text
stringlengths
56
1.16k
[2023-09-02 16:44:50,774::train::INFO] [train] Iter 12083 | loss 2.9475 | loss(rot) 2.8075 | loss(pos) 0.1331 | loss(seq) 0.0069 | grad 6.6612 | lr 0.0010 | time_forward 2.5100 | time_backward 3.3040
[2023-09-02 16:44:58,630::train::INFO] [train] Iter 12084 | loss 2.2385 | loss(rot) 0.3548 | loss(pos) 1.8789 | loss(seq) 0.0048 | grad 4.6836 | lr 0.0010 | time_forward 3.4560 | time_backward 4.3960
[2023-09-02 16:45:06,966::train::INFO] [train] Iter 12085 | loss 2.9590 | loss(rot) 2.6561 | loss(pos) 0.3027 | loss(seq) 0.0001 | grad 3.8626 | lr 0.0010 | time_forward 3.2850 | time_backward 5.0470
[2023-09-02 16:45:09,498::train::INFO] [train] Iter 12086 | loss 1.3097 | loss(rot) 0.6533 | loss(pos) 0.6058 | loss(seq) 0.0506 | grad 4.9900 | lr 0.0010 | time_forward 1.1620 | time_backward 1.3670
[2023-09-02 16:45:16,776::train::INFO] [train] Iter 12087 | loss 1.3662 | loss(rot) 0.3720 | loss(pos) 0.3167 | loss(seq) 0.6775 | grad 3.9228 | lr 0.0010 | time_forward 2.9350 | time_backward 4.3410
[2023-09-02 16:45:19,462::train::INFO] [train] Iter 12088 | loss 1.2224 | loss(rot) 0.4621 | loss(pos) 0.2996 | loss(seq) 0.4608 | grad 4.3152 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4640
[2023-09-02 16:45:26,274::train::INFO] [train] Iter 12089 | loss 1.3951 | loss(rot) 1.2357 | loss(pos) 0.0899 | loss(seq) 0.0695 | grad 9.8672 | lr 0.0010 | time_forward 2.7390 | time_backward 4.0690
[2023-09-02 16:45:33,943::train::INFO] [train] Iter 12090 | loss 1.3209 | loss(rot) 0.6632 | loss(pos) 0.2340 | loss(seq) 0.4237 | grad 5.0333 | lr 0.0010 | time_forward 3.3010 | time_backward 4.3650
[2023-09-02 16:45:41,823::train::INFO] [train] Iter 12091 | loss 1.4804 | loss(rot) 1.3100 | loss(pos) 0.1703 | loss(seq) 0.0001 | grad 5.6606 | lr 0.0010 | time_forward 3.3760 | time_backward 4.5000
[2023-09-02 16:45:50,370::train::INFO] [train] Iter 12092 | loss 2.9675 | loss(rot) 2.3492 | loss(pos) 0.2530 | loss(seq) 0.3653 | grad 4.5778 | lr 0.0010 | time_forward 3.7030 | time_backward 4.8410
[2023-09-02 16:45:57,929::train::INFO] [train] Iter 12093 | loss 0.9028 | loss(rot) 0.1216 | loss(pos) 0.7704 | loss(seq) 0.0108 | grad 4.4037 | lr 0.0010 | time_forward 3.0280 | time_backward 4.5290
[2023-09-02 16:46:06,034::train::INFO] [train] Iter 12094 | loss 2.1307 | loss(rot) 1.6437 | loss(pos) 0.0719 | loss(seq) 0.4151 | grad 3.6695 | lr 0.0010 | time_forward 3.1410 | time_backward 4.9520
[2023-09-02 16:46:14,442::train::INFO] [train] Iter 12095 | loss 1.9871 | loss(rot) 0.0183 | loss(pos) 1.9675 | loss(seq) 0.0014 | grad 7.9499 | lr 0.0010 | time_forward 3.4810 | time_backward 4.9230
[2023-09-02 16:46:17,057::train::INFO] [train] Iter 12096 | loss 2.2348 | loss(rot) 1.9150 | loss(pos) 0.3198 | loss(seq) 0.0000 | grad 7.0424 | lr 0.0010 | time_forward 1.2200 | time_backward 1.3930
[2023-09-02 16:46:23,494::train::INFO] [train] Iter 12097 | loss 1.5199 | loss(rot) 0.9113 | loss(pos) 0.2314 | loss(seq) 0.3771 | grad 5.0852 | lr 0.0010 | time_forward 2.8190 | time_backward 3.6150
[2023-09-02 16:46:30,686::train::INFO] [train] Iter 12098 | loss 0.9239 | loss(rot) 0.2508 | loss(pos) 0.3261 | loss(seq) 0.3470 | grad 3.2673 | lr 0.0010 | time_forward 2.7790 | time_backward 4.4100
[2023-09-02 16:46:39,046::train::INFO] [train] Iter 12099 | loss 1.1565 | loss(rot) 0.5306 | loss(pos) 0.2794 | loss(seq) 0.3465 | grad 3.3081 | lr 0.0010 | time_forward 3.2570 | time_backward 5.1000
[2023-09-02 16:46:46,455::train::INFO] [train] Iter 12100 | loss 0.9042 | loss(rot) 0.3266 | loss(pos) 0.1917 | loss(seq) 0.3859 | grad 2.8994 | lr 0.0010 | time_forward 3.0830 | time_backward 4.3220
[2023-09-02 16:46:54,984::train::INFO] [train] Iter 12101 | loss 1.0707 | loss(rot) 0.0698 | loss(pos) 0.7728 | loss(seq) 0.2281 | grad 7.2423 | lr 0.0010 | time_forward 3.4900 | time_backward 5.0280
[2023-09-02 16:46:57,655::train::INFO] [train] Iter 12102 | loss 1.3108 | loss(rot) 0.5293 | loss(pos) 0.3854 | loss(seq) 0.3961 | grad 4.3557 | lr 0.0010 | time_forward 1.2260 | time_backward 1.4420
[2023-09-02 16:47:04,758::train::INFO] [train] Iter 12103 | loss 1.6541 | loss(rot) 1.3607 | loss(pos) 0.2883 | loss(seq) 0.0051 | grad 6.8943 | lr 0.0010 | time_forward 2.7540 | time_backward 4.3450
[2023-09-02 16:47:07,320::train::INFO] [train] Iter 12104 | loss 3.1374 | loss(rot) 2.5094 | loss(pos) 0.3934 | loss(seq) 0.2346 | grad 7.1453 | lr 0.0010 | time_forward 1.1920 | time_backward 1.3670
[2023-09-02 16:47:14,654::train::INFO] [train] Iter 12105 | loss 2.1257 | loss(rot) 1.9681 | loss(pos) 0.1573 | loss(seq) 0.0004 | grad 9.5370 | lr 0.0010 | time_forward 3.1390 | time_backward 4.1740
[2023-09-02 16:47:22,347::train::INFO] [train] Iter 12106 | loss 1.4863 | loss(rot) 1.0267 | loss(pos) 0.3955 | loss(seq) 0.0640 | grad 9.0104 | lr 0.0010 | time_forward 3.1720 | time_backward 4.5170
[2023-09-02 16:47:29,727::train::INFO] [train] Iter 12107 | loss 2.5790 | loss(rot) 1.9598 | loss(pos) 0.2556 | loss(seq) 0.3636 | grad 5.9371 | lr 0.0010 | time_forward 3.0620 | time_backward 4.3160
[2023-09-02 16:47:38,108::train::INFO] [train] Iter 12108 | loss 1.3041 | loss(rot) 0.4585 | loss(pos) 0.2455 | loss(seq) 0.6001 | grad 4.9378 | lr 0.0010 | time_forward 3.2310 | time_backward 5.1470
[2023-09-02 16:47:46,137::train::INFO] [train] Iter 12109 | loss 1.2641 | loss(rot) 0.5003 | loss(pos) 0.5275 | loss(seq) 0.2364 | grad 2.9823 | lr 0.0010 | time_forward 3.1300 | time_backward 4.8950
[2023-09-02 16:47:54,810::train::INFO] [train] Iter 12110 | loss 2.3165 | loss(rot) 1.3902 | loss(pos) 0.4102 | loss(seq) 0.5161 | grad 4.9943 | lr 0.0010 | time_forward 3.5010 | time_backward 5.1690
[2023-09-02 16:48:03,151::train::INFO] [train] Iter 12111 | loss 1.2079 | loss(rot) 0.0847 | loss(pos) 0.9742 | loss(seq) 0.1491 | grad 4.5898 | lr 0.0010 | time_forward 3.5740 | time_backward 4.7550
[2023-09-02 16:48:05,786::train::INFO] [train] Iter 12112 | loss 1.3406 | loss(rot) 0.7396 | loss(pos) 0.1667 | loss(seq) 0.4342 | grad 4.6105 | lr 0.0010 | time_forward 1.2490 | time_backward 1.3820
[2023-09-02 16:48:08,477::train::INFO] [train] Iter 12113 | loss 1.4149 | loss(rot) 0.9597 | loss(pos) 0.0594 | loss(seq) 0.3957 | grad 5.5342 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4240
[2023-09-02 16:48:17,013::train::INFO] [train] Iter 12114 | loss 1.7487 | loss(rot) 1.4914 | loss(pos) 0.1283 | loss(seq) 0.1290 | grad 5.3511 | lr 0.0010 | time_forward 3.3640 | time_backward 5.1690
[2023-09-02 16:48:25,696::train::INFO] [train] Iter 12115 | loss 1.6184 | loss(rot) 1.4731 | loss(pos) 0.1409 | loss(seq) 0.0044 | grad 8.0797 | lr 0.0010 | time_forward 3.3580 | time_backward 5.3210
[2023-09-02 16:48:33,728::train::INFO] [train] Iter 12116 | loss 1.7031 | loss(rot) 0.5164 | loss(pos) 0.7030 | loss(seq) 0.4838 | grad 5.9766 | lr 0.0010 | time_forward 3.1540 | time_backward 4.8740
[2023-09-02 16:48:42,277::train::INFO] [train] Iter 12117 | loss 1.2205 | loss(rot) 0.0613 | loss(pos) 1.1505 | loss(seq) 0.0087 | grad 4.4346 | lr 0.0010 | time_forward 3.2310 | time_backward 5.3140
[2023-09-02 16:48:50,795::train::INFO] [train] Iter 12118 | loss 1.8482 | loss(rot) 1.6331 | loss(pos) 0.2152 | loss(seq) 0.0000 | grad 6.6796 | lr 0.0010 | time_forward 3.2620 | time_backward 5.2540
[2023-09-02 16:48:59,347::train::INFO] [train] Iter 12119 | loss 1.6935 | loss(rot) 0.4150 | loss(pos) 1.1793 | loss(seq) 0.0992 | grad 8.7038 | lr 0.0010 | time_forward 3.3120 | time_backward 5.2360
[2023-09-02 16:49:01,526::train::INFO] [train] Iter 12120 | loss 1.3014 | loss(rot) 0.5959 | loss(pos) 0.1619 | loss(seq) 0.5436 | grad 4.6832 | lr 0.0010 | time_forward 1.0030 | time_backward 1.1730
[2023-09-02 16:49:09,826::train::INFO] [train] Iter 12121 | loss 2.6855 | loss(rot) 2.4142 | loss(pos) 0.2712 | loss(seq) 0.0000 | grad 5.8154 | lr 0.0010 | time_forward 3.2710 | time_backward 5.0260
[2023-09-02 16:49:11,953::train::INFO] [train] Iter 12122 | loss 1.5624 | loss(rot) 0.9499 | loss(pos) 0.1359 | loss(seq) 0.4766 | grad 6.2665 | lr 0.0010 | time_forward 0.9800 | time_backward 1.1440
[2023-09-02 16:49:20,669::train::INFO] [train] Iter 12123 | loss 1.4603 | loss(rot) 0.0386 | loss(pos) 1.4129 | loss(seq) 0.0087 | grad 3.7048 | lr 0.0010 | time_forward 3.6630 | time_backward 5.0500
[2023-09-02 16:49:27,841::train::INFO] [train] Iter 12124 | loss 2.2299 | loss(rot) 2.1322 | loss(pos) 0.0974 | loss(seq) 0.0003 | grad 9.9819 | lr 0.0010 | time_forward 2.8500 | time_backward 4.3190
[2023-09-02 16:49:35,856::train::INFO] [train] Iter 12125 | loss 0.7824 | loss(rot) 0.3069 | loss(pos) 0.4256 | loss(seq) 0.0499 | grad 3.7191 | lr 0.0010 | time_forward 3.2070 | time_backward 4.8050
[2023-09-02 16:49:44,250::train::INFO] [train] Iter 12126 | loss 2.9658 | loss(rot) 2.4415 | loss(pos) 0.2468 | loss(seq) 0.2776 | grad 5.1963 | lr 0.0010 | time_forward 3.3630 | time_backward 5.0270
[2023-09-02 16:49:50,893::train::INFO] [train] Iter 12127 | loss 2.2223 | loss(rot) 2.1215 | loss(pos) 0.0864 | loss(seq) 0.0143 | grad 4.1369 | lr 0.0010 | time_forward 2.8490 | time_backward 3.7910
[2023-09-02 16:49:59,559::train::INFO] [train] Iter 12128 | loss 1.6039 | loss(rot) 1.0325 | loss(pos) 0.1876 | loss(seq) 0.3838 | grad 5.0113 | lr 0.0010 | time_forward 3.4410 | time_backward 5.2220
[2023-09-02 16:50:07,966::train::INFO] [train] Iter 12129 | loss 1.1591 | loss(rot) 0.2684 | loss(pos) 0.5874 | loss(seq) 0.3033 | grad 3.9992 | lr 0.0010 | time_forward 3.7330 | time_backward 4.6700
[2023-09-02 16:50:14,396::train::INFO] [train] Iter 12130 | loss 1.7436 | loss(rot) 1.0740 | loss(pos) 0.1190 | loss(seq) 0.5506 | grad 4.5462 | lr 0.0010 | time_forward 2.6510 | time_backward 3.7750
[2023-09-02 16:50:22,800::train::INFO] [train] Iter 12131 | loss 1.8010 | loss(rot) 1.0739 | loss(pos) 0.2133 | loss(seq) 0.5137 | grad 4.5269 | lr 0.0010 | time_forward 3.4590 | time_backward 4.9410
[2023-09-02 16:50:30,622::train::INFO] [train] Iter 12132 | loss 1.5504 | loss(rot) 1.3019 | loss(pos) 0.1922 | loss(seq) 0.0563 | grad 6.8826 | lr 0.0010 | time_forward 3.3080 | time_backward 4.5100
[2023-09-02 16:50:38,878::train::INFO] [train] Iter 12133 | loss 1.9460 | loss(rot) 1.6630 | loss(pos) 0.1705 | loss(seq) 0.1126 | grad 5.3058 | lr 0.0010 | time_forward 3.4850 | time_backward 4.7680
[2023-09-02 16:50:47,781::train::INFO] [train] Iter 12134 | loss 2.3972 | loss(rot) 1.1863 | loss(pos) 0.8013 | loss(seq) 0.4095 | grad 4.9318 | lr 0.0010 | time_forward 3.7360 | time_backward 5.1640
[2023-09-02 16:50:56,146::train::INFO] [train] Iter 12135 | loss 2.1976 | loss(rot) 1.5957 | loss(pos) 0.2302 | loss(seq) 0.3717 | grad 5.6626 | lr 0.0010 | time_forward 3.2410 | time_backward 5.1200
[2023-09-02 16:51:04,457::train::INFO] [train] Iter 12136 | loss 1.0628 | loss(rot) 0.2712 | loss(pos) 0.4836 | loss(seq) 0.3080 | grad 3.6832 | lr 0.0010 | time_forward 3.1350 | time_backward 5.1720
[2023-09-02 16:51:12,733::train::INFO] [train] Iter 12137 | loss 1.8804 | loss(rot) 1.6295 | loss(pos) 0.0956 | loss(seq) 0.1554 | grad 4.7520 | lr 0.0010 | time_forward 3.3940 | time_backward 4.8790
[2023-09-02 16:51:19,858::train::INFO] [train] Iter 12138 | loss 2.2518 | loss(rot) 1.2751 | loss(pos) 0.4776 | loss(seq) 0.4991 | grad 5.2669 | lr 0.0010 | time_forward 3.0700 | time_backward 4.0510
[2023-09-02 16:51:27,450::train::INFO] [train] Iter 12139 | loss 1.7888 | loss(rot) 1.6981 | loss(pos) 0.0520 | loss(seq) 0.0387 | grad 8.3766 | lr 0.0010 | time_forward 3.2530 | time_backward 4.3360
[2023-09-02 16:51:34,847::train::INFO] [train] Iter 12140 | loss 1.1719 | loss(rot) 0.1446 | loss(pos) 0.7584 | loss(seq) 0.2689 | grad 3.9153 | lr 0.0010 | time_forward 3.1760 | time_backward 4.2170
[2023-09-02 16:51:41,812::train::INFO] [train] Iter 12141 | loss 1.4208 | loss(rot) 0.8596 | loss(pos) 0.1581 | loss(seq) 0.4031 | grad 4.3931 | lr 0.0010 | time_forward 2.7600 | time_backward 4.2030
[2023-09-02 16:51:48,469::train::INFO] [train] Iter 12142 | loss 2.6876 | loss(rot) 2.1224 | loss(pos) 0.1376 | loss(seq) 0.4276 | grad 5.5365 | lr 0.0010 | time_forward 2.8540 | time_backward 3.7990
[2023-09-02 16:51:51,072::train::INFO] [train] Iter 12143 | loss 1.2306 | loss(rot) 0.6697 | loss(pos) 0.1090 | loss(seq) 0.4520 | grad 5.6696 | lr 0.0010 | time_forward 1.2030 | time_backward 1.3970
[2023-09-02 16:51:53,626::train::INFO] [train] Iter 12144 | loss 0.7687 | loss(rot) 0.1148 | loss(pos) 0.3684 | loss(seq) 0.2855 | grad 3.2702 | lr 0.0010 | time_forward 1.1940 | time_backward 1.3550
[2023-09-02 16:52:00,667::train::INFO] [train] Iter 12145 | loss 2.6233 | loss(rot) 2.1262 | loss(pos) 0.1262 | loss(seq) 0.3709 | grad 5.5135 | lr 0.0010 | time_forward 2.8610 | time_backward 4.1770
[2023-09-02 16:52:08,401::train::INFO] [train] Iter 12146 | loss 2.2325 | loss(rot) 2.0852 | loss(pos) 0.1145 | loss(seq) 0.0328 | grad 6.4607 | lr 0.0010 | time_forward 3.1990 | time_backward 4.5320
[2023-09-02 16:52:11,506::train::INFO] [train] Iter 12147 | loss 1.4876 | loss(rot) 0.1967 | loss(pos) 1.2817 | loss(seq) 0.0092 | grad 3.8707 | lr 0.0010 | time_forward 1.3440 | time_backward 1.7570
[2023-09-02 16:52:19,545::train::INFO] [train] Iter 12148 | loss 2.1512 | loss(rot) 1.3555 | loss(pos) 0.1376 | loss(seq) 0.6581 | grad 4.3874 | lr 0.0010 | time_forward 3.2450 | time_backward 4.7830
[2023-09-02 16:52:27,693::train::INFO] [train] Iter 12149 | loss 0.7989 | loss(rot) 0.3302 | loss(pos) 0.2372 | loss(seq) 0.2315 | grad 4.0526 | lr 0.0010 | time_forward 3.2740 | time_backward 4.8650
[2023-09-02 16:52:35,426::train::INFO] [train] Iter 12150 | loss 1.4999 | loss(rot) 1.3329 | loss(pos) 0.1466 | loss(seq) 0.0204 | grad 6.1565 | lr 0.0010 | time_forward 3.0630 | time_backward 4.6670
[2023-09-02 16:52:40,812::train::INFO] [train] Iter 12151 | loss 1.2315 | loss(rot) 0.6030 | loss(pos) 0.2066 | loss(seq) 0.4219 | grad 3.4040 | lr 0.0010 | time_forward 2.2440 | time_backward 3.1390
[2023-09-02 16:52:49,043::train::INFO] [train] Iter 12152 | loss 1.8112 | loss(rot) 1.5868 | loss(pos) 0.2244 | loss(seq) 0.0000 | grad 11.3214 | lr 0.0010 | time_forward 3.4780 | time_backward 4.7500
[2023-09-02 16:52:57,537::train::INFO] [train] Iter 12153 | loss 1.2441 | loss(rot) 0.6303 | loss(pos) 0.1311 | loss(seq) 0.4826 | grad 3.9608 | lr 0.0010 | time_forward 3.4200 | time_backward 5.0700
[2023-09-02 16:53:04,473::train::INFO] [train] Iter 12154 | loss 0.8466 | loss(rot) 0.1529 | loss(pos) 0.4340 | loss(seq) 0.2598 | grad 3.9604 | lr 0.0010 | time_forward 2.9180 | time_backward 4.0150
[2023-09-02 16:53:12,084::train::INFO] [train] Iter 12155 | loss 2.5872 | loss(rot) 1.9409 | loss(pos) 0.1917 | loss(seq) 0.4547 | grad 12.5026 | lr 0.0010 | time_forward 3.2490 | time_backward 4.3600
[2023-09-02 16:53:15,110::train::INFO] [train] Iter 12156 | loss 1.6734 | loss(rot) 0.1591 | loss(pos) 1.5076 | loss(seq) 0.0067 | grad 4.1531 | lr 0.0010 | time_forward 1.2990 | time_backward 1.7230
[2023-09-02 16:53:23,511::train::INFO] [train] Iter 12157 | loss 1.6307 | loss(rot) 0.8645 | loss(pos) 0.4386 | loss(seq) 0.3276 | grad 4.7985 | lr 0.0010 | time_forward 3.5500 | time_backward 4.8470
[2023-09-02 16:53:30,784::train::INFO] [train] Iter 12158 | loss 1.3607 | loss(rot) 0.0961 | loss(pos) 1.2579 | loss(seq) 0.0067 | grad 8.6624 | lr 0.0010 | time_forward 2.9800 | time_backward 4.2910
[2023-09-02 16:53:34,114::train::INFO] [train] Iter 12159 | loss 2.1786 | loss(rot) 0.0431 | loss(pos) 2.1348 | loss(seq) 0.0007 | grad 7.2834 | lr 0.0010 | time_forward 1.4180 | time_backward 1.9090
[2023-09-02 16:53:36,682::train::INFO] [train] Iter 12160 | loss 1.2690 | loss(rot) 0.0443 | loss(pos) 1.2217 | loss(seq) 0.0029 | grad 7.6020 | lr 0.0010 | time_forward 1.1820 | time_backward 1.3820
[2023-09-02 16:53:42,476::train::INFO] [train] Iter 12161 | loss 1.0472 | loss(rot) 0.2386 | loss(pos) 0.2006 | loss(seq) 0.6080 | grad 3.4794 | lr 0.0010 | time_forward 2.3060 | time_backward 3.4860
[2023-09-02 16:53:49,118::train::INFO] [train] Iter 12162 | loss 2.2286 | loss(rot) 1.2479 | loss(pos) 0.4215 | loss(seq) 0.5592 | grad 8.6045 | lr 0.0010 | time_forward 2.9140 | time_backward 3.7240
[2023-09-02 16:53:58,753::train::INFO] [train] Iter 12163 | loss 1.3634 | loss(rot) 0.0879 | loss(pos) 0.9677 | loss(seq) 0.3078 | grad 9.7651 | lr 0.0010 | time_forward 3.0630 | time_backward 4.2190
[2023-09-02 16:54:01,346::train::INFO] [train] Iter 12164 | loss 1.9088 | loss(rot) 1.0145 | loss(pos) 0.3894 | loss(seq) 0.5049 | grad 7.0183 | lr 0.0010 | time_forward 1.1900 | time_backward 1.3990
[2023-09-02 16:54:04,599::train::INFO] [train] Iter 12165 | loss 2.5594 | loss(rot) 2.3011 | loss(pos) 0.2182 | loss(seq) 0.0400 | grad 5.1349 | lr 0.0010 | time_forward 1.4180 | time_backward 1.8320
[2023-09-02 16:54:12,740::train::INFO] [train] Iter 12166 | loss 2.5651 | loss(rot) 2.0776 | loss(pos) 0.2252 | loss(seq) 0.2623 | grad 6.2054 | lr 0.0010 | time_forward 3.4270 | time_backward 4.7110
[2023-09-02 16:54:19,292::train::INFO] [train] Iter 12167 | loss 1.5665 | loss(rot) 0.9473 | loss(pos) 0.2462 | loss(seq) 0.3730 | grad 7.6526 | lr 0.0010 | time_forward 2.8780 | time_backward 3.6710
[2023-09-02 16:54:27,195::train::INFO] [train] Iter 12168 | loss 1.6387 | loss(rot) 0.6196 | loss(pos) 0.4595 | loss(seq) 0.5597 | grad 6.6607 | lr 0.0010 | time_forward 3.1110 | time_backward 4.7870
[2023-09-02 16:54:29,809::train::INFO] [train] Iter 12169 | loss 0.8514 | loss(rot) 0.0500 | loss(pos) 0.7914 | loss(seq) 0.0100 | grad 6.6222 | lr 0.0010 | time_forward 1.1860 | time_backward 1.4240
[2023-09-02 16:54:37,222::train::INFO] [train] Iter 12170 | loss 0.7502 | loss(rot) 0.4315 | loss(pos) 0.3186 | loss(seq) 0.0001 | grad 4.8570 | lr 0.0010 | time_forward 3.0740 | time_backward 4.3360
[2023-09-02 16:54:45,625::train::INFO] [train] Iter 12171 | loss 1.0609 | loss(rot) 0.1932 | loss(pos) 0.8313 | loss(seq) 0.0365 | grad 7.0361 | lr 0.0010 | time_forward 3.2360 | time_backward 5.1630
[2023-09-02 16:54:47,571::train::INFO] [train] Iter 12172 | loss 2.5055 | loss(rot) 1.8427 | loss(pos) 0.4024 | loss(seq) 0.2604 | grad 4.3192 | lr 0.0010 | time_forward 0.8610 | time_backward 1.0820
[2023-09-02 16:54:57,081::train::INFO] [train] Iter 12173 | loss 3.5052 | loss(rot) 2.6840 | loss(pos) 0.5206 | loss(seq) 0.3006 | grad 4.6806 | lr 0.0010 | time_forward 3.8550 | time_backward 5.6520
[2023-09-02 16:55:04,202::train::INFO] [train] Iter 12174 | loss 2.5394 | loss(rot) 1.3502 | loss(pos) 0.6412 | loss(seq) 0.5479 | grad 7.1597 | lr 0.0010 | time_forward 3.0690 | time_backward 4.0490
[2023-09-02 16:55:06,476::train::INFO] [train] Iter 12175 | loss 2.0332 | loss(rot) 1.3433 | loss(pos) 0.2871 | loss(seq) 0.4029 | grad 5.2729 | lr 0.0010 | time_forward 1.0560 | time_backward 1.2140
[2023-09-02 16:55:13,691::train::INFO] [train] Iter 12176 | loss 2.2719 | loss(rot) 2.0841 | loss(pos) 0.1538 | loss(seq) 0.0340 | grad 6.3699 | lr 0.0010 | time_forward 3.0470 | time_backward 4.0180
[2023-09-02 16:55:17,086::train::INFO] [train] Iter 12177 | loss 1.3416 | loss(rot) 0.5126 | loss(pos) 0.5445 | loss(seq) 0.2844 | grad 2.8973 | lr 0.0010 | time_forward 1.4860 | time_backward 1.9050
[2023-09-02 16:55:25,481::train::INFO] [train] Iter 12178 | loss 2.0339 | loss(rot) 1.6943 | loss(pos) 0.2686 | loss(seq) 0.0709 | grad 4.7303 | lr 0.0010 | time_forward 3.5870 | time_backward 4.8060
[2023-09-02 16:55:32,040::train::INFO] [train] Iter 12179 | loss 1.9446 | loss(rot) 1.1747 | loss(pos) 0.3299 | loss(seq) 0.4400 | grad 5.2909 | lr 0.0010 | time_forward 2.8190 | time_backward 3.7360
[2023-09-02 16:55:36,284::train::INFO] [train] Iter 12180 | loss 2.1944 | loss(rot) 1.2421 | loss(pos) 0.4436 | loss(seq) 0.5086 | grad 5.8014 | lr 0.0010 | time_forward 1.9110 | time_backward 2.3290
[2023-09-02 16:55:43,849::train::INFO] [train] Iter 12181 | loss 1.6294 | loss(rot) 0.3926 | loss(pos) 1.0452 | loss(seq) 0.1916 | grad 5.1122 | lr 0.0010 | time_forward 3.1600 | time_backward 4.3650
[2023-09-02 16:55:51,960::train::INFO] [train] Iter 12182 | loss 2.2168 | loss(rot) 0.9550 | loss(pos) 0.7575 | loss(seq) 0.5043 | grad 6.7696 | lr 0.0010 | time_forward 3.3570 | time_backward 4.7510