr 0.0010 | time_forward 3.4070 | time_backward 4.3920 |
[2023-09-02 17:30:41,576::train::INFO] [train] Iter 12494 | loss 1.7413 | loss(rot) 0.6145 | loss(pos) 0.7999 | loss(seq) 0.3269 | grad 6.5602 | lr 0.0010 | time_forward 3.3750 | time_backward 4.1720 |
[2023-09-02 17:30:48,769::train::INFO] [train] Iter 12495 | loss 1.1133 | loss(rot) 0.8106 | loss(pos) 0.1973 | loss(seq) 0.1054 | grad 4.2031 | lr 0.0010 | time_forward 3.1380 | time_backward 4.0510 |
[2023-09-02 17:30:53,235::train::INFO] [train] Iter 12496 | loss 1.7780 | loss(rot) 1.6045 | loss(pos) 0.1723 | loss(seq) 0.0012 | grad 4.5084 | lr 0.0010 | time_forward 1.8700 | time_backward 2.5920 |
[2023-09-02 17:31:02,117::train::INFO] [train] Iter 12497 | loss 1.2645 | loss(rot) 0.0290 | loss(pos) 1.2322 | loss(seq) 0.0033 | grad 5.4561 | lr 0.0010 | time_forward 3.5060 | time_backward 5.3720 |
[2023-09-02 17:31:10,135::train::INFO] [train] Iter 12498 | loss 1.0740 | loss(rot) 0.2872 | loss(pos) 0.4604 | loss(seq) 0.3264 | grad 3.2461 | lr 0.0010 | time_forward 3.4280 | time_backward 4.5870 |
[2023-09-02 17:31:18,782::train::INFO] [train] Iter 12499 | loss 1.3686 | loss(rot) 1.1088 | loss(pos) 0.2598 | loss(seq) 0.0000 | grad 4.7970 | lr 0.0010 | time_forward 3.6830 | time_backward 4.9600 |
[2023-09-02 17:31:21,546::train::INFO] [train] Iter 12500 | loss 1.6542 | loss(rot) 1.4928 | loss(pos) 0.1354 | loss(seq) 0.0261 | grad 4.1667 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4910 |
[2023-09-02 17:31:30,667::train::INFO] [train] Iter 12501 | loss 1.7992 | loss(rot) 1.4278 | loss(pos) 0.1515 | loss(seq) 0.2200 | grad 4.8799 | lr 0.0010 | time_forward 3.4260 | time_backward 5.6910 |
[2023-09-02 17:31:37,540::train::INFO] [train] Iter 12502 | loss 1.4642 | loss(rot) 1.2819 | loss(pos) 0.1274 | loss(seq) 0.0549 | grad 4.7898 | lr 0.0010 | time_forward 2.7280 | time_backward 4.1420 |
[2023-09-02 17:31:40,175::train::INFO] [train] Iter 12503 | loss 1.9459 | loss(rot) 1.0437 | loss(pos) 0.4287 | loss(seq) 0.4734 | grad 7.0484 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4010 |
[2023-09-02 17:31:48,906::train::INFO] [train] Iter 12504 | loss 1.6130 | loss(rot) 1.3277 | loss(pos) 0.1293 | loss(seq) 0.1560 | grad 5.7584 | lr 0.0010 | time_forward 3.3560 | time_backward 5.3710 |
[2023-09-02 17:31:51,500::train::INFO] [train] Iter 12505 | loss 1.5306 | loss(rot) 1.2825 | loss(pos) 0.1178 | loss(seq) 0.1304 | grad 6.9085 | lr 0.0010 | time_forward 1.2080 | time_backward 1.3720 |
[2023-09-02 17:31:59,459::train::INFO] [train] Iter 12506 | loss 1.5433 | loss(rot) 0.9534 | loss(pos) 0.1766 | loss(seq) 0.4133 | grad 5.2344 | lr 0.0010 | time_forward 3.1850 | time_backward 4.7700 |
[2023-09-02 17:32:07,573::train::INFO] [train] Iter 12507 | loss 2.6144 | loss(rot) 0.0139 | loss(pos) 2.6002 | loss(seq) 0.0004 | grad 12.3203 | lr 0.0010 | time_forward 3.2880 | time_backward 4.8240 |
[2023-09-02 17:32:16,261::train::INFO] [train] Iter 12508 | loss 0.5932 | loss(rot) 0.1714 | loss(pos) 0.3600 | loss(seq) 0.0618 | grad 2.3825 | lr 0.0010 | time_forward 3.4660 | time_backward 5.2190 |
[2023-09-02 17:32:25,548::train::INFO] [train] Iter 12509 | loss 1.3198 | loss(rot) 1.1495 | loss(pos) 0.1638 | loss(seq) 0.0064 | grad 4.8141 | lr 0.0010 | time_forward 3.6570 | time_backward 5.6190 |
[2023-09-02 17:32:33,490::train::INFO] [train] Iter 12510 | loss 2.2406 | loss(rot) 1.2493 | loss(pos) 0.6450 | loss(seq) 0.3463 | grad 6.0708 | lr 0.0010 | time_forward 3.4430 | time_backward 4.4950 |
[2023-09-02 17:32:41,737::train::INFO] [train] Iter 12511 | loss 1.2005 | loss(rot) 0.5329 | loss(pos) 0.4502 | loss(seq) 0.2173 | grad 3.6655 | lr 0.0010 | time_forward 3.5650 | time_backward 4.6790 |
[2023-09-02 17:32:49,316::train::INFO] [train] Iter 12512 | loss 1.2154 | loss(rot) 1.0798 | loss(pos) 0.1354 | loss(seq) 0.0001 | grad 5.1364 | lr 0.0010 | time_forward 3.1590 | time_backward 4.4170 |
[2023-09-02 17:32:51,914::train::INFO] [train] Iter 12513 | loss 1.5645 | loss(rot) 0.8262 | loss(pos) 0.3622 | loss(seq) 0.3762 | grad 4.5896 | lr 0.0010 | time_forward 1.2080 | time_backward 1.3870 |
[2023-09-02 17:33:00,758::train::INFO] [train] Iter 12514 | loss 1.6793 | loss(rot) 1.5933 | loss(pos) 0.0859 | loss(seq) 0.0001 | grad 3.4379 | lr 0.0010 | time_forward 3.4040 | time_backward 5.4370 |
[2023-09-02 17:33:03,407::train::INFO] [train] Iter 12515 | loss 1.6397 | loss(rot) 1.5082 | loss(pos) 0.1183 | loss(seq) 0.0131 | grad 3.5564 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4110 |
[2023-09-02 17:33:10,761::train::INFO] [train] Iter 12516 | loss 1.4697 | loss(rot) 1.3190 | loss(pos) 0.0975 | loss(seq) 0.0532 | grad 5.4993 | lr 0.0010 | time_forward 2.8990 | time_backward 4.4530 |
[2023-09-02 17:33:13,167::train::INFO] [train] Iter 12517 | loss 1.5413 | loss(rot) 0.5110 | loss(pos) 0.9862 | loss(seq) 0.0441 | grad 4.6984 | lr 0.0010 | time_forward 1.1380 | time_backward 1.2640 |
[2023-09-02 17:33:22,041::train::INFO] [train] Iter 12518 | loss 2.2860 | loss(rot) 1.8014 | loss(pos) 0.1053 | loss(seq) 0.3793 | grad 4.6645 | lr 0.0010 | time_forward 3.3010 | time_backward 5.5690 |
[2023-09-02 17:33:28,405::train::INFO] [train] Iter 12519 | loss 1.1956 | loss(rot) 0.9972 | loss(pos) 0.0593 | loss(seq) 0.1392 | grad 5.8274 | lr 0.0010 | time_forward 2.5220 | time_backward 3.8390 |
[2023-09-02 17:33:37,358::train::INFO] [train] Iter 12520 | loss 1.6160 | loss(rot) 1.0598 | loss(pos) 0.1520 | loss(seq) 0.4042 | grad 3.4970 | lr 0.0010 | time_forward 3.6770 | time_backward 5.2730 |
[2023-09-02 17:33:45,642::train::INFO] [train] Iter 12521 | loss 3.6896 | loss(rot) 0.0233 | loss(pos) 3.6645 | loss(seq) 0.0018 | grad 17.6459 | lr 0.0010 | time_forward 3.5240 | time_backward 4.7570 |
[2023-09-02 17:33:53,087::train::INFO] [train] Iter 12522 | loss 1.9515 | loss(rot) 1.7422 | loss(pos) 0.1162 | loss(seq) 0.0932 | grad 4.5813 | lr 0.0010 | time_forward 3.2340 | time_backward 4.2080 |
[2023-09-02 17:34:01,073::train::INFO] [train] Iter 12523 | loss 0.7260 | loss(rot) 0.3573 | loss(pos) 0.2434 | loss(seq) 0.1252 | grad 2.5847 | lr 0.0010 | time_forward 3.4740 | time_backward 4.5090 |
[2023-09-02 17:34:09,638::train::INFO] [train] Iter 12524 | loss 1.1897 | loss(rot) 0.4253 | loss(pos) 0.1931 | loss(seq) 0.5713 | grad 3.1198 | lr 0.0010 | time_forward 3.1180 | time_backward 5.4430 |
[2023-09-02 17:34:18,060::train::INFO] [train] Iter 12525 | loss 1.5565 | loss(rot) 0.6063 | loss(pos) 0.4643 | loss(seq) 0.4859 | grad 3.1276 | lr 0.0010 | time_forward 3.2540 | time_backward 5.1660 |
[2023-09-02 17:34:25,635::train::INFO] [train] Iter 12526 | loss 1.9159 | loss(rot) 1.3341 | loss(pos) 0.1364 | loss(seq) 0.4454 | grad 5.2229 | lr 0.0010 | time_forward 3.1280 | time_backward 4.4440 |
[2023-09-02 17:34:28,496::train::INFO] [train] Iter 12527 | loss 2.2959 | loss(rot) 1.2162 | loss(pos) 0.5306 | loss(seq) 0.5491 | grad 6.8483 | lr 0.0010 | time_forward 1.2680 | time_backward 1.5800 |
[2023-09-02 17:34:35,356::train::INFO] [train] Iter 12528 | loss 1.7299 | loss(rot) 0.1882 | loss(pos) 1.5195 | loss(seq) 0.0223 | grad 5.3084 | lr 0.0010 | time_forward 2.9300 | time_backward 3.9270 |
[2023-09-02 17:34:42,343::train::INFO] [train] Iter 12529 | loss 1.8418 | loss(rot) 1.3612 | loss(pos) 0.2414 | loss(seq) 0.2392 | grad 6.1037 | lr 0.0010 | time_forward 3.0140 | time_backward 3.9700 |
[2023-09-02 17:34:49,556::train::INFO] [train] Iter 12530 | loss 1.2711 | loss(rot) 0.3184 | loss(pos) 0.3793 | loss(seq) 0.5735 | grad 4.6997 | lr 0.0010 | time_forward 3.1530 | time_backward 4.0570 |
[2023-09-02 17:34:51,422::train::INFO] [train] Iter 12531 | loss 2.7536 | loss(rot) 2.3723 | loss(pos) 0.3073 | loss(seq) 0.0740 | grad 5.2242 | lr 0.0010 | time_forward 0.8290 | time_backward 1.0330 |
[2023-09-02 17:34:59,605::train::INFO] [train] Iter 12532 | loss 2.2223 | loss(rot) 1.7044 | loss(pos) 0.1714 | loss(seq) 0.3465 | grad 4.2550 | lr 0.0010 | time_forward 3.3780 | time_backward 4.8010 |
[2023-09-02 17:35:08,885::train::INFO] [train] Iter 12533 | loss 0.9288 | loss(rot) 0.0767 | loss(pos) 0.8288 | loss(seq) 0.0233 | grad 4.2990 | lr 0.0010 | time_forward 3.8450 | time_backward 5.4310 |
[2023-09-02 17:35:11,621::train::INFO] [train] Iter 12534 | loss 0.6297 | loss(rot) 0.5584 | loss(pos) 0.0713 | loss(seq) 0.0000 | grad 4.6252 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4570 |
[2023-09-02 17:35:19,542::train::INFO] [train] Iter 12535 | loss 1.2935 | loss(rot) 0.2203 | loss(pos) 0.6965 | loss(seq) 0.3767 | grad 5.9245 | lr 0.0010 | time_forward 3.3510 | time_backward 4.5670 |
[2023-09-02 17:35:28,993::train::INFO] [train] Iter 12536 | loss 1.7090 | loss(rot) 0.5670 | loss(pos) 0.6571 | loss(seq) 0.4849 | grad 4.6549 | lr 0.0010 | time_forward 4.0410 | time_backward 5.4070 |
[2023-09-02 17:35:38,064::train::INFO] [train] Iter 12537 | loss 0.8145 | loss(rot) 0.2735 | loss(pos) 0.4805 | loss(seq) 0.0605 | grad 4.0287 | lr 0.0010 | time_forward 3.8190 | time_backward 5.2490 |
[2023-09-02 17:35:45,145::train::INFO] [train] Iter 12538 | loss 3.0307 | loss(rot) 2.8592 | loss(pos) 0.1598 | loss(seq) 0.0116 | grad 4.3609 | lr 0.0010 | time_forward 2.9930 | time_backward 4.0840 |
[2023-09-02 17:35:47,797::train::INFO] [train] Iter 12539 | loss 0.8001 | loss(rot) 0.3877 | loss(pos) 0.2253 | loss(seq) 0.1871 | grad 4.7450 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4190 |
[2023-09-02 17:35:56,536::train::INFO] [train] Iter 12540 | loss 1.0485 | loss(rot) 0.9577 | loss(pos) 0.0865 | loss(seq) 0.0043 | grad 6.4746 | lr 0.0010 | time_forward 3.7530 | time_backward 4.9830 |
[2023-09-02 17:36:05,535::train::INFO] [train] Iter 12541 | loss 1.0350 | loss(rot) 0.0891 | loss(pos) 0.9229 | loss(seq) 0.0230 | grad 5.7090 | lr 0.0010 | time_forward 3.6710 | time_backward 5.3250 |
[2023-09-02 17:36:09,028::train::INFO] [train] Iter 12542 | loss 2.0527 | loss(rot) 1.2268 | loss(pos) 0.3125 | loss(seq) 0.5135 | grad 5.4666 | lr 0.0010 | time_forward 1.4670 | time_backward 2.0230 |
[2023-09-02 17:36:19,185::train::INFO] [train] Iter 12543 | loss 1.3210 | loss(rot) 1.1659 | loss(pos) 0.1516 | loss(seq) 0.0034 | grad 5.5724 | lr 0.0010 | time_forward 4.0360 | time_backward 6.1170 |
[2023-09-02 17:36:26,971::train::INFO] [train] Iter 12544 | loss 2.0205 | loss(rot) 1.8052 | loss(pos) 0.1567 | loss(seq) 0.0587 | grad 5.4437 | lr 0.0010 | time_forward 3.3180 | time_backward 4.4660 |
[2023-09-02 17:36:35,462::train::INFO] [train] Iter 12545 | loss 0.9359 | loss(rot) 0.0871 | loss(pos) 0.8226 | loss(seq) 0.0262 | grad 5.7990 | lr 0.0010 | time_forward 3.5370 | time_backward 4.9510 |
[2023-09-02 17:36:44,537::train::INFO] [train] Iter 12546 | loss 1.2283 | loss(rot) 0.5068 | loss(pos) 0.1380 | loss(seq) 0.5834 | grad 2.8539 | lr 0.0010 | time_forward 3.5240 | time_backward 5.5470 |
[2023-09-02 17:36:47,144::train::INFO] [train] Iter 12547 | loss 1.5470 | loss(rot) 1.4674 | loss(pos) 0.0796 | loss(seq) 0.0000 | grad 6.9124 | lr 0.0010 | time_forward 1.2140 | time_backward 1.3890 |
[2023-09-02 17:36:49,783::train::INFO] [train] Iter 12548 | loss 1.2027 | loss(rot) 0.2407 | loss(pos) 0.3480 | loss(seq) 0.6140 | grad 3.7772 | lr 0.0010 | time_forward 1.2540 | time_backward 1.3820 |
[2023-09-02 17:36:52,503::train::INFO] [train] Iter 12549 | loss 1.8453 | loss(rot) 0.0429 | loss(pos) 1.7997 | loss(seq) 0.0026 | grad 4.9850 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4080 |
[2023-09-02 17:36:55,122::train::INFO] [train] Iter 12550 | loss 1.4806 | loss(rot) 0.9444 | loss(pos) 0.0927 | loss(seq) 0.4435 | grad 7.8299 | lr 0.0010 | time_forward 1.2000 | time_backward 1.4150 |
[2023-09-02 17:37:04,382::train::INFO] [train] Iter 12551 | loss 1.2856 | loss(rot) 0.5905 | loss(pos) 0.1536 | loss(seq) 0.5415 | grad 3.1448 | lr 0.0010 | time_forward 3.8540 | time_backward 5.4020 |
[2023-09-02 17:37:12,408::train::INFO] [train] Iter 12552 | loss 1.7453 | loss(rot) 1.4436 | loss(pos) 0.1038 | loss(seq) 0.1980 | grad 3.6273 | lr 0.0010 | time_forward 3.3830 | time_backward 4.6400 |
[2023-09-02 17:37:20,303::train::INFO] [train] Iter 12553 | loss 1.2786 | loss(rot) 1.0049 | loss(pos) 0.0494 | loss(seq) 0.2242 | grad 5.5639 | lr 0.0010 | time_forward 2.9480 | time_backward 4.9440 |
[2023-09-02 17:37:27,203::train::INFO] [train] Iter 12554 | loss 0.9633 | loss(rot) 0.2897 | loss(pos) 0.3339 | loss(seq) 0.3397 | grad 3.7249 | lr 0.0010 | time_forward 2.9220 | time_backward 3.9740 |
[2023-09-02 17:37:30,645::train::INFO] [train] Iter 12555 | loss 1.9298 | loss(rot) 0.8083 | loss(pos) 0.7107 | loss(seq) 0.4108 | grad 4.2470 | lr 0.0010 | time_forward 1.4360 | time_backward 2.0020 |
[2023-09-02 17:37:39,587::train::INFO] [train] Iter 12556 | loss 1.3140 | loss(rot) 0.6859 | loss(pos) 0.2060 | loss(seq) 0.4221 | grad 2.9495 | lr 0.0010 | time_forward 3.4810 | time_backward 5.4580 |
[2023-09-02 17:37:48,637::train::INFO] [train] Iter 12557 | loss 5.1906 | loss(rot) 0.0570 | loss(pos) 5.1336 | loss(seq) 0.0000 | grad 9.5339 | lr 0.0010 | time_forward 3.4830 | time_backward 5.5640 |
[2023-09-02 17:37:51,283::train::INFO] [train] Iter 12558 | loss 2.0136 | loss(rot) 0.0352 | loss(pos) 1.9781 | loss(seq) 0.0004 | grad 8.4585 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4080 |
[2023-09-02 17:38:00,164::train::INFO] [train] Iter 12559 | loss 1.6374 | loss(rot) 1.4710 | loss(pos) 0.1213 | loss(seq) 0.0451 | grad 4.5305 | lr 0.0010 | time_forward 3.6260 | time_backward 5.2510 |
[2023-09-02 17:38:07,968::train::INFO] [train] Iter 12560 | loss 0.8670 | loss(rot) 0.6987 | loss(pos) 0.1073 | loss(seq) 0.0610 | grad 4.9216 | lr 0.0010 | time_forward 3.1240 | time_backward 4.6760 |
[2023-09-02 17:38:16,610::train::INFO] [train] Iter 12561 | loss 0.9281 | loss(rot) 0.4251 | loss(pos) 0.1494 | loss(seq) 0.3537 | grad 4.7788 | lr 0.0010 | time_forward 3.7420 | time_backward 4.8970 |
[2023-09-02 17:38:26,270::train::INFO] [train] Iter 12562 | loss 1.7979 | loss(rot) 1.5210 | loss(pos) 0.1777 | loss(seq) 0.0992 | grad 4.7982 | lr 0.0010 | time_forward 4.9020 | time_backward 4.7540 |
[2023-09-02 17:38:35,076::train::INFO] [train] Iter 12563 | loss 2.4933 | loss(rot) 2.3309 | loss(pos) 0.0473 | loss(seq) 0.1151 | grad 4.9587 | lr 0.0010 | time_forward 3.7560 | time_backward 5.0470 |
[2023-09-02 17:38:38,173::train::INFO] [train] Iter 12564 | loss 1.4975 | loss(rot) 0.4780 | loss(pos) 0.7525 | loss(seq) 0.2670 | grad 7.6579 | lr 0.0010 | time_forward 1.5070 | time_backward 1.5870 |
[2023-09-02 17:38:45,401::train::INFO] [train] Iter 12565 | loss 0.9017 | loss(rot) 0.4320 | loss(pos) 0.3259 | loss(seq) 0.1438 | grad 5.1300 | lr 0.0010 | time_forward 3.0560 | time_backward 4.1520 |
[2023-09-02 17:38:55,708::train::INFO] [train] Iter 12566 | loss 2.2734 | loss(rot) 1.7593 | loss(pos) 0.1396 | loss(seq) 0.3744 | grad 4.4937 | lr 0.0010 | time_forward 4.5650 | time_backward 5.7390 |
[2023-09-02 17:39:05,491::train::INFO] [train] Iter 12567 | loss 1.2272 | loss(rot) 0.2775 | loss(pos) 0.8954 | loss(seq) 0.0543 | grad 5.8892 | lr 0.0010 | time_forward 4.4620 | time_backward 5.3170 |
[2023-09-02 17:39:14,968::train::INFO] [train] Iter 12568 | loss 1.2162 | loss(rot) 0.1319 | loss(pos) 1.0693 | loss(seq) 0.0151 | grad 10.0520 | lr 0.0010 | time_forward 4.7200 | time_backward 4.7530 |
[2023-09-02 17:39:18,141::train::INFO] [train] Iter 12569 | loss 1.1875 | loss(rot) 0.6341 | loss(pos) 0.2560 | loss(seq) 0.2974 | grad 5.5091 | lr 0.0010 | time_forward 1.6310 | time_backward 1.5400 |
[2023-09-02 17:39:26,009::train::INFO] [train] Iter 12570 | loss 1.3716 | loss(rot) 0.4254 | loss(pos) 0.4520 | loss(seq) 0.4942 | grad 4.6802 | lr 0.0010 | time_forward 2.9720 | time_backward 4.8920 |
[2023-09-02 17:39:34,741::train::INFO] [train] Iter 12571 | loss 2.2018 | loss(rot) 1.9784 | loss(pos) 0.2234 | loss(seq) 0.0000 | grad 5.6543 | lr 0.0010 | time_forward 3.4550 | time_backward 5.2740 |
[2023-09-02 17:39:44,047::train::INFO] [train] Iter 12572 | loss 2.6832 | loss(rot) 2.1895 | loss(pos) 0.2422 | loss(seq) 0.2516 | grad 9.1097 | lr 0.0010 | time_forward 3.6520 | time_backward 5.6500 |
[2023-09-02 17:39:51,709::train::INFO] [train] Iter 12573 | loss 1.8867 | loss(rot) 1.1342 | loss(pos) 0.2671 | loss(seq) 0.4854 | grad 7.5164 | lr 0.0010 | time_forward 3.2890 | time_backward 4.3700 |
[2023-09-02 17:40:00,082::train::INFO] [train] Iter 12574 | loss 1.3375 | loss(rot) 0.8523 | loss(pos) 0.2030 | loss(seq) 0.2822 | grad 5.2994 | lr 0.0010 | time_forward 3.6210 | time_backward 4.7470 |
[2023-09-02 17:40:08,069::train::INFO] [train] Iter 12575 | loss 0.9669 | loss(rot) 0.6087 | loss(pos) 0.3582 | loss(seq) 0.0000 | grad 9.7169 | lr 0.0010 | time_forward 3.5170 | time_backward 4.4680 |
[2023-09-02 17:40:17,058::train::INFO] [train] Iter 12576 | loss 1.1126 | loss(rot) 0.2496 | loss(pos) 0.5212 | loss(seq) 0.3418 | grad 7.7449 | lr 0.0010 | time_forward 3.7110 | time_backward 5.2750 |
[2023-09-02 17:40:28,031::train::INFO] [train] Iter 12577 | loss 2.0638 | loss(rot) 1.5082 | loss(pos) 0.2278 | loss(seq) 0.3278 | grad 4.1738 | lr 0.0010 | time_forward 4.6180 | time_backward 6.3520 |
[2023-09-02 17:40:30,890::train::INFO] [train] Iter 12578 | loss 2.6802 | loss(rot) 1.7357 | loss(pos) 0.5145 | loss(seq) 0.4300 | grad 4.7391 | lr 0.0010 | time_forward 1.3370 | time_backward 1.5190 |
[2023-09-02 17:40:40,002::train::INFO] [train] Iter 12579 | loss 2.2996 | loss(rot) 2.0245 | loss(pos) 0.2319 | loss(seq) 0.0432 | grad 8.0934 | lr 0.0010 | time_forward 4.1590 | time_backward 4.9270 |
[2023-09-02 17:40:46,984::train::INFO] [train] Iter 12580 | loss 1.0954 | loss(rot) 0.6730 | loss(pos) 0.2292 | loss(seq) 0.1932 | grad 3.4997 | lr 0.0010 | time_forward 2.9200 | time_backward 4.0590 |
[2023-09-02 17:40:49,479::train::INFO] [train] Iter 12581 | loss 1.5936 | loss(rot) 1.0853 | loss(pos) 0.1250 | loss(seq) 0.3833 | grad 5.1808 | lr 0.0010 | time_forward 1.2340 | time_backward 1.2570 |
[2023-09-02 17:40:55,706::train::INFO] [train] Iter 12582 | loss 1.7181 | loss(rot) 0.9171 | loss(pos) 0.1940 | loss(seq) 0.6071 | grad 5.0010 | lr 0.0010 | time_forward 2.4520 | time_backward 3.7410 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.