text
stringlengths 56
1.16k
|
---|
[2023-09-02 17:05:31,156::train::INFO] [train] Iter 12283 | loss 1.9960 | loss(rot) 1.6652 | loss(pos) 0.1154 | loss(seq) 0.2154 | grad 3.9324 | lr 0.0010 | time_forward 2.4590 | time_backward 3.1060 |
[2023-09-02 17:05:40,237::train::INFO] [train] Iter 12284 | loss 1.4025 | loss(rot) 1.1533 | loss(pos) 0.0968 | loss(seq) 0.1523 | grad 4.0935 | lr 0.0010 | time_forward 2.9470 | time_backward 3.9300 |
[2023-09-02 17:05:48,404::train::INFO] [train] Iter 12285 | loss 1.5106 | loss(rot) 0.3069 | loss(pos) 1.1665 | loss(seq) 0.0373 | grad 4.8615 | lr 0.0010 | time_forward 3.4330 | time_backward 4.7320 |
[2023-09-02 17:05:53,444::train::INFO] [train] Iter 12286 | loss 1.8613 | loss(rot) 1.6618 | loss(pos) 0.1963 | loss(seq) 0.0031 | grad 3.7891 | lr 0.0010 | time_forward 2.2230 | time_backward 2.8130 |
[2023-09-02 17:06:00,743::train::INFO] [train] Iter 12287 | loss 1.2888 | loss(rot) 1.1769 | loss(pos) 0.0814 | loss(seq) 0.0305 | grad 7.9333 | lr 0.0010 | time_forward 3.0830 | time_backward 4.2130 |
[2023-09-02 17:06:16,007::train::INFO] [train] Iter 12288 | loss 1.0218 | loss(rot) 0.3909 | loss(pos) 0.3469 | loss(seq) 0.2840 | grad 2.9961 | lr 0.0010 | time_forward 3.2950 | time_backward 4.7690 |
[2023-09-02 17:06:18,999::train::INFO] [train] Iter 12289 | loss 1.7890 | loss(rot) 0.3117 | loss(pos) 1.4689 | loss(seq) 0.0084 | grad 4.1708 | lr 0.0010 | time_forward 1.3340 | time_backward 1.6540 |
[2023-09-02 17:06:21,454::train::INFO] [train] Iter 12290 | loss 1.0393 | loss(rot) 0.4252 | loss(pos) 0.3575 | loss(seq) 0.2566 | grad 3.3675 | lr 0.0010 | time_forward 1.1180 | time_backward 1.3330 |
[2023-09-02 17:06:27,846::train::INFO] [train] Iter 12291 | loss 0.8769 | loss(rot) 0.0667 | loss(pos) 0.6025 | loss(seq) 0.2077 | grad 3.8691 | lr 0.0010 | time_forward 2.7080 | time_backward 3.6810 |
[2023-09-02 17:06:30,738::train::INFO] [train] Iter 12292 | loss 1.9380 | loss(rot) 1.2763 | loss(pos) 0.1846 | loss(seq) 0.4770 | grad 3.0486 | lr 0.0010 | time_forward 1.2710 | time_backward 1.6170 |
[2023-09-02 17:06:37,728::train::INFO] [train] Iter 12293 | loss 2.4362 | loss(rot) 1.5477 | loss(pos) 0.3569 | loss(seq) 0.5316 | grad 4.5432 | lr 0.0010 | time_forward 3.0360 | time_backward 3.9510 |
[2023-09-02 17:06:40,285::train::INFO] [train] Iter 12294 | loss 0.7396 | loss(rot) 0.0673 | loss(pos) 0.6624 | loss(seq) 0.0099 | grad 6.4078 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3740 |
[2023-09-02 17:06:42,607::train::INFO] [train] Iter 12295 | loss 2.7046 | loss(rot) 2.4269 | loss(pos) 0.2770 | loss(seq) 0.0007 | grad 7.0763 | lr 0.0010 | time_forward 1.1070 | time_backward 1.2040 |
[2023-09-02 17:06:48,776::train::INFO] [train] Iter 12296 | loss 1.6641 | loss(rot) 1.4580 | loss(pos) 0.2043 | loss(seq) 0.0018 | grad 5.5418 | lr 0.0010 | time_forward 2.6800 | time_backward 3.4860 |
[2023-09-02 17:06:53,706::train::INFO] [train] Iter 12297 | loss 1.5335 | loss(rot) 1.2573 | loss(pos) 0.2762 | loss(seq) 0.0000 | grad 8.2015 | lr 0.0010 | time_forward 2.1080 | time_backward 2.8190 |
[2023-09-02 17:06:56,259::train::INFO] [train] Iter 12298 | loss 1.6071 | loss(rot) 0.8681 | loss(pos) 0.1658 | loss(seq) 0.5732 | grad 5.0521 | lr 0.0010 | time_forward 1.1820 | time_backward 1.3670 |
[2023-09-02 17:07:02,791::train::INFO] [train] Iter 12299 | loss 1.3778 | loss(rot) 1.0878 | loss(pos) 0.0867 | loss(seq) 0.2033 | grad 11.4384 | lr 0.0010 | time_forward 2.7980 | time_backward 3.7300 |
[2023-09-02 17:07:05,329::train::INFO] [train] Iter 12300 | loss 1.2173 | loss(rot) 0.3945 | loss(pos) 0.3723 | loss(seq) 0.4505 | grad 7.2789 | lr 0.0010 | time_forward 1.1890 | time_backward 1.3460 |
[2023-09-02 17:07:09,985::train::INFO] [train] Iter 12301 | loss 0.7811 | loss(rot) 0.3351 | loss(pos) 0.4060 | loss(seq) 0.0399 | grad 3.7424 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3270 |
[2023-09-02 17:07:18,281::train::INFO] [train] Iter 12302 | loss 2.1367 | loss(rot) 1.2996 | loss(pos) 0.2246 | loss(seq) 0.6125 | grad 4.7764 | lr 0.0010 | time_forward 3.3530 | time_backward 4.9400 |
[2023-09-02 17:07:24,268::train::INFO] [train] Iter 12303 | loss 1.6828 | loss(rot) 1.4820 | loss(pos) 0.0988 | loss(seq) 0.1020 | grad 8.2343 | lr 0.0010 | time_forward 2.6280 | time_backward 3.3550 |
[2023-09-02 17:07:33,936::train::INFO] [train] Iter 12304 | loss 1.9352 | loss(rot) 1.4930 | loss(pos) 0.1300 | loss(seq) 0.3123 | grad 4.9537 | lr 0.0010 | time_forward 4.7540 | time_backward 4.9110 |
[2023-09-02 17:07:44,084::train::INFO] [train] Iter 12305 | loss 1.8835 | loss(rot) 1.7122 | loss(pos) 0.1712 | loss(seq) 0.0001 | grad 4.3783 | lr 0.0010 | time_forward 5.1110 | time_backward 5.0330 |
[2023-09-02 17:07:57,278::train::INFO] [train] Iter 12306 | loss 1.1725 | loss(rot) 0.5443 | loss(pos) 0.4376 | loss(seq) 0.1906 | grad 3.7698 | lr 0.0010 | time_forward 8.8300 | time_backward 4.3600 |
[2023-09-02 17:08:04,625::train::INFO] [train] Iter 12307 | loss 1.9593 | loss(rot) 1.8892 | loss(pos) 0.0700 | loss(seq) 0.0000 | grad 4.3767 | lr 0.0010 | time_forward 3.2320 | time_backward 4.1110 |
[2023-09-02 17:08:12,588::train::INFO] [train] Iter 12308 | loss 0.5387 | loss(rot) 0.2030 | loss(pos) 0.2732 | loss(seq) 0.0626 | grad 2.9401 | lr 0.0010 | time_forward 3.3320 | time_backward 4.6280 |
[2023-09-02 17:08:20,478::train::INFO] [train] Iter 12309 | loss 0.6634 | loss(rot) 0.1803 | loss(pos) 0.2719 | loss(seq) 0.2113 | grad 2.9240 | lr 0.0010 | time_forward 3.3660 | time_backward 4.5190 |
[2023-09-02 17:08:23,001::train::INFO] [train] Iter 12310 | loss 3.1244 | loss(rot) 2.9284 | loss(pos) 0.1940 | loss(seq) 0.0020 | grad 4.1061 | lr 0.0010 | time_forward 1.1570 | time_backward 1.3630 |
[2023-09-02 17:08:31,284::train::INFO] [train] Iter 12311 | loss 2.2997 | loss(rot) 1.7154 | loss(pos) 0.1540 | loss(seq) 0.4302 | grad 5.3197 | lr 0.0010 | time_forward 3.3520 | time_backward 4.9280 |
[2023-09-02 17:08:33,887::train::INFO] [train] Iter 12312 | loss 1.6812 | loss(rot) 1.5699 | loss(pos) 0.1080 | loss(seq) 0.0032 | grad 4.4566 | lr 0.0010 | time_forward 1.2070 | time_backward 1.3920 |
[2023-09-02 17:08:37,232::train::INFO] [train] Iter 12313 | loss 0.7925 | loss(rot) 0.2128 | loss(pos) 0.2751 | loss(seq) 0.3046 | grad 3.2381 | lr 0.0010 | time_forward 1.1650 | time_backward 1.4070 |
[2023-09-02 17:08:39,803::train::INFO] [train] Iter 12314 | loss 0.8123 | loss(rot) 0.1050 | loss(pos) 0.4520 | loss(seq) 0.2554 | grad 3.2717 | lr 0.0010 | time_forward 1.1560 | time_backward 1.4120 |
[2023-09-02 17:08:46,830::train::INFO] [train] Iter 12315 | loss 1.2447 | loss(rot) 1.1776 | loss(pos) 0.0509 | loss(seq) 0.0163 | grad 4.4364 | lr 0.0010 | time_forward 3.0750 | time_backward 3.9370 |
[2023-09-02 17:08:53,432::train::INFO] [train] Iter 12316 | loss 1.4931 | loss(rot) 0.0454 | loss(pos) 1.4432 | loss(seq) 0.0045 | grad 5.7597 | lr 0.0010 | time_forward 2.8030 | time_backward 3.7960 |
[2023-09-02 17:08:56,001::train::INFO] [train] Iter 12317 | loss 1.9692 | loss(rot) 1.8418 | loss(pos) 0.1274 | loss(seq) 0.0000 | grad 8.7884 | lr 0.0010 | time_forward 1.1640 | time_backward 1.4010 |
[2023-09-02 17:09:04,165::train::INFO] [train] Iter 12318 | loss 0.8810 | loss(rot) 0.3931 | loss(pos) 0.3267 | loss(seq) 0.1612 | grad 3.6981 | lr 0.0010 | time_forward 3.3190 | time_backward 4.8420 |
[2023-09-02 17:09:13,182::train::INFO] [train] Iter 12319 | loss 1.1227 | loss(rot) 0.3578 | loss(pos) 0.2803 | loss(seq) 0.4846 | grad 3.7440 | lr 0.0010 | time_forward 3.2920 | time_backward 5.7230 |
[2023-09-02 17:10:16,180::train::INFO] [train] Iter 12320 | loss 1.5320 | loss(rot) 0.6985 | loss(pos) 0.2956 | loss(seq) 0.5379 | grad 3.7927 | lr 0.0010 | time_forward 56.9940 | time_backward 5.9990 |
[2023-09-02 17:10:19,169::train::INFO] [train] Iter 12321 | loss 1.2374 | loss(rot) 0.6936 | loss(pos) 0.1076 | loss(seq) 0.4363 | grad 4.5945 | lr 0.0010 | time_forward 1.2700 | time_backward 1.7170 |
[2023-09-02 17:10:27,444::train::INFO] [train] Iter 12322 | loss 1.4779 | loss(rot) 0.7777 | loss(pos) 0.5730 | loss(seq) 0.1272 | grad 6.1749 | lr 0.0010 | time_forward 3.5370 | time_backward 4.7340 |
[2023-09-02 17:10:36,677::train::INFO] [train] Iter 12323 | loss 2.4094 | loss(rot) 1.9972 | loss(pos) 0.1453 | loss(seq) 0.2669 | grad 4.5685 | lr 0.0010 | time_forward 4.0180 | time_backward 5.2120 |
[2023-09-02 17:10:38,963::train::INFO] [train] Iter 12324 | loss 1.7365 | loss(rot) 0.8107 | loss(pos) 0.2944 | loss(seq) 0.6314 | grad 3.5963 | lr 0.0010 | time_forward 1.0610 | time_backward 1.2210 |
[2023-09-02 17:10:47,677::train::INFO] [train] Iter 12325 | loss 1.3551 | loss(rot) 0.6325 | loss(pos) 0.2224 | loss(seq) 0.5003 | grad 3.8369 | lr 0.0010 | time_forward 3.5440 | time_backward 5.1600 |
[2023-09-02 17:10:55,701::train::INFO] [train] Iter 12326 | loss 1.6651 | loss(rot) 1.4956 | loss(pos) 0.1249 | loss(seq) 0.0447 | grad 4.5084 | lr 0.0010 | time_forward 3.2750 | time_backward 4.7450 |
[2023-09-02 17:10:58,325::train::INFO] [train] Iter 12327 | loss 1.9284 | loss(rot) 1.2125 | loss(pos) 0.2362 | loss(seq) 0.4797 | grad 4.5662 | lr 0.0010 | time_forward 1.2210 | time_backward 1.3990 |
[2023-09-02 17:11:01,018::train::INFO] [train] Iter 12328 | loss 1.0792 | loss(rot) 0.8350 | loss(pos) 0.2409 | loss(seq) 0.0034 | grad 5.3781 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4330 |
[2023-09-02 17:11:26,750::train::INFO] [train] Iter 12329 | loss 2.2115 | loss(rot) 0.0245 | loss(pos) 2.1862 | loss(seq) 0.0008 | grad 10.6592 | lr 0.0010 | time_forward 20.3960 | time_backward 5.3340 |
[2023-09-02 17:11:50,607::train::INFO] [train] Iter 12330 | loss 0.7190 | loss(rot) 0.5720 | loss(pos) 0.0600 | loss(seq) 0.0870 | grad 5.1105 | lr 0.0010 | time_forward 18.5690 | time_backward 5.2840 |
[2023-09-02 17:11:59,526::train::INFO] [train] Iter 12331 | loss 2.5495 | loss(rot) 2.4329 | loss(pos) 0.0948 | loss(seq) 0.0217 | grad 4.2653 | lr 0.0010 | time_forward 3.7660 | time_backward 5.1500 |
[2023-09-02 17:12:09,496::train::INFO] [train] Iter 12332 | loss 1.1991 | loss(rot) 0.2120 | loss(pos) 0.3879 | loss(seq) 0.5993 | grad 3.7587 | lr 0.0010 | time_forward 3.9750 | time_backward 5.9920 |
[2023-09-02 17:12:19,759::train::INFO] [train] Iter 12333 | loss 2.9489 | loss(rot) 2.6181 | loss(pos) 0.3308 | loss(seq) 0.0000 | grad 4.4118 | lr 0.0010 | time_forward 4.3400 | time_backward 5.9190 |
[2023-09-02 17:12:22,527::train::INFO] [train] Iter 12334 | loss 1.7240 | loss(rot) 0.9307 | loss(pos) 0.2826 | loss(seq) 0.5106 | grad 5.9008 | lr 0.0010 | time_forward 1.2640 | time_backward 1.5000 |
[2023-09-02 17:12:32,908::train::INFO] [train] Iter 12335 | loss 1.2728 | loss(rot) 0.6572 | loss(pos) 0.1133 | loss(seq) 0.5022 | grad 3.0399 | lr 0.0010 | time_forward 4.0630 | time_backward 6.3150 |
[2023-09-02 17:12:42,625::train::INFO] [train] Iter 12336 | loss 1.3410 | loss(rot) 1.1324 | loss(pos) 0.1148 | loss(seq) 0.0938 | grad 4.2531 | lr 0.0010 | time_forward 3.6070 | time_backward 6.1070 |
[2023-09-02 17:12:49,030::train::INFO] [train] Iter 12337 | loss 1.9175 | loss(rot) 0.6273 | loss(pos) 0.5742 | loss(seq) 0.7160 | grad 4.2518 | lr 0.0010 | time_forward 2.6880 | time_backward 3.7130 |
[2023-09-02 17:12:57,102::train::INFO] [train] Iter 12338 | loss 1.6743 | loss(rot) 1.5299 | loss(pos) 0.1384 | loss(seq) 0.0060 | grad 4.9675 | lr 0.0010 | time_forward 3.4250 | time_backward 4.6430 |
[2023-09-02 17:12:59,881::train::INFO] [train] Iter 12339 | loss 1.2440 | loss(rot) 0.2597 | loss(pos) 0.5799 | loss(seq) 0.4044 | grad 5.7864 | lr 0.0010 | time_forward 1.2510 | time_backward 1.5240 |
[2023-09-02 17:13:12,903::train::INFO] [train] Iter 12340 | loss 1.6589 | loss(rot) 0.9324 | loss(pos) 0.2207 | loss(seq) 0.5057 | grad 4.7181 | lr 0.0010 | time_forward 7.0860 | time_backward 5.9330 |
[2023-09-02 17:13:22,077::train::INFO] [train] Iter 12341 | loss 0.8426 | loss(rot) 0.1565 | loss(pos) 0.6568 | loss(seq) 0.0293 | grad 6.5702 | lr 0.0010 | time_forward 3.6610 | time_backward 5.5090 |
[2023-09-02 17:13:31,205::train::INFO] [train] Iter 12342 | loss 0.9743 | loss(rot) 0.1910 | loss(pos) 0.4672 | loss(seq) 0.3161 | grad 3.6295 | lr 0.0010 | time_forward 3.8300 | time_backward 5.2950 |
[2023-09-02 17:13:40,043::train::INFO] [train] Iter 12343 | loss 1.9349 | loss(rot) 1.8518 | loss(pos) 0.0829 | loss(seq) 0.0001 | grad 4.9359 | lr 0.0010 | time_forward 4.1420 | time_backward 4.6920 |
[2023-09-02 17:13:42,687::train::INFO] [train] Iter 12344 | loss 1.2467 | loss(rot) 0.7920 | loss(pos) 0.1202 | loss(seq) 0.3345 | grad 3.7846 | lr 0.0010 | time_forward 1.2430 | time_backward 1.3980 |
[2023-09-02 17:13:50,916::train::INFO] [train] Iter 12345 | loss 1.6631 | loss(rot) 1.3968 | loss(pos) 0.1190 | loss(seq) 0.1473 | grad 4.4764 | lr 0.0010 | time_forward 3.5540 | time_backward 4.6710 |
[2023-09-02 17:14:00,953::train::INFO] [train] Iter 12346 | loss 2.9395 | loss(rot) 2.6614 | loss(pos) 0.1101 | loss(seq) 0.1680 | grad 4.9873 | lr 0.0010 | time_forward 4.3050 | time_backward 5.7280 |
[2023-09-02 17:14:09,350::train::INFO] [train] Iter 12347 | loss 0.6297 | loss(rot) 0.0739 | loss(pos) 0.5425 | loss(seq) 0.0133 | grad 4.7232 | lr 0.0010 | time_forward 3.8960 | time_backward 4.4970 |
[2023-09-02 17:14:13,839::train::INFO] [train] Iter 12348 | loss 1.1871 | loss(rot) 0.9357 | loss(pos) 0.2512 | loss(seq) 0.0003 | grad 15.9636 | lr 0.0010 | time_forward 1.2340 | time_backward 1.3880 |
[2023-09-02 17:14:15,983::train::INFO] [train] Iter 12349 | loss 1.6452 | loss(rot) 1.4115 | loss(pos) 0.1515 | loss(seq) 0.0823 | grad 3.9042 | lr 0.0010 | time_forward 0.9960 | time_backward 1.1260 |
[2023-09-02 17:14:24,608::train::INFO] [train] Iter 12350 | loss 1.6537 | loss(rot) 0.8157 | loss(pos) 0.4429 | loss(seq) 0.3952 | grad 5.1123 | lr 0.0010 | time_forward 3.5610 | time_backward 5.0610 |
[2023-09-02 17:14:27,790::train::INFO] [train] Iter 12351 | loss 2.2482 | loss(rot) 1.2862 | loss(pos) 0.4791 | loss(seq) 0.4829 | grad 4.0684 | lr 0.0010 | time_forward 1.3910 | time_backward 1.7880 |
[2023-09-02 17:14:35,940::train::INFO] [train] Iter 12352 | loss 1.5156 | loss(rot) 0.7142 | loss(pos) 0.4884 | loss(seq) 0.3131 | grad 5.4545 | lr 0.0010 | time_forward 3.5180 | time_backward 4.6280 |
[2023-09-02 17:14:38,620::train::INFO] [train] Iter 12353 | loss 1.5211 | loss(rot) 1.3734 | loss(pos) 0.1228 | loss(seq) 0.0249 | grad 4.9572 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4250 |
[2023-09-02 17:14:46,725::train::INFO] [train] Iter 12354 | loss 2.5582 | loss(rot) 2.3862 | loss(pos) 0.1713 | loss(seq) 0.0006 | grad 7.2225 | lr 0.0010 | time_forward 3.5980 | time_backward 4.5040 |
[2023-09-02 17:14:48,945::train::INFO] [train] Iter 12355 | loss 1.4346 | loss(rot) 0.7473 | loss(pos) 0.0929 | loss(seq) 0.5944 | grad 3.4286 | lr 0.0010 | time_forward 1.0350 | time_backward 1.1820 |
[2023-09-02 17:14:58,532::train::INFO] [train] Iter 12356 | loss 2.1389 | loss(rot) 2.0176 | loss(pos) 0.1047 | loss(seq) 0.0166 | grad 6.2961 | lr 0.0010 | time_forward 4.4050 | time_backward 5.1780 |
[2023-09-02 17:15:01,203::train::INFO] [train] Iter 12357 | loss 1.8368 | loss(rot) 1.3370 | loss(pos) 0.1277 | loss(seq) 0.3720 | grad 9.4332 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4250 |
[2023-09-02 17:15:09,775::train::INFO] [train] Iter 12358 | loss 2.2755 | loss(rot) 2.1494 | loss(pos) 0.1258 | loss(seq) 0.0003 | grad 6.5447 | lr 0.0010 | time_forward 3.4080 | time_backward 5.1600 |
[2023-09-02 17:15:12,362::train::INFO] [train] Iter 12359 | loss 1.2301 | loss(rot) 0.9771 | loss(pos) 0.1199 | loss(seq) 0.1331 | grad 4.1641 | lr 0.0010 | time_forward 1.2060 | time_backward 1.3780 |
[2023-09-02 17:15:14,954::train::INFO] [train] Iter 12360 | loss 1.5764 | loss(rot) 1.4450 | loss(pos) 0.1223 | loss(seq) 0.0091 | grad 6.2110 | lr 0.0010 | time_forward 1.2180 | time_backward 1.3710 |
[2023-09-02 17:15:21,453::train::INFO] [train] Iter 12361 | loss 2.2813 | loss(rot) 0.0736 | loss(pos) 2.2069 | loss(seq) 0.0009 | grad 6.1315 | lr 0.0010 | time_forward 2.7880 | time_backward 3.6910 |
[2023-09-02 17:15:24,087::train::INFO] [train] Iter 12362 | loss 0.3985 | loss(rot) 0.0650 | loss(pos) 0.3121 | loss(seq) 0.0215 | grad 3.3183 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4050 |
[2023-09-02 17:15:26,750::train::INFO] [train] Iter 12363 | loss 1.4105 | loss(rot) 0.2409 | loss(pos) 0.3722 | loss(seq) 0.7974 | grad 4.3482 | lr 0.0010 | time_forward 1.2620 | time_backward 1.3970 |
[2023-09-02 17:15:34,604::train::INFO] [train] Iter 12364 | loss 2.4898 | loss(rot) 2.4114 | loss(pos) 0.0628 | loss(seq) 0.0156 | grad 4.3745 | lr 0.0010 | time_forward 3.2420 | time_backward 4.5850 |
[2023-09-02 17:15:50,176::train::INFO] [train] Iter 12365 | loss 1.3920 | loss(rot) 0.6604 | loss(pos) 0.3351 | loss(seq) 0.3966 | grad 2.9777 | lr 0.0010 | time_forward 3.4270 | time_backward 4.7510 |
[2023-09-02 17:15:55,953::train::INFO] [train] Iter 12366 | loss 1.7251 | loss(rot) 0.9975 | loss(pos) 0.1927 | loss(seq) 0.5349 | grad 7.5963 | lr 0.0010 | time_forward 2.5730 | time_backward 3.2000 |
[2023-09-02 17:16:03,461::train::INFO] [train] Iter 12367 | loss 1.2184 | loss(rot) 0.2054 | loss(pos) 0.9523 | loss(seq) 0.0606 | grad 4.7803 | lr 0.0010 | time_forward 2.9730 | time_backward 4.5320 |
[2023-09-02 17:16:06,000::train::INFO] [train] Iter 12368 | loss 1.4098 | loss(rot) 0.4909 | loss(pos) 0.3913 | loss(seq) 0.5276 | grad 4.0095 | lr 0.0010 | time_forward 1.1730 | time_backward 1.3630 |
[2023-09-02 17:16:15,082::train::INFO] [train] Iter 12369 | loss 1.6870 | loss(rot) 0.8516 | loss(pos) 0.4431 | loss(seq) 0.3922 | grad 4.1660 | lr 0.0010 | time_forward 3.6160 | time_backward 5.4620 |
[2023-09-02 17:16:22,403::train::INFO] [train] Iter 12370 | loss 1.7334 | loss(rot) 0.1083 | loss(pos) 1.6134 | loss(seq) 0.0118 | grad 6.4623 | lr 0.0010 | time_forward 3.1580 | time_backward 4.1600 |
[2023-09-02 17:16:29,452::train::INFO] [train] Iter 12371 | loss 1.9451 | loss(rot) 0.7812 | loss(pos) 0.5186 | loss(seq) 0.6453 | grad 5.7679 | lr 0.0010 | time_forward 3.0930 | time_backward 3.9530 |
[2023-09-02 17:16:39,974::train::INFO] [train] Iter 12372 | loss 0.4768 | loss(rot) 0.0588 | loss(pos) 0.3928 | loss(seq) 0.0252 | grad 5.7666 | lr 0.0010 | time_forward 1.6990 | time_backward 8.8210 |
[2023-09-02 17:16:55,801::train::INFO] [train] Iter 12373 | loss 0.5464 | loss(rot) 0.2870 | loss(pos) 0.2033 | loss(seq) 0.0560 | grad 3.5034 | lr 0.0010 | time_forward 8.7180 | time_backward 7.0750 |
[2023-09-02 17:17:15,252::train::INFO] [train] Iter 12374 | loss 1.5135 | loss(rot) 0.4776 | loss(pos) 0.6421 | loss(seq) 0.3938 | grad 5.1329 | lr 0.0010 | time_forward 13.3830 | time_backward 6.0640 |
[2023-09-02 17:17:25,863::train::INFO] [train] Iter 12375 | loss 1.6949 | loss(rot) 1.5445 | loss(pos) 0.1473 | loss(seq) 0.0031 | grad 7.2333 | lr 0.0010 | time_forward 5.1270 | time_backward 5.4810 |
[2023-09-02 17:17:36,767::train::INFO] [train] Iter 12376 | loss 0.9067 | loss(rot) 0.3044 | loss(pos) 0.5264 | loss(seq) 0.0758 | grad 3.9961 | lr 0.0010 | time_forward 4.1130 | time_backward 5.9730 |
[2023-09-02 17:17:44,686::train::INFO] [train] Iter 12377 | loss 1.4809 | loss(rot) 0.6715 | loss(pos) 0.2526 | loss(seq) 0.5568 | grad 4.5775 | lr 0.0010 | time_forward 3.3360 | time_backward 4.5800 |
[2023-09-02 17:17:53,719::train::INFO] [train] Iter 12378 | loss 1.4531 | loss(rot) 1.0669 | loss(pos) 0.3428 | loss(seq) 0.0433 | grad 6.7736 | lr 0.0010 | time_forward 3.8920 | time_backward 5.1370 |
[2023-09-02 17:17:56,934::train::INFO] [train] Iter 12379 | loss 1.2271 | loss(rot) 0.2999 | loss(pos) 0.7609 | loss(seq) 0.1663 | grad 5.3228 | lr 0.0010 | time_forward 1.3850 | time_backward 1.8270 |
[2023-09-02 17:18:06,979::train::INFO] [train] Iter 12380 | loss 0.7118 | loss(rot) 0.1077 | loss(pos) 0.5936 | loss(seq) 0.0105 | grad 4.9769 | lr 0.0010 | time_forward 4.1140 | time_backward 5.9270 |
[2023-09-02 17:18:09,591::train::INFO] [train] Iter 12381 | loss 1.6046 | loss(rot) 0.8646 | loss(pos) 0.1670 | loss(seq) 0.5731 | grad 5.1921 | lr 0.0010 | time_forward 1.2270 | time_backward 1.3820 |
[2023-09-02 17:18:13,527::train::INFO] [train] Iter 12382 | loss 1.7531 | loss(rot) 1.3210 | loss(pos) 0.4138 | loss(seq) 0.0183 | grad 7.0580 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4160 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.