text
stringlengths 56
1.16k
|
---|
[2023-09-02 16:23:00,493::train::INFO] [train] Iter 11884 | loss 0.5724 | loss(rot) 0.0954 | loss(pos) 0.2732 | loss(seq) 0.2037 | grad 2.5618 | lr 0.0010 | time_forward 3.3110 | time_backward 4.5770 |
[2023-09-02 16:23:02,659::train::INFO] [train] Iter 11885 | loss 1.1449 | loss(rot) 0.9991 | loss(pos) 0.1181 | loss(seq) 0.0276 | grad 3.9358 | lr 0.0010 | time_forward 1.0040 | time_backward 1.1510 |
[2023-09-02 16:23:05,231::train::INFO] [train] Iter 11886 | loss 0.8624 | loss(rot) 0.2804 | loss(pos) 0.3449 | loss(seq) 0.2371 | grad 2.3685 | lr 0.0010 | time_forward 1.2000 | time_backward 1.3680 |
[2023-09-02 16:23:11,400::train::INFO] [train] Iter 11887 | loss 1.2469 | loss(rot) 0.5413 | loss(pos) 0.3003 | loss(seq) 0.4053 | grad 4.2654 | lr 0.0010 | time_forward 2.6000 | time_backward 3.5650 |
[2023-09-02 16:23:18,182::train::INFO] [train] Iter 11888 | loss 2.0379 | loss(rot) 1.9124 | loss(pos) 0.1190 | loss(seq) 0.0065 | grad 7.5189 | lr 0.0010 | time_forward 2.8280 | time_backward 3.9520 |
[2023-09-02 16:23:25,011::train::INFO] [train] Iter 11889 | loss 1.0565 | loss(rot) 0.2861 | loss(pos) 0.1797 | loss(seq) 0.5906 | grad 3.6789 | lr 0.0010 | time_forward 2.9930 | time_backward 3.8320 |
[2023-09-02 16:23:27,551::train::INFO] [train] Iter 11890 | loss 1.9662 | loss(rot) 1.5250 | loss(pos) 0.1081 | loss(seq) 0.3331 | grad 7.5481 | lr 0.0010 | time_forward 1.1750 | time_backward 1.3610 |
[2023-09-02 16:23:34,782::train::INFO] [train] Iter 11891 | loss 1.2652 | loss(rot) 0.5074 | loss(pos) 0.1914 | loss(seq) 0.5664 | grad 2.7670 | lr 0.0010 | time_forward 3.0960 | time_backward 4.1320 |
[2023-09-02 16:23:36,988::train::INFO] [train] Iter 11892 | loss 1.4050 | loss(rot) 1.2474 | loss(pos) 0.1576 | loss(seq) 0.0000 | grad 3.9947 | lr 0.0010 | time_forward 1.0130 | time_backward 1.1900 |
[2023-09-02 16:23:44,015::train::INFO] [train] Iter 11893 | loss 1.2191 | loss(rot) 1.0880 | loss(pos) 0.1061 | loss(seq) 0.0249 | grad 4.3447 | lr 0.0010 | time_forward 3.0570 | time_backward 3.9660 |
[2023-09-02 16:23:51,026::train::INFO] [train] Iter 11894 | loss 1.9113 | loss(rot) 1.2519 | loss(pos) 0.1726 | loss(seq) 0.4867 | grad 5.5824 | lr 0.0010 | time_forward 2.8340 | time_backward 4.1730 |
[2023-09-02 16:23:58,094::train::INFO] [train] Iter 11895 | loss 1.0462 | loss(rot) 0.2693 | loss(pos) 0.6822 | loss(seq) 0.0947 | grad 5.7102 | lr 0.0010 | time_forward 2.9060 | time_backward 4.1580 |
[2023-09-02 16:24:00,818::train::INFO] [train] Iter 11896 | loss 0.7236 | loss(rot) 0.4284 | loss(pos) 0.1660 | loss(seq) 0.1293 | grad 3.6044 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4580 |
[2023-09-02 16:24:03,588::train::INFO] [train] Iter 11897 | loss 2.2406 | loss(rot) 2.0701 | loss(pos) 0.1084 | loss(seq) 0.0621 | grad 6.2003 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4940 |
[2023-09-02 16:24:07,869::train::INFO] [train] Iter 11898 | loss 1.3911 | loss(rot) 0.2457 | loss(pos) 0.5832 | loss(seq) 0.5623 | grad 4.5289 | lr 0.0010 | time_forward 2.7970 | time_backward 1.4800 |
[2023-09-02 16:24:10,269::train::INFO] [train] Iter 11899 | loss 1.8207 | loss(rot) 0.9297 | loss(pos) 0.2951 | loss(seq) 0.5959 | grad 4.9339 | lr 0.0010 | time_forward 1.1200 | time_backward 1.2540 |
[2023-09-02 16:24:18,065::train::INFO] [train] Iter 11900 | loss 2.0480 | loss(rot) 0.3660 | loss(pos) 1.6728 | loss(seq) 0.0091 | grad 5.3830 | lr 0.0010 | time_forward 3.3390 | time_backward 4.4520 |
[2023-09-02 16:24:25,373::train::INFO] [train] Iter 11901 | loss 1.6337 | loss(rot) 1.0889 | loss(pos) 0.1778 | loss(seq) 0.3670 | grad 5.4930 | lr 0.0010 | time_forward 3.0500 | time_backward 4.2550 |
[2023-09-02 16:24:33,792::train::INFO] [train] Iter 11902 | loss 0.5474 | loss(rot) 0.2829 | loss(pos) 0.1754 | loss(seq) 0.0892 | grad 3.5209 | lr 0.0010 | time_forward 3.4690 | time_backward 4.9460 |
[2023-09-02 16:24:41,733::train::INFO] [train] Iter 11903 | loss 2.0195 | loss(rot) 1.3301 | loss(pos) 0.2511 | loss(seq) 0.4382 | grad 5.4120 | lr 0.0010 | time_forward 3.4130 | time_backward 4.5250 |
[2023-09-02 16:24:44,669::train::INFO] [train] Iter 11904 | loss 1.8095 | loss(rot) 1.0364 | loss(pos) 0.4963 | loss(seq) 0.2768 | grad 7.2119 | lr 0.0010 | time_forward 1.4750 | time_backward 1.4560 |
[2023-09-02 16:24:53,378::train::INFO] [train] Iter 11905 | loss 1.0823 | loss(rot) 0.3410 | loss(pos) 0.6361 | loss(seq) 0.1052 | grad 5.8598 | lr 0.0010 | time_forward 4.0150 | time_backward 4.6900 |
[2023-09-02 16:25:01,248::train::INFO] [train] Iter 11906 | loss 0.5518 | loss(rot) 0.2843 | loss(pos) 0.2446 | loss(seq) 0.0228 | grad 5.3764 | lr 0.0010 | time_forward 3.3790 | time_backward 4.4870 |
[2023-09-02 16:25:08,726::train::INFO] [train] Iter 11907 | loss 0.9359 | loss(rot) 0.0709 | loss(pos) 0.8544 | loss(seq) 0.0106 | grad 4.6476 | lr 0.0010 | time_forward 3.3400 | time_backward 4.1350 |
[2023-09-02 16:25:11,321::train::INFO] [train] Iter 11908 | loss 1.5850 | loss(rot) 1.1223 | loss(pos) 0.1914 | loss(seq) 0.2713 | grad 6.8803 | lr 0.0010 | time_forward 1.2000 | time_backward 1.3910 |
[2023-09-02 16:25:20,013::train::INFO] [train] Iter 11909 | loss 0.8698 | loss(rot) 0.3551 | loss(pos) 0.4497 | loss(seq) 0.0650 | grad 4.6956 | lr 0.0010 | time_forward 3.8040 | time_backward 4.8740 |
[2023-09-02 16:25:25,478::train::INFO] [train] Iter 11910 | loss 1.4692 | loss(rot) 1.2630 | loss(pos) 0.2062 | loss(seq) 0.0000 | grad 5.4951 | lr 0.0010 | time_forward 2.3840 | time_backward 3.0790 |
[2023-09-02 16:25:34,187::train::INFO] [train] Iter 11911 | loss 1.1716 | loss(rot) 0.0270 | loss(pos) 1.1420 | loss(seq) 0.0026 | grad 5.3441 | lr 0.0010 | time_forward 3.8670 | time_backward 4.8380 |
[2023-09-02 16:25:36,653::train::INFO] [train] Iter 11912 | loss 2.1631 | loss(rot) 2.0343 | loss(pos) 0.1285 | loss(seq) 0.0003 | grad 4.2507 | lr 0.0010 | time_forward 1.1960 | time_backward 1.2670 |
[2023-09-02 16:25:43,696::train::INFO] [train] Iter 11913 | loss 1.0851 | loss(rot) 0.8742 | loss(pos) 0.1912 | loss(seq) 0.0197 | grad 5.8497 | lr 0.0010 | time_forward 2.9610 | time_backward 4.0780 |
[2023-09-02 16:25:49,454::train::INFO] [train] Iter 11914 | loss 1.1440 | loss(rot) 0.3418 | loss(pos) 0.3068 | loss(seq) 0.4954 | grad 4.1667 | lr 0.0010 | time_forward 2.3020 | time_backward 3.4540 |
[2023-09-02 16:25:51,660::train::INFO] [train] Iter 11915 | loss 1.0900 | loss(rot) 0.7976 | loss(pos) 0.2420 | loss(seq) 0.0504 | grad 5.7252 | lr 0.0010 | time_forward 1.0220 | time_backward 1.1800 |
[2023-09-02 16:26:00,155::train::INFO] [train] Iter 11916 | loss 1.2684 | loss(rot) 0.7077 | loss(pos) 0.3058 | loss(seq) 0.2549 | grad 5.0668 | lr 0.0010 | time_forward 3.3320 | time_backward 5.1590 |
[2023-09-02 16:26:11,049::train::INFO] [train] Iter 11917 | loss 1.3151 | loss(rot) 0.6362 | loss(pos) 0.2605 | loss(seq) 0.4183 | grad 4.2698 | lr 0.0010 | time_forward 6.1180 | time_backward 4.7650 |
[2023-09-02 16:26:19,754::train::INFO] [train] Iter 11918 | loss 1.8306 | loss(rot) 1.3793 | loss(pos) 0.1510 | loss(seq) 0.3003 | grad 4.7189 | lr 0.0010 | time_forward 3.6090 | time_backward 5.0920 |
[2023-09-02 16:26:28,059::train::INFO] [train] Iter 11919 | loss 2.9973 | loss(rot) 0.0092 | loss(pos) 2.9881 | loss(seq) 0.0000 | grad 10.1177 | lr 0.0010 | time_forward 3.9520 | time_backward 4.3490 |
[2023-09-02 16:26:35,379::train::INFO] [train] Iter 11920 | loss 1.1748 | loss(rot) 0.5023 | loss(pos) 0.1336 | loss(seq) 0.5390 | grad 4.8236 | lr 0.0010 | time_forward 3.1860 | time_backward 4.1300 |
[2023-09-02 16:26:43,994::train::INFO] [train] Iter 11921 | loss 2.0302 | loss(rot) 1.3934 | loss(pos) 0.1488 | loss(seq) 0.4879 | grad 4.9181 | lr 0.0010 | time_forward 3.5520 | time_backward 5.0600 |
[2023-09-02 16:26:51,633::train::INFO] [train] Iter 11922 | loss 0.9688 | loss(rot) 0.1594 | loss(pos) 0.7669 | loss(seq) 0.0425 | grad 5.7769 | lr 0.0010 | time_forward 3.1200 | time_backward 4.5150 |
[2023-09-02 16:26:59,146::train::INFO] [train] Iter 11923 | loss 0.9616 | loss(rot) 0.5560 | loss(pos) 0.0677 | loss(seq) 0.3378 | grad 5.0864 | lr 0.0010 | time_forward 3.1420 | time_backward 4.3670 |
[2023-09-02 16:27:07,220::train::INFO] [train] Iter 11924 | loss 1.3683 | loss(rot) 0.6559 | loss(pos) 0.5418 | loss(seq) 0.1706 | grad 4.5752 | lr 0.0010 | time_forward 3.9700 | time_backward 4.1000 |
[2023-09-02 16:27:10,828::train::INFO] [train] Iter 11925 | loss 1.2721 | loss(rot) 0.5493 | loss(pos) 0.2241 | loss(seq) 0.4988 | grad 3.6783 | lr 0.0010 | time_forward 1.6390 | time_backward 1.9650 |
[2023-09-02 16:27:13,610::train::INFO] [train] Iter 11926 | loss 1.4626 | loss(rot) 0.7014 | loss(pos) 0.3239 | loss(seq) 0.4373 | grad 5.1238 | lr 0.0010 | time_forward 1.2160 | time_backward 1.5630 |
[2023-09-02 16:27:16,490::train::INFO] [train] Iter 11927 | loss 1.9419 | loss(rot) 0.0992 | loss(pos) 1.5663 | loss(seq) 0.2763 | grad 5.1186 | lr 0.0010 | time_forward 1.3450 | time_backward 1.5310 |
[2023-09-02 16:27:19,279::train::INFO] [train] Iter 11928 | loss 1.1233 | loss(rot) 0.6366 | loss(pos) 0.1094 | loss(seq) 0.3774 | grad 3.8234 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4930 |
[2023-09-02 16:27:28,071::train::INFO] [train] Iter 11929 | loss 2.7312 | loss(rot) 2.1061 | loss(pos) 0.2014 | loss(seq) 0.4237 | grad 3.6882 | lr 0.0010 | time_forward 3.7400 | time_backward 5.0480 |
[2023-09-02 16:27:30,655::train::INFO] [train] Iter 11930 | loss 2.1229 | loss(rot) 1.3621 | loss(pos) 0.1925 | loss(seq) 0.5683 | grad 3.1613 | lr 0.0010 | time_forward 1.2190 | time_backward 1.3510 |
[2023-09-02 16:27:38,698::train::INFO] [train] Iter 11931 | loss 2.2861 | loss(rot) 1.5193 | loss(pos) 0.2390 | loss(seq) 0.5278 | grad 7.6319 | lr 0.0010 | time_forward 3.3650 | time_backward 4.6580 |
[2023-09-02 16:27:47,121::train::INFO] [train] Iter 11932 | loss 2.2242 | loss(rot) 1.6014 | loss(pos) 0.2926 | loss(seq) 0.3302 | grad 5.7360 | lr 0.0010 | time_forward 3.4410 | time_backward 4.9780 |
[2023-09-02 16:27:49,899::train::INFO] [train] Iter 11933 | loss 1.8632 | loss(rot) 1.6374 | loss(pos) 0.1368 | loss(seq) 0.0889 | grad 3.9601 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4550 |
[2023-09-02 16:27:58,953::train::INFO] [train] Iter 11934 | loss 2.0329 | loss(rot) 1.1088 | loss(pos) 0.4064 | loss(seq) 0.5177 | grad 7.0714 | lr 0.0010 | time_forward 3.5080 | time_backward 5.5420 |
[2023-09-02 16:28:07,710::train::INFO] [train] Iter 11935 | loss 1.6250 | loss(rot) 1.1773 | loss(pos) 0.0846 | loss(seq) 0.3631 | grad 3.4147 | lr 0.0010 | time_forward 3.5660 | time_backward 5.1870 |
[2023-09-02 16:28:16,210::train::INFO] [train] Iter 11936 | loss 2.5805 | loss(rot) 1.5466 | loss(pos) 0.4379 | loss(seq) 0.5959 | grad 3.4658 | lr 0.0010 | time_forward 3.4400 | time_backward 5.0540 |
[2023-09-02 16:28:18,849::train::INFO] [train] Iter 11937 | loss 1.1552 | loss(rot) 0.9561 | loss(pos) 0.1990 | loss(seq) 0.0001 | grad 4.1098 | lr 0.0010 | time_forward 1.2400 | time_backward 1.3970 |
[2023-09-02 16:28:26,025::train::INFO] [train] Iter 11938 | loss 1.4567 | loss(rot) 0.8489 | loss(pos) 0.1159 | loss(seq) 0.4919 | grad 3.7786 | lr 0.0010 | time_forward 2.7650 | time_backward 4.4070 |
[2023-09-02 16:28:29,197::train::INFO] [train] Iter 11939 | loss 0.6405 | loss(rot) 0.1175 | loss(pos) 0.4950 | loss(seq) 0.0280 | grad 3.0128 | lr 0.0010 | time_forward 1.4740 | time_backward 1.6960 |
[2023-09-02 16:28:45,252::train::INFO] [train] Iter 11940 | loss 0.5167 | loss(rot) 0.2598 | loss(pos) 0.1883 | loss(seq) 0.0686 | grad 3.4628 | lr 0.0010 | time_forward 11.7490 | time_backward 4.3020 |
[2023-09-02 16:28:53,957::train::INFO] [train] Iter 11941 | loss 1.8320 | loss(rot) 0.6928 | loss(pos) 0.6106 | loss(seq) 0.5286 | grad 7.3495 | lr 0.0010 | time_forward 4.7990 | time_backward 3.9020 |
[2023-09-02 16:29:01,190::train::INFO] [train] Iter 11942 | loss 1.7555 | loss(rot) 1.6540 | loss(pos) 0.1008 | loss(seq) 0.0007 | grad 6.8405 | lr 0.0010 | time_forward 2.8520 | time_backward 4.3770 |
[2023-09-02 16:29:03,936::train::INFO] [train] Iter 11943 | loss 1.3856 | loss(rot) 0.2675 | loss(pos) 0.6132 | loss(seq) 0.5049 | grad 4.2280 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4430 |
[2023-09-02 16:29:06,746::train::INFO] [train] Iter 11944 | loss 1.6661 | loss(rot) 0.1476 | loss(pos) 1.5098 | loss(seq) 0.0087 | grad 6.8108 | lr 0.0010 | time_forward 1.2530 | time_backward 1.5500 |
[2023-09-02 16:29:14,400::train::INFO] [train] Iter 11945 | loss 0.9526 | loss(rot) 0.2202 | loss(pos) 0.2602 | loss(seq) 0.4722 | grad 3.9528 | lr 0.0010 | time_forward 3.1050 | time_backward 4.5460 |
[2023-09-02 16:29:22,294::train::INFO] [train] Iter 11946 | loss 2.3156 | loss(rot) 1.8546 | loss(pos) 0.3411 | loss(seq) 0.1199 | grad 6.1373 | lr 0.0010 | time_forward 3.3640 | time_backward 4.5250 |
[2023-09-02 16:29:31,138::train::INFO] [train] Iter 11947 | loss 2.4191 | loss(rot) 2.2810 | loss(pos) 0.1378 | loss(seq) 0.0003 | grad 5.1625 | lr 0.0010 | time_forward 3.5760 | time_backward 5.2650 |
[2023-09-02 16:29:38,969::train::INFO] [train] Iter 11948 | loss 0.9674 | loss(rot) 0.0950 | loss(pos) 0.8616 | loss(seq) 0.0108 | grad 5.4906 | lr 0.0010 | time_forward 3.2730 | time_backward 4.5500 |
[2023-09-02 16:29:48,215::train::INFO] [train] Iter 11949 | loss 1.5912 | loss(rot) 1.0945 | loss(pos) 0.1418 | loss(seq) 0.3549 | grad 3.7515 | lr 0.0010 | time_forward 4.0660 | time_backward 5.1760 |
[2023-09-02 16:29:55,721::train::INFO] [train] Iter 11950 | loss 3.0893 | loss(rot) 2.7294 | loss(pos) 0.2765 | loss(seq) 0.0834 | grad 3.8772 | lr 0.0010 | time_forward 3.2970 | time_backward 4.2050 |
[2023-09-02 16:30:05,209::train::INFO] [train] Iter 11951 | loss 1.6090 | loss(rot) 1.3213 | loss(pos) 0.1072 | loss(seq) 0.1805 | grad 3.8574 | lr 0.0010 | time_forward 3.9640 | time_backward 5.5200 |
[2023-09-02 16:30:12,404::train::INFO] [train] Iter 11952 | loss 1.0337 | loss(rot) 0.2391 | loss(pos) 0.5678 | loss(seq) 0.2268 | grad 4.5732 | lr 0.0010 | time_forward 3.0490 | time_backward 4.1420 |
[2023-09-02 16:30:21,822::train::INFO] [train] Iter 11953 | loss 1.7760 | loss(rot) 1.1855 | loss(pos) 0.1736 | loss(seq) 0.4169 | grad 4.8672 | lr 0.0010 | time_forward 3.7710 | time_backward 5.6440 |
[2023-09-02 16:30:30,792::train::INFO] [train] Iter 11954 | loss 2.7425 | loss(rot) 2.4751 | loss(pos) 0.2372 | loss(seq) 0.0302 | grad 5.7024 | lr 0.0010 | time_forward 3.8050 | time_backward 5.1600 |
[2023-09-02 16:30:33,667::train::INFO] [train] Iter 11955 | loss 0.9606 | loss(rot) 0.2219 | loss(pos) 0.3504 | loss(seq) 0.3883 | grad 5.5422 | lr 0.0010 | time_forward 1.3880 | time_backward 1.4840 |
[2023-09-02 16:30:36,369::train::INFO] [train] Iter 11956 | loss 0.7716 | loss(rot) 0.5293 | loss(pos) 0.2423 | loss(seq) 0.0000 | grad 5.9602 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4150 |
[2023-09-02 16:30:39,107::train::INFO] [train] Iter 11957 | loss 0.9447 | loss(rot) 0.6362 | loss(pos) 0.1003 | loss(seq) 0.2082 | grad 3.6484 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4770 |
[2023-09-02 16:30:49,511::train::INFO] [train] Iter 11958 | loss 1.4515 | loss(rot) 1.2098 | loss(pos) 0.2039 | loss(seq) 0.0378 | grad 6.0628 | lr 0.0010 | time_forward 4.9560 | time_backward 5.4440 |
[2023-09-02 16:30:58,944::train::INFO] [train] Iter 11959 | loss 1.6770 | loss(rot) 0.8292 | loss(pos) 0.6199 | loss(seq) 0.2279 | grad 4.6926 | lr 0.0010 | time_forward 3.9920 | time_backward 5.4370 |
[2023-09-02 16:31:07,643::train::INFO] [train] Iter 11960 | loss 1.3346 | loss(rot) 1.1478 | loss(pos) 0.1763 | loss(seq) 0.0105 | grad 4.4207 | lr 0.0010 | time_forward 3.3430 | time_backward 5.3520 |
[2023-09-02 16:31:15,320::train::INFO] [train] Iter 11961 | loss 1.3745 | loss(rot) 0.8949 | loss(pos) 0.0857 | loss(seq) 0.3938 | grad 4.0269 | lr 0.0010 | time_forward 3.0890 | time_backward 4.5840 |
[2023-09-02 16:31:22,381::train::INFO] [train] Iter 11962 | loss 0.5089 | loss(rot) 0.0967 | loss(pos) 0.3833 | loss(seq) 0.0290 | grad 3.4257 | lr 0.0010 | time_forward 3.0530 | time_backward 4.0060 |
[2023-09-02 16:31:27,932::train::INFO] [train] Iter 11963 | loss 2.6157 | loss(rot) 2.4779 | loss(pos) 0.0968 | loss(seq) 0.0410 | grad 7.5836 | lr 0.0010 | time_forward 2.3640 | time_backward 3.1840 |
[2023-09-02 16:31:30,551::train::INFO] [train] Iter 11964 | loss 1.2823 | loss(rot) 0.9091 | loss(pos) 0.0686 | loss(seq) 0.3046 | grad 4.1297 | lr 0.0010 | time_forward 1.1950 | time_backward 1.4210 |
[2023-09-02 16:31:36,433::train::INFO] [train] Iter 11965 | loss 1.5580 | loss(rot) 0.7765 | loss(pos) 0.2915 | loss(seq) 0.4900 | grad 4.3332 | lr 0.0010 | time_forward 2.6080 | time_backward 3.2710 |
[2023-09-02 16:31:44,520::train::INFO] [train] Iter 11966 | loss 1.1051 | loss(rot) 0.1430 | loss(pos) 0.6936 | loss(seq) 0.2685 | grad 3.2447 | lr 0.0010 | time_forward 3.2350 | time_backward 4.8470 |
[2023-09-02 16:31:50,192::train::INFO] [train] Iter 11967 | loss 1.4251 | loss(rot) 0.9306 | loss(pos) 0.2464 | loss(seq) 0.2481 | grad 8.1969 | lr 0.0010 | time_forward 2.4410 | time_backward 3.2290 |
[2023-09-02 16:31:57,276::train::INFO] [train] Iter 11968 | loss 1.3068 | loss(rot) 1.1222 | loss(pos) 0.1579 | loss(seq) 0.0267 | grad 4.0796 | lr 0.0010 | time_forward 2.8760 | time_backward 4.2040 |
[2023-09-02 16:32:04,025::train::INFO] [train] Iter 11969 | loss 1.8470 | loss(rot) 1.6197 | loss(pos) 0.2261 | loss(seq) 0.0012 | grad 5.3297 | lr 0.0010 | time_forward 2.7460 | time_backward 4.0000 |
[2023-09-02 16:32:11,754::train::INFO] [train] Iter 11970 | loss 1.0855 | loss(rot) 0.3331 | loss(pos) 0.3400 | loss(seq) 0.4124 | grad 5.3370 | lr 0.0010 | time_forward 3.3100 | time_backward 4.4160 |
[2023-09-02 16:32:14,057::train::INFO] [train] Iter 11971 | loss 1.9345 | loss(rot) 1.7312 | loss(pos) 0.1871 | loss(seq) 0.0162 | grad 5.7245 | lr 0.0010 | time_forward 1.0710 | time_backward 1.2280 |
[2023-09-02 16:32:23,753::train::INFO] [train] Iter 11972 | loss 0.6591 | loss(rot) 0.2056 | loss(pos) 0.3706 | loss(seq) 0.0828 | grad 2.2138 | lr 0.0010 | time_forward 3.5710 | time_backward 6.1210 |
[2023-09-02 16:32:25,992::train::INFO] [train] Iter 11973 | loss 1.9690 | loss(rot) 1.8238 | loss(pos) 0.1448 | loss(seq) 0.0003 | grad 10.3837 | lr 0.0010 | time_forward 1.0670 | time_backward 1.1690 |
[2023-09-02 16:32:33,221::train::INFO] [train] Iter 11974 | loss 2.8387 | loss(rot) 1.7751 | loss(pos) 0.4054 | loss(seq) 0.6583 | grad 3.3970 | lr 0.0010 | time_forward 2.7770 | time_backward 4.4320 |
[2023-09-02 16:32:42,258::train::INFO] [train] Iter 11975 | loss 1.4249 | loss(rot) 0.6986 | loss(pos) 0.4562 | loss(seq) 0.2702 | grad 2.9134 | lr 0.0010 | time_forward 3.7140 | time_backward 5.3200 |
[2023-09-02 16:32:51,916::train::INFO] [train] Iter 11976 | loss 2.1130 | loss(rot) 1.8975 | loss(pos) 0.1857 | loss(seq) 0.0298 | grad 4.8172 | lr 0.0010 | time_forward 3.8720 | time_backward 5.7840 |
[2023-09-02 16:33:00,341::train::INFO] [train] Iter 11977 | loss 0.7277 | loss(rot) 0.5444 | loss(pos) 0.1325 | loss(seq) 0.0508 | grad 3.8849 | lr 0.0010 | time_forward 3.6260 | time_backward 4.7960 |
[2023-09-02 16:33:08,735::train::INFO] [train] Iter 11978 | loss 2.0974 | loss(rot) 1.9176 | loss(pos) 0.1546 | loss(seq) 0.0252 | grad 4.8851 | lr 0.0010 | time_forward 3.6550 | time_backward 4.7350 |
[2023-09-02 16:33:17,656::train::INFO] [train] Iter 11979 | loss 2.1298 | loss(rot) 2.0045 | loss(pos) 0.1232 | loss(seq) 0.0021 | grad 4.5299 | lr 0.0010 | time_forward 3.3230 | time_backward 5.5950 |
[2023-09-02 16:33:25,188::train::INFO] [train] Iter 11980 | loss 1.6398 | loss(rot) 0.9367 | loss(pos) 0.3928 | loss(seq) 0.3103 | grad 4.7672 | lr 0.0010 | time_forward 3.0850 | time_backward 4.4430 |
[2023-09-02 16:33:27,538::train::INFO] [train] Iter 11981 | loss 0.7931 | loss(rot) 0.7193 | loss(pos) 0.0642 | loss(seq) 0.0096 | grad 3.4104 | lr 0.0010 | time_forward 1.1550 | time_backward 1.1910 |
[2023-09-02 16:33:36,394::train::INFO] [train] Iter 11982 | loss 1.5048 | loss(rot) 0.6069 | loss(pos) 0.3399 | loss(seq) 0.5580 | grad 3.8914 | lr 0.0010 | time_forward 3.4240 | time_backward 5.4290 |
[2023-09-02 16:33:44,640::train::INFO] [train] Iter 11983 | loss 2.4186 | loss(rot) 2.0282 | loss(pos) 0.1638 | loss(seq) 0.2266 | grad 4.0123 | lr 0.0010 | time_forward 3.2740 | time_backward 4.9680 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.