text
stringlengths
56
1.16k
[2023-09-02 17:18:16,241::train::INFO] [train] Iter 12383 | loss 1.2809 | loss(rot) 0.1249 | loss(pos) 1.1334 | loss(seq) 0.0226 | grad 10.5701 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4110
[2023-09-02 17:18:18,945::train::INFO] [train] Iter 12384 | loss 2.2513 | loss(rot) 1.7603 | loss(pos) 0.1491 | loss(seq) 0.3419 | grad 3.5295 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4120
[2023-09-02 17:18:28,101::train::INFO] [train] Iter 12385 | loss 1.7371 | loss(rot) 1.1616 | loss(pos) 0.2299 | loss(seq) 0.3456 | grad 3.5350 | lr 0.0010 | time_forward 3.8970 | time_backward 5.2550
[2023-09-02 17:18:38,178::train::INFO] [train] Iter 12386 | loss 1.1258 | loss(rot) 0.2597 | loss(pos) 0.6241 | loss(seq) 0.2421 | grad 5.5924 | lr 0.0010 | time_forward 4.2430 | time_backward 5.8300
[2023-09-02 17:18:48,162::train::INFO] [train] Iter 12387 | loss 2.9937 | loss(rot) 2.1217 | loss(pos) 0.3643 | loss(seq) 0.5077 | grad 3.2906 | lr 0.0010 | time_forward 4.0830 | time_backward 5.8980
[2023-09-02 17:18:55,237::train::INFO] [train] Iter 12388 | loss 0.9155 | loss(rot) 0.3900 | loss(pos) 0.2546 | loss(seq) 0.2708 | grad 5.6840 | lr 0.0010 | time_forward 3.0340 | time_backward 4.0380
[2023-09-02 17:19:06,252::train::INFO] [train] Iter 12389 | loss 1.5291 | loss(rot) 0.9759 | loss(pos) 0.1370 | loss(seq) 0.4162 | grad 4.4763 | lr 0.0010 | time_forward 5.0100 | time_backward 5.9880
[2023-09-02 17:19:14,463::train::INFO] [train] Iter 12390 | loss 1.1276 | loss(rot) 0.4405 | loss(pos) 0.6000 | loss(seq) 0.0870 | grad 5.1780 | lr 0.0010 | time_forward 3.2930 | time_backward 4.9000
[2023-09-02 17:19:17,208::train::INFO] [train] Iter 12391 | loss 1.5613 | loss(rot) 1.2310 | loss(pos) 0.1392 | loss(seq) 0.1911 | grad 4.1367 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4760
[2023-09-02 17:19:26,358::train::INFO] [train] Iter 12392 | loss 1.4932 | loss(rot) 1.3478 | loss(pos) 0.1365 | loss(seq) 0.0089 | grad 4.3362 | lr 0.0010 | time_forward 3.7910 | time_backward 5.3560
[2023-09-02 17:19:36,346::train::INFO] [train] Iter 12393 | loss 1.2943 | loss(rot) 0.5109 | loss(pos) 0.3552 | loss(seq) 0.4281 | grad 3.5710 | lr 0.0010 | time_forward 4.1160 | time_backward 5.8680
[2023-09-02 17:19:45,466::train::INFO] [train] Iter 12394 | loss 1.5090 | loss(rot) 0.5671 | loss(pos) 0.4591 | loss(seq) 0.4828 | grad 4.9588 | lr 0.0010 | time_forward 3.8270 | time_backward 5.2890
[2023-09-02 17:19:55,436::train::INFO] [train] Iter 12395 | loss 2.1057 | loss(rot) 1.2780 | loss(pos) 0.3784 | loss(seq) 0.4493 | grad 4.4546 | lr 0.0010 | time_forward 4.0840 | time_backward 5.8820
[2023-09-02 17:20:05,275::train::INFO] [train] Iter 12396 | loss 3.2592 | loss(rot) 2.9125 | loss(pos) 0.3447 | loss(seq) 0.0020 | grad 3.0683 | lr 0.0010 | time_forward 4.0320 | time_backward 5.8030
[2023-09-02 17:20:14,449::train::INFO] [train] Iter 12397 | loss 1.2341 | loss(rot) 0.7535 | loss(pos) 0.1156 | loss(seq) 0.3650 | grad 4.3710 | lr 0.0010 | time_forward 3.9200 | time_backward 5.2510
[2023-09-02 17:20:17,094::train::INFO] [train] Iter 12398 | loss 1.0000 | loss(rot) 0.1567 | loss(pos) 0.3873 | loss(seq) 0.4559 | grad 3.4797 | lr 0.0010 | time_forward 1.2480 | time_backward 1.3940
[2023-09-02 17:20:19,793::train::INFO] [train] Iter 12399 | loss 1.8873 | loss(rot) 1.4309 | loss(pos) 0.1222 | loss(seq) 0.3342 | grad 4.9992 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4000
[2023-09-02 17:20:22,513::train::INFO] [train] Iter 12400 | loss 1.4549 | loss(rot) 0.6161 | loss(pos) 0.2200 | loss(seq) 0.6189 | grad 2.5332 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4420
[2023-09-02 17:20:29,957::train::INFO] [train] Iter 12401 | loss 1.6970 | loss(rot) 1.0130 | loss(pos) 0.1595 | loss(seq) 0.5244 | grad 4.3351 | lr 0.0010 | time_forward 3.1530 | time_backward 4.2880
[2023-09-02 17:20:38,673::train::INFO] [train] Iter 12402 | loss 0.6068 | loss(rot) 0.2917 | loss(pos) 0.0561 | loss(seq) 0.2590 | grad 3.8030 | lr 0.0010 | time_forward 3.7250 | time_backward 4.9890
[2023-09-02 17:20:45,366::train::INFO] [train] Iter 12403 | loss 1.3998 | loss(rot) 0.5969 | loss(pos) 0.3950 | loss(seq) 0.4080 | grad 5.3125 | lr 0.0010 | time_forward 2.8490 | time_backward 3.8400
[2023-09-02 17:20:48,139::train::INFO] [train] Iter 12404 | loss 0.9546 | loss(rot) 0.2653 | loss(pos) 0.5232 | loss(seq) 0.1661 | grad 4.9166 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4600
[2023-09-02 17:20:50,848::train::INFO] [train] Iter 12405 | loss 2.0387 | loss(rot) 1.7678 | loss(pos) 0.2702 | loss(seq) 0.0007 | grad 5.7572 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4420
[2023-09-02 17:20:56,728::train::INFO] [train] Iter 12406 | loss 0.6161 | loss(rot) 0.4420 | loss(pos) 0.1649 | loss(seq) 0.0092 | grad 5.0330 | lr 0.0010 | time_forward 2.5280 | time_backward 3.3490
[2023-09-02 17:21:05,791::train::INFO] [train] Iter 12407 | loss 1.5389 | loss(rot) 0.7849 | loss(pos) 0.3505 | loss(seq) 0.4035 | grad 4.5837 | lr 0.0010 | time_forward 3.8680 | time_backward 5.1920
[2023-09-02 17:21:08,435::train::INFO] [train] Iter 12408 | loss 2.4196 | loss(rot) 2.1230 | loss(pos) 0.2806 | loss(seq) 0.0161 | grad 7.4214 | lr 0.0010 | time_forward 1.2450 | time_backward 1.3960
[2023-09-02 17:21:16,908::train::INFO] [train] Iter 12409 | loss 1.0702 | loss(rot) 0.1139 | loss(pos) 0.9449 | loss(seq) 0.0114 | grad 3.9648 | lr 0.0010 | time_forward 3.6530 | time_backward 4.8160
[2023-09-02 17:21:19,561::train::INFO] [train] Iter 12410 | loss 1.8629 | loss(rot) 1.5816 | loss(pos) 0.1325 | loss(seq) 0.1488 | grad 7.6983 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4150
[2023-09-02 17:21:22,152::train::INFO] [train] Iter 12411 | loss 1.2594 | loss(rot) 0.6448 | loss(pos) 0.1822 | loss(seq) 0.4325 | grad 4.0741 | lr 0.0010 | time_forward 1.2030 | time_backward 1.3850
[2023-09-02 17:21:24,802::train::INFO] [train] Iter 12412 | loss 0.9951 | loss(rot) 0.1359 | loss(pos) 0.8556 | loss(seq) 0.0036 | grad 3.8904 | lr 0.0010 | time_forward 1.2670 | time_backward 1.3800
[2023-09-02 17:21:33,279::train::INFO] [train] Iter 12413 | loss 1.8691 | loss(rot) 1.2833 | loss(pos) 0.1727 | loss(seq) 0.4131 | grad 6.1476 | lr 0.0010 | time_forward 3.4880 | time_backward 4.9850
[2023-09-02 17:21:35,667::train::INFO] [train] Iter 12414 | loss 2.7533 | loss(rot) 2.5755 | loss(pos) 0.1775 | loss(seq) 0.0003 | grad 4.8114 | lr 0.0010 | time_forward 1.0900 | time_backward 1.2940
[2023-09-02 17:21:38,218::train::INFO] [train] Iter 12415 | loss 0.6585 | loss(rot) 0.1448 | loss(pos) 0.4838 | loss(seq) 0.0299 | grad 3.1712 | lr 0.0010 | time_forward 1.1840 | time_backward 1.3640
[2023-09-02 17:21:47,729::train::INFO] [train] Iter 12416 | loss 1.9382 | loss(rot) 1.5841 | loss(pos) 0.3539 | loss(seq) 0.0001 | grad 6.7291 | lr 0.0010 | time_forward 4.0050 | time_backward 5.5020
[2023-09-02 17:21:50,429::train::INFO] [train] Iter 12417 | loss 1.3053 | loss(rot) 0.4628 | loss(pos) 0.5322 | loss(seq) 0.3103 | grad 4.6466 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4560
[2023-09-02 17:21:59,988::train::INFO] [train] Iter 12418 | loss 1.3255 | loss(rot) 0.9122 | loss(pos) 0.1728 | loss(seq) 0.2405 | grad 5.5723 | lr 0.0010 | time_forward 3.6530 | time_backward 5.9020
[2023-09-02 17:22:10,494::train::INFO] [train] Iter 12419 | loss 1.8734 | loss(rot) 1.6780 | loss(pos) 0.1743 | loss(seq) 0.0212 | grad 4.4256 | lr 0.0010 | time_forward 4.1690 | time_backward 6.3340
[2023-09-02 17:22:20,591::train::INFO] [train] Iter 12420 | loss 1.3513 | loss(rot) 1.1253 | loss(pos) 0.2185 | loss(seq) 0.0074 | grad 4.9874 | lr 0.0010 | time_forward 3.8620 | time_backward 6.2310
[2023-09-02 17:22:29,132::train::INFO] [train] Iter 12421 | loss 2.1358 | loss(rot) 1.3922 | loss(pos) 0.1733 | loss(seq) 0.5702 | grad 4.1898 | lr 0.0010 | time_forward 3.6530 | time_backward 4.8850
[2023-09-02 17:22:36,382::train::INFO] [train] Iter 12422 | loss 0.8898 | loss(rot) 0.3629 | loss(pos) 0.3747 | loss(seq) 0.1522 | grad 4.4132 | lr 0.0010 | time_forward 3.1340 | time_backward 4.1120
[2023-09-02 17:22:44,716::train::INFO] [train] Iter 12423 | loss 2.4438 | loss(rot) 1.7865 | loss(pos) 0.2610 | loss(seq) 0.3963 | grad 3.5905 | lr 0.0010 | time_forward 3.2980 | time_backward 5.0330
[2023-09-02 17:22:47,389::train::INFO] [train] Iter 12424 | loss 0.8979 | loss(rot) 0.3916 | loss(pos) 0.3036 | loss(seq) 0.2027 | grad 3.8746 | lr 0.0010 | time_forward 1.2200 | time_backward 1.4500
[2023-09-02 17:22:54,971::train::INFO] [train] Iter 12425 | loss 0.9569 | loss(rot) 0.3486 | loss(pos) 0.2455 | loss(seq) 0.3628 | grad 3.3455 | lr 0.0010 | time_forward 3.0370 | time_backward 4.5420
[2023-09-02 17:23:03,604::train::INFO] [train] Iter 12426 | loss 1.2354 | loss(rot) 0.5779 | loss(pos) 0.1061 | loss(seq) 0.5514 | grad 5.0828 | lr 0.0010 | time_forward 3.3100 | time_backward 5.3180
[2023-09-02 17:23:05,879::train::INFO] [train] Iter 12427 | loss 0.9740 | loss(rot) 0.1649 | loss(pos) 0.6937 | loss(seq) 0.1155 | grad 3.7171 | lr 0.0010 | time_forward 1.0720 | time_backward 1.1990
[2023-09-02 17:23:08,568::train::INFO] [train] Iter 12428 | loss 1.7080 | loss(rot) 1.5164 | loss(pos) 0.1235 | loss(seq) 0.0681 | grad 7.9095 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4320
[2023-09-02 17:23:11,247::train::INFO] [train] Iter 12429 | loss 1.0249 | loss(rot) 0.4000 | loss(pos) 0.1797 | loss(seq) 0.4453 | grad 3.4843 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4420
[2023-09-02 17:23:21,299::train::INFO] [train] Iter 12430 | loss 1.1500 | loss(rot) 1.0471 | loss(pos) 0.0978 | loss(seq) 0.0051 | grad 5.5398 | lr 0.0010 | time_forward 4.0120 | time_backward 6.0360
[2023-09-02 17:23:24,001::train::INFO] [train] Iter 12431 | loss 1.4239 | loss(rot) 1.2277 | loss(pos) 0.1962 | loss(seq) 0.0000 | grad 5.9713 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4400
[2023-09-02 17:23:26,811::train::INFO] [train] Iter 12432 | loss 1.4440 | loss(rot) 1.3197 | loss(pos) 0.1149 | loss(seq) 0.0095 | grad 5.7095 | lr 0.0010 | time_forward 1.3560 | time_backward 1.4510
[2023-09-02 17:23:29,504::train::INFO] [train] Iter 12433 | loss 1.3265 | loss(rot) 0.6670 | loss(pos) 0.1716 | loss(seq) 0.4880 | grad 4.3221 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4440
[2023-09-02 17:23:32,286::train::INFO] [train] Iter 12434 | loss 1.5822 | loss(rot) 1.4819 | loss(pos) 0.0700 | loss(seq) 0.0302 | grad 4.8226 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4930
[2023-09-02 17:23:40,469::train::INFO] [train] Iter 12435 | loss 1.0811 | loss(rot) 0.2507 | loss(pos) 0.4855 | loss(seq) 0.3449 | grad 4.0839 | lr 0.0010 | time_forward 3.3930 | time_backward 4.7330
[2023-09-02 17:23:48,557::train::INFO] [train] Iter 12436 | loss 1.2542 | loss(rot) 1.0023 | loss(pos) 0.2520 | loss(seq) 0.0000 | grad 10.5171 | lr 0.0010 | time_forward 3.4320 | time_backward 4.6520
[2023-09-02 17:23:55,230::train::INFO] [train] Iter 12437 | loss 2.6654 | loss(rot) 2.4549 | loss(pos) 0.0854 | loss(seq) 0.1251 | grad 4.7066 | lr 0.0010 | time_forward 2.8830 | time_backward 3.7870
[2023-09-02 17:23:57,656::train::INFO] [train] Iter 12438 | loss 2.1892 | loss(rot) 1.5693 | loss(pos) 0.2427 | loss(seq) 0.3772 | grad 4.5542 | lr 0.0010 | time_forward 1.1470 | time_backward 1.2750
[2023-09-02 17:24:07,290::train::INFO] [train] Iter 12439 | loss 1.0710 | loss(rot) 0.9856 | loss(pos) 0.0697 | loss(seq) 0.0156 | grad 4.0193 | lr 0.0010 | time_forward 3.8650 | time_backward 5.7460
[2023-09-02 17:24:10,062::train::INFO] [train] Iter 12440 | loss 0.7929 | loss(rot) 0.1862 | loss(pos) 0.3350 | loss(seq) 0.2716 | grad 3.8555 | lr 0.0010 | time_forward 1.2520 | time_backward 1.5170
[2023-09-02 17:24:19,754::train::INFO] [train] Iter 12441 | loss 1.2358 | loss(rot) 0.7777 | loss(pos) 0.0522 | loss(seq) 0.4059 | grad 4.0959 | lr 0.0010 | time_forward 3.8200 | time_backward 5.8690
[2023-09-02 17:24:22,510::train::INFO] [train] Iter 12442 | loss 2.4224 | loss(rot) 2.0410 | loss(pos) 0.3813 | loss(seq) 0.0000 | grad 8.0897 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4990
[2023-09-02 17:24:30,132::train::INFO] [train] Iter 12443 | loss 1.0371 | loss(rot) 0.7407 | loss(pos) 0.2952 | loss(seq) 0.0012 | grad 9.1881 | lr 0.0010 | time_forward 2.9990 | time_backward 4.6190
[2023-09-02 17:24:38,922::train::INFO] [train] Iter 12444 | loss 1.6621 | loss(rot) 0.7358 | loss(pos) 0.4709 | loss(seq) 0.4554 | grad 8.3143 | lr 0.0010 | time_forward 3.5060 | time_backward 5.2800
[2023-09-02 17:24:41,606::train::INFO] [train] Iter 12445 | loss 0.6158 | loss(rot) 0.5247 | loss(pos) 0.0911 | loss(seq) 0.0000 | grad 5.1756 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4370
[2023-09-02 17:24:51,063::train::INFO] [train] Iter 12446 | loss 1.7297 | loss(rot) 1.2823 | loss(pos) 0.0972 | loss(seq) 0.3502 | grad 4.8937 | lr 0.0010 | time_forward 3.6260 | time_backward 5.8270
[2023-09-02 17:24:59,273::train::INFO] [train] Iter 12447 | loss 0.8467 | loss(rot) 0.0877 | loss(pos) 0.7245 | loss(seq) 0.0345 | grad 5.9683 | lr 0.0010 | time_forward 3.2870 | time_backward 4.9200
[2023-09-02 17:25:06,773::train::INFO] [train] Iter 12448 | loss 1.1556 | loss(rot) 0.4055 | loss(pos) 0.5425 | loss(seq) 0.2076 | grad 4.9687 | lr 0.0010 | time_forward 2.9700 | time_backward 4.5260
[2023-09-02 17:25:15,314::train::INFO] [train] Iter 12449 | loss 1.0498 | loss(rot) 0.5721 | loss(pos) 0.4247 | loss(seq) 0.0530 | grad 4.3704 | lr 0.0010 | time_forward 3.6000 | time_backward 4.9380
[2023-09-02 17:25:24,498::train::INFO] [train] Iter 12450 | loss 1.9821 | loss(rot) 1.8255 | loss(pos) 0.1401 | loss(seq) 0.0166 | grad 4.1948 | lr 0.0010 | time_forward 3.7750 | time_backward 5.4050
[2023-09-02 17:25:31,218::train::INFO] [train] Iter 12451 | loss 0.9611 | loss(rot) 0.0524 | loss(pos) 0.9004 | loss(seq) 0.0083 | grad 4.0911 | lr 0.0010 | time_forward 2.7520 | time_backward 3.9640
[2023-09-02 17:25:33,892::train::INFO] [train] Iter 12452 | loss 1.4922 | loss(rot) 1.3305 | loss(pos) 0.1311 | loss(seq) 0.0305 | grad 6.1365 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4150
[2023-09-02 17:25:42,678::train::INFO] [train] Iter 12453 | loss 1.1283 | loss(rot) 0.1098 | loss(pos) 0.7700 | loss(seq) 0.2485 | grad 6.1803 | lr 0.0010 | time_forward 3.7510 | time_backward 5.0310
[2023-09-02 17:25:47,273::train::INFO] [train] Iter 12454 | loss 1.8269 | loss(rot) 0.4599 | loss(pos) 1.3455 | loss(seq) 0.0215 | grad 5.0071 | lr 0.0010 | time_forward 1.9530 | time_backward 2.6380
[2023-09-02 17:25:50,072::train::INFO] [train] Iter 12455 | loss 1.6749 | loss(rot) 0.9586 | loss(pos) 0.2952 | loss(seq) 0.4211 | grad 3.5502 | lr 0.0010 | time_forward 1.2430 | time_backward 1.5050
[2023-09-02 17:25:59,412::train::INFO] [train] Iter 12456 | loss 0.8460 | loss(rot) 0.1587 | loss(pos) 0.4432 | loss(seq) 0.2441 | grad 4.0565 | lr 0.0010 | time_forward 3.7270 | time_backward 5.6090
[2023-09-02 17:26:05,599::train::INFO] [train] Iter 12457 | loss 0.6457 | loss(rot) 0.1763 | loss(pos) 0.4245 | loss(seq) 0.0449 | grad 2.7110 | lr 0.0010 | time_forward 2.7260 | time_backward 3.4570
[2023-09-02 17:26:12,495::train::INFO] [train] Iter 12458 | loss 1.4587 | loss(rot) 0.8447 | loss(pos) 0.1370 | loss(seq) 0.4770 | grad 4.6596 | lr 0.0010 | time_forward 2.9610 | time_backward 3.9320
[2023-09-02 17:26:15,105::train::INFO] [train] Iter 12459 | loss 1.8475 | loss(rot) 1.2889 | loss(pos) 0.1564 | loss(seq) 0.4022 | grad 5.1594 | lr 0.0010 | time_forward 1.2100 | time_backward 1.3960
[2023-09-02 17:26:24,890::train::INFO] [train] Iter 12460 | loss 1.8394 | loss(rot) 0.5808 | loss(pos) 1.2306 | loss(seq) 0.0280 | grad 4.6245 | lr 0.0010 | time_forward 3.8860 | time_backward 5.8960
[2023-09-02 17:26:32,909::train::INFO] [train] Iter 12461 | loss 1.3338 | loss(rot) 0.3185 | loss(pos) 0.3975 | loss(seq) 0.6178 | grad 3.4656 | lr 0.0010 | time_forward 3.3630 | time_backward 4.6520
[2023-09-02 17:26:41,875::train::INFO] [train] Iter 12462 | loss 2.1840 | loss(rot) 1.3322 | loss(pos) 0.3273 | loss(seq) 0.5245 | grad 4.1602 | lr 0.0010 | time_forward 3.6370 | time_backward 5.3260
[2023-09-02 17:26:50,558::train::INFO] [train] Iter 12463 | loss 2.4750 | loss(rot) 2.1024 | loss(pos) 0.1439 | loss(seq) 0.2288 | grad 8.5534 | lr 0.0010 | time_forward 3.6350 | time_backward 5.0440
[2023-09-02 17:26:58,437::train::INFO] [train] Iter 12464 | loss 0.9597 | loss(rot) 0.0677 | loss(pos) 0.8769 | loss(seq) 0.0151 | grad 6.1073 | lr 0.0010 | time_forward 3.2950 | time_backward 4.5810
[2023-09-02 17:27:01,019::train::INFO] [train] Iter 12465 | loss 1.1791 | loss(rot) 0.2855 | loss(pos) 0.6161 | loss(seq) 0.2775 | grad 4.6533 | lr 0.0010 | time_forward 1.2160 | time_backward 1.3620
[2023-09-02 17:27:08,869::train::INFO] [train] Iter 12466 | loss 2.2610 | loss(rot) 0.8960 | loss(pos) 0.9210 | loss(seq) 0.4440 | grad 5.9962 | lr 0.0010 | time_forward 3.1790 | time_backward 4.6690
[2023-09-02 17:27:11,430::train::INFO] [train] Iter 12467 | loss 0.8726 | loss(rot) 0.2155 | loss(pos) 0.3863 | loss(seq) 0.2708 | grad 4.6643 | lr 0.0010 | time_forward 1.1950 | time_backward 1.3620
[2023-09-02 17:27:14,015::train::INFO] [train] Iter 12468 | loss 1.3796 | loss(rot) 0.9205 | loss(pos) 0.1217 | loss(seq) 0.3375 | grad 4.9319 | lr 0.0010 | time_forward 1.1950 | time_backward 1.3860
[2023-09-02 17:27:16,333::train::INFO] [train] Iter 12469 | loss 1.8663 | loss(rot) 1.1685 | loss(pos) 0.1151 | loss(seq) 0.5828 | grad 3.7716 | lr 0.0010 | time_forward 1.0920 | time_backward 1.2220
[2023-09-02 17:27:18,917::train::INFO] [train] Iter 12470 | loss 1.4414 | loss(rot) 0.7756 | loss(pos) 0.2975 | loss(seq) 0.3684 | grad 4.0883 | lr 0.0010 | time_forward 1.1980 | time_backward 1.3630
[2023-09-02 17:27:26,386::train::INFO] [train] Iter 12471 | loss 1.9334 | loss(rot) 1.3785 | loss(pos) 0.0796 | loss(seq) 0.4753 | grad 6.0006 | lr 0.0010 | time_forward 3.0240 | time_backward 4.4230
[2023-09-02 17:27:33,356::train::INFO] [train] Iter 12472 | loss 1.4149 | loss(rot) 1.2762 | loss(pos) 0.0673 | loss(seq) 0.0714 | grad 4.6028 | lr 0.0010 | time_forward 2.7490 | time_backward 4.2170
[2023-09-02 17:27:41,746::train::INFO] [train] Iter 12473 | loss 1.7501 | loss(rot) 0.7254 | loss(pos) 0.7078 | loss(seq) 0.3169 | grad 4.0233 | lr 0.0010 | time_forward 3.0970 | time_backward 5.2910
[2023-09-02 17:27:50,299::train::INFO] [train] Iter 12474 | loss 2.8750 | loss(rot) 1.7427 | loss(pos) 0.6369 | loss(seq) 0.4954 | grad 5.5993 | lr 0.0010 | time_forward 3.4410 | time_backward 5.1080
[2023-09-02 17:27:57,157::train::INFO] [train] Iter 12475 | loss 1.0764 | loss(rot) 0.0440 | loss(pos) 1.0252 | loss(seq) 0.0071 | grad 5.0241 | lr 0.0010 | time_forward 2.7660 | time_backward 4.0890
[2023-09-02 17:27:59,720::train::INFO] [train] Iter 12476 | loss 1.5227 | loss(rot) 0.6459 | loss(pos) 0.5733 | loss(seq) 0.3035 | grad 4.5422 | lr 0.0010 | time_forward 1.1720 | time_backward 1.3870
[2023-09-02 17:28:42,482::train::INFO] [train] Iter 12477 | loss 1.8730 | loss(rot) 0.9317 | loss(pos) 0.3943 | loss(seq) 0.5470 | grad 5.4518 | lr 0.0010 | time_forward 32.1380 | time_backward 10.6210
[2023-09-02 17:28:50,249::train::INFO] [train] Iter 12478 | loss 1.5424 | loss(rot) 0.0290 | loss(pos) 1.5118 | loss(seq) 0.0015 | grad 4.8099 | lr 0.0010 | time_forward 3.2060 | time_backward 4.5560
[2023-09-02 17:28:55,342::train::INFO] [train] Iter 12479 | loss 1.4722 | loss(rot) 0.0454 | loss(pos) 1.4151 | loss(seq) 0.0118 | grad 6.8135 | lr 0.0010 | time_forward 3.4270 | time_backward 1.6500
[2023-09-02 17:29:05,761::train::INFO] [train] Iter 12480 | loss 2.5782 | loss(rot) 2.2914 | loss(pos) 0.2865 | loss(seq) 0.0003 | grad 4.4537 | lr 0.0010 | time_forward 4.6020 | time_backward 5.8130
[2023-09-02 17:29:19,296::train::INFO] [train] Iter 12481 | loss 1.5130 | loss(rot) 0.9588 | loss(pos) 0.0969 | loss(seq) 0.4572 | grad 3.0809 | lr 0.0010 | time_forward 4.2890 | time_backward 9.2420
[2023-09-02 17:29:33,297::train::INFO] [train] Iter 12482 | loss 2.9486 | loss(rot) 2.5907 | loss(pos) 0.3572 | loss(seq) 0.0007 | grad 3.9668 | lr 0.0010 | time_forward 6.6760 | time_backward 7.3200