text
stringlengths 56
1.16k
|
---|
[2023-09-02 16:33:53,453::train::INFO] [train] Iter 11984 | loss 1.5946 | loss(rot) 1.4032 | loss(pos) 0.1914 | loss(seq) 0.0000 | grad 3.7698 | lr 0.0010 | time_forward 3.6320 | time_backward 5.1770 |
[2023-09-02 16:34:00,501::train::INFO] [train] Iter 11985 | loss 1.4655 | loss(rot) 0.7352 | loss(pos) 0.2792 | loss(seq) 0.4511 | grad 3.6419 | lr 0.0010 | time_forward 2.9910 | time_backward 4.0440 |
[2023-09-02 16:34:03,270::train::INFO] [train] Iter 11986 | loss 1.7502 | loss(rot) 1.5286 | loss(pos) 0.0770 | loss(seq) 0.1446 | grad 8.7598 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4920 |
[2023-09-02 16:34:12,053::train::INFO] [train] Iter 11987 | loss 1.1879 | loss(rot) 0.5371 | loss(pos) 0.4615 | loss(seq) 0.1894 | grad 8.1930 | lr 0.0010 | time_forward 3.9030 | time_backward 4.8760 |
[2023-09-02 16:34:20,298::train::INFO] [train] Iter 11988 | loss 1.7443 | loss(rot) 1.5813 | loss(pos) 0.1627 | loss(seq) 0.0003 | grad 4.9151 | lr 0.0010 | time_forward 3.4330 | time_backward 4.8070 |
[2023-09-02 16:34:23,112::train::INFO] [train] Iter 11989 | loss 1.9437 | loss(rot) 1.7935 | loss(pos) 0.1491 | loss(seq) 0.0011 | grad 5.1490 | lr 0.0010 | time_forward 1.2880 | time_backward 1.5220 |
[2023-09-02 16:34:31,867::train::INFO] [train] Iter 11990 | loss 2.0451 | loss(rot) 1.3735 | loss(pos) 0.1984 | loss(seq) 0.4732 | grad 4.2122 | lr 0.0010 | time_forward 3.6710 | time_backward 5.0800 |
[2023-09-02 16:34:34,326::train::INFO] [train] Iter 11991 | loss 0.7580 | loss(rot) 0.0896 | loss(pos) 0.6472 | loss(seq) 0.0212 | grad 4.5715 | lr 0.0010 | time_forward 1.1500 | time_backward 1.3060 |
[2023-09-02 16:34:42,866::train::INFO] [train] Iter 11992 | loss 1.4363 | loss(rot) 0.8013 | loss(pos) 0.1887 | loss(seq) 0.4463 | grad 4.5984 | lr 0.0010 | time_forward 3.3020 | time_backward 5.2210 |
[2023-09-02 16:34:45,095::train::INFO] [train] Iter 11993 | loss 1.4328 | loss(rot) 0.6479 | loss(pos) 0.2816 | loss(seq) 0.5034 | grad 4.1892 | lr 0.0010 | time_forward 1.0270 | time_backward 1.1990 |
[2023-09-02 16:34:54,463::train::INFO] [train] Iter 11994 | loss 1.4879 | loss(rot) 0.6563 | loss(pos) 0.5361 | loss(seq) 0.2954 | grad 3.3930 | lr 0.0010 | time_forward 3.6270 | time_backward 5.7380 |
[2023-09-02 16:35:03,331::train::INFO] [train] Iter 11995 | loss 0.8414 | loss(rot) 0.2091 | loss(pos) 0.5849 | loss(seq) 0.0474 | grad 3.3639 | lr 0.0010 | time_forward 3.6090 | time_backward 5.2550 |
[2023-09-02 16:35:05,915::train::INFO] [train] Iter 11996 | loss 1.3017 | loss(rot) 0.7780 | loss(pos) 0.1219 | loss(seq) 0.4018 | grad 5.2781 | lr 0.0010 | time_forward 1.2040 | time_backward 1.3760 |
[2023-09-02 16:35:12,358::train::INFO] [train] Iter 11997 | loss 1.7423 | loss(rot) 0.1694 | loss(pos) 1.5645 | loss(seq) 0.0084 | grad 9.1272 | lr 0.0010 | time_forward 2.8640 | time_backward 3.5760 |
[2023-09-02 16:35:20,497::train::INFO] [train] Iter 11998 | loss 2.1875 | loss(rot) 2.0217 | loss(pos) 0.1637 | loss(seq) 0.0021 | grad 3.8809 | lr 0.0010 | time_forward 3.4750 | time_backward 4.6600 |
[2023-09-02 16:35:22,751::train::INFO] [train] Iter 11999 | loss 1.9193 | loss(rot) 1.6457 | loss(pos) 0.1214 | loss(seq) 0.1523 | grad 4.9763 | lr 0.0010 | time_forward 1.0560 | time_backward 1.1940 |
[2023-09-02 16:35:31,164::train::INFO] [train] Iter 12000 | loss 0.7180 | loss(rot) 0.1441 | loss(pos) 0.5323 | loss(seq) 0.0415 | grad 5.1533 | lr 0.0010 | time_forward 3.5160 | time_backward 4.8930 |
[2023-09-02 16:36:04,383::train::INFO] [val] Iter 12000 | loss 1.8819 | loss(rot) 1.2650 | loss(pos) 0.3746 | loss(seq) 0.2423 |
[2023-09-02 16:36:06,857::train::INFO] [train] Iter 12001 | loss 1.8175 | loss(rot) 1.7225 | loss(pos) 0.0854 | loss(seq) 0.0096 | grad 6.1525 | lr 0.0010 | time_forward 1.0130 | time_backward 1.1760 |
[2023-09-02 16:36:14,769::train::INFO] [train] Iter 12002 | loss 1.6601 | loss(rot) 1.4007 | loss(pos) 0.2174 | loss(seq) 0.0419 | grad 5.6503 | lr 0.0010 | time_forward 3.2160 | time_backward 4.6810 |
[2023-09-02 16:36:23,584::train::INFO] [train] Iter 12003 | loss 3.4484 | loss(rot) 0.0157 | loss(pos) 3.4326 | loss(seq) 0.0000 | grad 11.2599 | lr 0.0010 | time_forward 3.5030 | time_backward 5.3090 |
[2023-09-02 16:36:31,138::train::INFO] [train] Iter 12004 | loss 0.7567 | loss(rot) 0.1993 | loss(pos) 0.5183 | loss(seq) 0.0390 | grad 3.5325 | lr 0.0010 | time_forward 3.1660 | time_backward 4.3850 |
[2023-09-02 16:36:33,860::train::INFO] [train] Iter 12005 | loss 2.3592 | loss(rot) 1.4512 | loss(pos) 0.4813 | loss(seq) 0.4267 | grad 5.2469 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4610 |
[2023-09-02 16:36:38,289::train::INFO] [train] Iter 12006 | loss 1.3511 | loss(rot) 1.1963 | loss(pos) 0.1545 | loss(seq) 0.0003 | grad 6.3354 | lr 0.0010 | time_forward 2.0350 | time_backward 2.3900 |
[2023-09-02 16:36:45,321::train::INFO] [train] Iter 12007 | loss 1.8325 | loss(rot) 0.8389 | loss(pos) 0.5553 | loss(seq) 0.4383 | grad 5.2324 | lr 0.0010 | time_forward 3.0250 | time_backward 4.0030 |
[2023-09-02 16:36:47,974::train::INFO] [train] Iter 12008 | loss 3.1003 | loss(rot) 2.5355 | loss(pos) 0.1512 | loss(seq) 0.4136 | grad 8.4833 | lr 0.0010 | time_forward 1.1820 | time_backward 1.4220 |
[2023-09-02 16:36:55,217::train::INFO] [train] Iter 12009 | loss 1.6071 | loss(rot) 0.7819 | loss(pos) 0.2934 | loss(seq) 0.5318 | grad 6.3516 | lr 0.0010 | time_forward 3.2030 | time_backward 4.0260 |
[2023-09-02 16:37:01,225::train::INFO] [train] Iter 12010 | loss 1.2767 | loss(rot) 1.1963 | loss(pos) 0.0589 | loss(seq) 0.0214 | grad 4.5659 | lr 0.0010 | time_forward 2.4200 | time_backward 3.5840 |
[2023-09-02 16:37:09,601::train::INFO] [train] Iter 12011 | loss 1.9815 | loss(rot) 1.2197 | loss(pos) 0.3029 | loss(seq) 0.4588 | grad 4.5082 | lr 0.0010 | time_forward 3.4760 | time_backward 4.8960 |
[2023-09-02 16:37:17,284::train::INFO] [train] Iter 12012 | loss 1.5564 | loss(rot) 0.6061 | loss(pos) 0.2798 | loss(seq) 0.6706 | grad 5.1270 | lr 0.0010 | time_forward 3.0650 | time_backward 4.6130 |
[2023-09-02 16:37:25,046::train::INFO] [train] Iter 12013 | loss 1.4689 | loss(rot) 0.1122 | loss(pos) 1.1770 | loss(seq) 0.1797 | grad 8.0017 | lr 0.0010 | time_forward 3.2890 | time_backward 4.4700 |
[2023-09-02 16:37:33,370::train::INFO] [train] Iter 12014 | loss 1.3485 | loss(rot) 1.1831 | loss(pos) 0.1651 | loss(seq) 0.0003 | grad 4.0354 | lr 0.0010 | time_forward 3.2950 | time_backward 5.0260 |
[2023-09-02 16:37:41,303::train::INFO] [train] Iter 12015 | loss 0.7690 | loss(rot) 0.0772 | loss(pos) 0.6783 | loss(seq) 0.0136 | grad 4.7685 | lr 0.0010 | time_forward 3.3850 | time_backward 4.5450 |
[2023-09-02 16:37:50,851::train::INFO] [train] Iter 12016 | loss 1.5051 | loss(rot) 1.3882 | loss(pos) 0.0921 | loss(seq) 0.0248 | grad 6.3258 | lr 0.0010 | time_forward 3.8410 | time_backward 5.7030 |
[2023-09-02 16:37:58,940::train::INFO] [train] Iter 12017 | loss 2.0042 | loss(rot) 1.5047 | loss(pos) 0.1310 | loss(seq) 0.3684 | grad 6.4727 | lr 0.0010 | time_forward 3.4780 | time_backward 4.6060 |
[2023-09-02 16:38:07,263::train::INFO] [train] Iter 12018 | loss 1.2645 | loss(rot) 0.9045 | loss(pos) 0.1417 | loss(seq) 0.2183 | grad 4.6857 | lr 0.0010 | time_forward 3.5190 | time_backward 4.8000 |
[2023-09-02 16:38:16,436::train::INFO] [train] Iter 12019 | loss 1.6604 | loss(rot) 0.8017 | loss(pos) 0.2941 | loss(seq) 0.5645 | grad 4.1990 | lr 0.0010 | time_forward 3.8780 | time_backward 5.2920 |
[2023-09-02 16:38:25,786::train::INFO] [train] Iter 12020 | loss 1.2431 | loss(rot) 0.8830 | loss(pos) 0.0841 | loss(seq) 0.2760 | grad 3.2998 | lr 0.0010 | time_forward 3.4350 | time_backward 5.9020 |
[2023-09-02 16:38:31,716::train::INFO] [train] Iter 12021 | loss 1.5038 | loss(rot) 0.8360 | loss(pos) 0.4235 | loss(seq) 0.2443 | grad 4.5420 | lr 0.0010 | time_forward 2.5190 | time_backward 3.4070 |
[2023-09-02 16:38:39,288::train::INFO] [train] Iter 12022 | loss 1.6481 | loss(rot) 1.0242 | loss(pos) 0.1773 | loss(seq) 0.4466 | grad 7.3766 | lr 0.0010 | time_forward 2.9960 | time_backward 4.5730 |
[2023-09-02 16:38:41,916::train::INFO] [train] Iter 12023 | loss 2.1392 | loss(rot) 1.6628 | loss(pos) 0.1331 | loss(seq) 0.3432 | grad 3.9642 | lr 0.0010 | time_forward 1.2100 | time_backward 1.4150 |
[2023-09-02 16:38:50,729::train::INFO] [train] Iter 12024 | loss 2.3831 | loss(rot) 0.0743 | loss(pos) 2.3058 | loss(seq) 0.0030 | grad 4.1515 | lr 0.0010 | time_forward 3.3310 | time_backward 5.4770 |
[2023-09-02 16:38:59,281::train::INFO] [train] Iter 12025 | loss 1.6214 | loss(rot) 1.4628 | loss(pos) 0.1490 | loss(seq) 0.0096 | grad 7.0340 | lr 0.0010 | time_forward 3.3320 | time_backward 5.2170 |
[2023-09-02 16:39:05,065::train::INFO] [train] Iter 12026 | loss 1.3218 | loss(rot) 1.0444 | loss(pos) 0.1472 | loss(seq) 0.1303 | grad 7.5348 | lr 0.0010 | time_forward 2.3800 | time_backward 3.3950 |
[2023-09-02 16:39:13,726::train::INFO] [train] Iter 12027 | loss 1.9377 | loss(rot) 1.0748 | loss(pos) 0.2949 | loss(seq) 0.5680 | grad 3.4699 | lr 0.0010 | time_forward 3.4730 | time_backward 5.1840 |
[2023-09-02 16:39:22,526::train::INFO] [train] Iter 12028 | loss 2.0683 | loss(rot) 1.7272 | loss(pos) 0.2241 | loss(seq) 0.1170 | grad 6.3534 | lr 0.0010 | time_forward 3.3620 | time_backward 5.4350 |
[2023-09-02 16:39:31,191::train::INFO] [train] Iter 12029 | loss 2.1001 | loss(rot) 1.9637 | loss(pos) 0.1118 | loss(seq) 0.0246 | grad 5.9414 | lr 0.0010 | time_forward 3.4330 | time_backward 5.2290 |
[2023-09-02 16:39:33,401::train::INFO] [train] Iter 12030 | loss 1.2163 | loss(rot) 0.4879 | loss(pos) 0.1823 | loss(seq) 0.5460 | grad 3.6358 | lr 0.0010 | time_forward 1.0330 | time_backward 1.1730 |
[2023-09-02 16:39:36,019::train::INFO] [train] Iter 12031 | loss 1.0495 | loss(rot) 0.8243 | loss(pos) 0.0535 | loss(seq) 0.1717 | grad 8.3179 | lr 0.0010 | time_forward 1.2130 | time_backward 1.4030 |
[2023-09-02 16:39:43,461::train::INFO] [train] Iter 12032 | loss 1.3576 | loss(rot) 0.8565 | loss(pos) 0.0682 | loss(seq) 0.4329 | grad 5.1749 | lr 0.0010 | time_forward 3.2030 | time_backward 4.2350 |
[2023-09-02 16:39:50,663::train::INFO] [train] Iter 12033 | loss 1.2274 | loss(rot) 0.9128 | loss(pos) 0.1047 | loss(seq) 0.2099 | grad 6.7895 | lr 0.0010 | time_forward 3.1400 | time_backward 4.0580 |
[2023-09-02 16:39:58,945::train::INFO] [train] Iter 12034 | loss 1.7553 | loss(rot) 1.4496 | loss(pos) 0.1029 | loss(seq) 0.2028 | grad 4.9593 | lr 0.0010 | time_forward 3.5470 | time_backward 4.7310 |
[2023-09-02 16:40:07,675::train::INFO] [train] Iter 12035 | loss 1.4404 | loss(rot) 0.7776 | loss(pos) 0.3464 | loss(seq) 0.3165 | grad 3.7639 | lr 0.0010 | time_forward 3.6330 | time_backward 5.0930 |
[2023-09-02 16:40:10,355::train::INFO] [train] Iter 12036 | loss 2.1664 | loss(rot) 1.6846 | loss(pos) 0.1094 | loss(seq) 0.3724 | grad 4.8954 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4380 |
[2023-09-02 16:40:13,026::train::INFO] [train] Iter 12037 | loss 1.5681 | loss(rot) 0.1572 | loss(pos) 1.3954 | loss(seq) 0.0156 | grad 6.9756 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4090 |
[2023-09-02 16:40:20,677::train::INFO] [train] Iter 12038 | loss 1.8344 | loss(rot) 1.3391 | loss(pos) 0.1301 | loss(seq) 0.3652 | grad 3.4844 | lr 0.0010 | time_forward 3.3530 | time_backward 4.2940 |
[2023-09-02 16:40:29,195::train::INFO] [train] Iter 12039 | loss 1.5874 | loss(rot) 0.7400 | loss(pos) 0.4109 | loss(seq) 0.4364 | grad 3.1293 | lr 0.0010 | time_forward 3.6600 | time_backward 4.8540 |
[2023-09-02 16:40:38,074::train::INFO] [train] Iter 12040 | loss 0.6314 | loss(rot) 0.1020 | loss(pos) 0.4560 | loss(seq) 0.0735 | grad 3.2298 | lr 0.0010 | time_forward 3.6110 | time_backward 5.2640 |
[2023-09-02 16:40:45,766::train::INFO] [train] Iter 12041 | loss 0.9186 | loss(rot) 0.0575 | loss(pos) 0.6460 | loss(seq) 0.2151 | grad 3.4849 | lr 0.0010 | time_forward 3.2740 | time_backward 4.4140 |
[2023-09-02 16:40:48,439::train::INFO] [train] Iter 12042 | loss 1.5362 | loss(rot) 1.4421 | loss(pos) 0.0887 | loss(seq) 0.0054 | grad 4.5667 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4110 |
[2023-09-02 16:40:57,267::train::INFO] [train] Iter 12043 | loss 1.1122 | loss(rot) 0.3755 | loss(pos) 0.2638 | loss(seq) 0.4729 | grad 3.1931 | lr 0.0010 | time_forward 3.4460 | time_backward 5.3780 |
[2023-09-02 16:40:59,867::train::INFO] [train] Iter 12044 | loss 2.5662 | loss(rot) 2.3271 | loss(pos) 0.1923 | loss(seq) 0.0468 | grad 4.6343 | lr 0.0010 | time_forward 1.1980 | time_backward 1.3980 |
[2023-09-02 16:41:07,820::train::INFO] [train] Iter 12045 | loss 1.4914 | loss(rot) 0.9652 | loss(pos) 0.1444 | loss(seq) 0.3818 | grad 4.9409 | lr 0.0010 | time_forward 3.1200 | time_backward 4.8290 |
[2023-09-02 16:41:15,294::train::INFO] [train] Iter 12046 | loss 2.0669 | loss(rot) 1.8064 | loss(pos) 0.1136 | loss(seq) 0.1469 | grad 6.0300 | lr 0.0010 | time_forward 2.9760 | time_backward 4.4940 |
[2023-09-02 16:41:17,904::train::INFO] [train] Iter 12047 | loss 2.0856 | loss(rot) 1.1793 | loss(pos) 0.2714 | loss(seq) 0.6349 | grad 5.5564 | lr 0.0010 | time_forward 1.1710 | time_backward 1.4350 |
[2023-09-02 16:41:24,922::train::INFO] [train] Iter 12048 | loss 2.5831 | loss(rot) 2.3965 | loss(pos) 0.1799 | loss(seq) 0.0067 | grad 9.1327 | lr 0.0010 | time_forward 2.9150 | time_backward 4.0880 |
[2023-09-02 16:41:27,606::train::INFO] [train] Iter 12049 | loss 1.2382 | loss(rot) 1.1235 | loss(pos) 0.1127 | loss(seq) 0.0020 | grad 8.5416 | lr 0.0010 | time_forward 1.2090 | time_backward 1.4710 |
[2023-09-02 16:41:33,445::train::INFO] [train] Iter 12050 | loss 1.7374 | loss(rot) 1.0194 | loss(pos) 0.2294 | loss(seq) 0.4885 | grad 4.1930 | lr 0.0010 | time_forward 2.5380 | time_backward 3.2980 |
[2023-09-02 16:41:36,059::train::INFO] [train] Iter 12051 | loss 1.8320 | loss(rot) 0.9188 | loss(pos) 0.2612 | loss(seq) 0.6520 | grad 4.4890 | lr 0.0010 | time_forward 1.1760 | time_backward 1.4340 |
[2023-09-02 16:41:43,519::train::INFO] [train] Iter 12052 | loss 1.7753 | loss(rot) 1.3256 | loss(pos) 0.1186 | loss(seq) 0.3311 | grad 4.1688 | lr 0.0010 | time_forward 3.2990 | time_backward 4.1570 |
[2023-09-02 16:41:51,715::train::INFO] [train] Iter 12053 | loss 1.7661 | loss(rot) 0.6733 | loss(pos) 0.5050 | loss(seq) 0.5877 | grad 3.0900 | lr 0.0010 | time_forward 3.4070 | time_backward 4.7860 |
[2023-09-02 16:41:57,694::train::INFO] [train] Iter 12054 | loss 2.2116 | loss(rot) 2.0613 | loss(pos) 0.1280 | loss(seq) 0.0223 | grad 11.9858 | lr 0.0010 | time_forward 2.4820 | time_backward 3.4940 |
[2023-09-02 16:42:03,052::train::INFO] [train] Iter 12055 | loss 1.7533 | loss(rot) 1.0833 | loss(pos) 0.1665 | loss(seq) 0.5034 | grad 4.9278 | lr 0.0010 | time_forward 2.1250 | time_backward 3.2300 |
[2023-09-02 16:42:11,549::train::INFO] [train] Iter 12056 | loss 1.5909 | loss(rot) 1.2337 | loss(pos) 0.1183 | loss(seq) 0.2389 | grad 5.4392 | lr 0.0010 | time_forward 3.4720 | time_backward 5.0060 |
[2023-09-02 16:42:14,254::train::INFO] [train] Iter 12057 | loss 1.2154 | loss(rot) 0.3553 | loss(pos) 0.8501 | loss(seq) 0.0101 | grad 4.8492 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4490 |
[2023-09-02 16:42:16,837::train::INFO] [train] Iter 12058 | loss 1.1011 | loss(rot) 0.6211 | loss(pos) 0.2939 | loss(seq) 0.1860 | grad 3.7823 | lr 0.0010 | time_forward 1.1880 | time_backward 1.3910 |
[2023-09-02 16:42:24,131::train::INFO] [train] Iter 12059 | loss 1.4419 | loss(rot) 0.7019 | loss(pos) 0.2644 | loss(seq) 0.4756 | grad 3.9747 | lr 0.0010 | time_forward 3.1900 | time_backward 4.1010 |
[2023-09-02 16:42:31,606::train::INFO] [train] Iter 12060 | loss 1.7227 | loss(rot) 0.9644 | loss(pos) 0.2005 | loss(seq) 0.5577 | grad 4.3596 | lr 0.0010 | time_forward 3.0790 | time_backward 4.3920 |
[2023-09-02 16:42:38,611::train::INFO] [train] Iter 12061 | loss 2.8908 | loss(rot) 2.6644 | loss(pos) 0.2264 | loss(seq) 0.0000 | grad 4.8012 | lr 0.0010 | time_forward 2.7810 | time_backward 4.2200 |
[2023-09-02 16:42:46,570::train::INFO] [train] Iter 12062 | loss 1.2996 | loss(rot) 0.1917 | loss(pos) 1.0035 | loss(seq) 0.1044 | grad 7.7656 | lr 0.0010 | time_forward 3.3290 | time_backward 4.6270 |
[2023-09-02 16:42:53,024::train::INFO] [train] Iter 12063 | loss 1.9287 | loss(rot) 1.0782 | loss(pos) 0.2708 | loss(seq) 0.5797 | grad 5.9416 | lr 0.0010 | time_forward 2.7100 | time_backward 3.7400 |
[2023-09-02 16:43:01,471::train::INFO] [train] Iter 12064 | loss 1.5113 | loss(rot) 1.3513 | loss(pos) 0.1424 | loss(seq) 0.0176 | grad 5.6076 | lr 0.0010 | time_forward 3.3620 | time_backward 5.0810 |
[2023-09-02 16:43:09,984::train::INFO] [train] Iter 12065 | loss 2.0456 | loss(rot) 1.8492 | loss(pos) 0.1943 | loss(seq) 0.0021 | grad 6.6563 | lr 0.0010 | time_forward 3.3080 | time_backward 5.1960 |
[2023-09-02 16:43:18,484::train::INFO] [train] Iter 12066 | loss 1.5889 | loss(rot) 1.4312 | loss(pos) 0.1577 | loss(seq) 0.0000 | grad 15.0234 | lr 0.0010 | time_forward 3.3450 | time_backward 5.1510 |
[2023-09-02 16:43:20,732::train::INFO] [train] Iter 12067 | loss 1.3868 | loss(rot) 1.0917 | loss(pos) 0.1396 | loss(seq) 0.1555 | grad 5.6551 | lr 0.0010 | time_forward 1.0790 | time_backward 1.1660 |
[2023-09-02 16:43:28,044::train::INFO] [train] Iter 12068 | loss 0.5530 | loss(rot) 0.2598 | loss(pos) 0.2532 | loss(seq) 0.0401 | grad 3.3913 | lr 0.0010 | time_forward 2.9400 | time_backward 4.3700 |
[2023-09-02 16:43:36,293::train::INFO] [train] Iter 12069 | loss 1.3041 | loss(rot) 0.3906 | loss(pos) 0.6990 | loss(seq) 0.2146 | grad 3.3734 | lr 0.0010 | time_forward 3.4330 | time_backward 4.8130 |
[2023-09-02 16:43:38,851::train::INFO] [train] Iter 12070 | loss 1.1832 | loss(rot) 0.6828 | loss(pos) 0.2608 | loss(seq) 0.2396 | grad 3.3492 | lr 0.0010 | time_forward 1.1990 | time_backward 1.3550 |
[2023-09-02 16:43:41,424::train::INFO] [train] Iter 12071 | loss 0.8879 | loss(rot) 0.3452 | loss(pos) 0.2712 | loss(seq) 0.2714 | grad 2.8081 | lr 0.0010 | time_forward 1.1820 | time_backward 1.3890 |
[2023-09-02 16:43:43,998::train::INFO] [train] Iter 12072 | loss 1.7815 | loss(rot) 1.0388 | loss(pos) 0.4898 | loss(seq) 0.2530 | grad 3.7311 | lr 0.0010 | time_forward 1.2000 | time_backward 1.3700 |
[2023-09-02 16:43:46,233::train::INFO] [train] Iter 12073 | loss 1.6108 | loss(rot) 0.1877 | loss(pos) 1.4071 | loss(seq) 0.0160 | grad 3.6249 | lr 0.0010 | time_forward 1.0590 | time_backward 1.1740 |
[2023-09-02 16:43:53,136::train::INFO] [train] Iter 12074 | loss 1.9458 | loss(rot) 1.8010 | loss(pos) 0.1396 | loss(seq) 0.0052 | grad 6.0846 | lr 0.0010 | time_forward 2.8730 | time_backward 4.0260 |
[2023-09-02 16:44:00,058::train::INFO] [train] Iter 12075 | loss 1.1341 | loss(rot) 0.8789 | loss(pos) 0.2195 | loss(seq) 0.0357 | grad 5.8379 | lr 0.0010 | time_forward 2.8780 | time_backward 4.0410 |
[2023-09-02 16:44:08,931::train::INFO] [train] Iter 12076 | loss 0.7387 | loss(rot) 0.5500 | loss(pos) 0.1875 | loss(seq) 0.0011 | grad 4.9692 | lr 0.0010 | time_forward 3.6140 | time_backward 5.2560 |
[2023-09-02 16:44:17,464::train::INFO] [train] Iter 12077 | loss 0.8822 | loss(rot) 0.2726 | loss(pos) 0.3302 | loss(seq) 0.2794 | grad 3.5694 | lr 0.0010 | time_forward 3.6860 | time_backward 4.8440 |
[2023-09-02 16:44:19,857::train::INFO] [train] Iter 12078 | loss 1.3153 | loss(rot) 0.5898 | loss(pos) 0.2877 | loss(seq) 0.4378 | grad 3.8413 | lr 0.0010 | time_forward 1.1210 | time_backward 1.2690 |
[2023-09-02 16:44:25,749::train::INFO] [train] Iter 12079 | loss 2.1727 | loss(rot) 2.0111 | loss(pos) 0.1582 | loss(seq) 0.0033 | grad 7.1221 | lr 0.0010 | time_forward 2.3680 | time_backward 3.5100 |
[2023-09-02 16:44:28,392::train::INFO] [train] Iter 12080 | loss 1.9582 | loss(rot) 1.4574 | loss(pos) 0.1932 | loss(seq) 0.3076 | grad 4.8997 | lr 0.0010 | time_forward 1.2170 | time_backward 1.4220 |
[2023-09-02 16:44:37,504::train::INFO] [train] Iter 12081 | loss 1.5602 | loss(rot) 1.2847 | loss(pos) 0.2754 | loss(seq) 0.0000 | grad 6.3132 | lr 0.0010 | time_forward 4.1590 | time_backward 4.9500 |
[2023-09-02 16:44:44,957::train::INFO] [train] Iter 12082 | loss 1.1346 | loss(rot) 0.5643 | loss(pos) 0.1039 | loss(seq) 0.4664 | grad 4.7451 | lr 0.0010 | time_forward 3.1850 | time_backward 4.2650 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.