text
stringlengths 56
1.16k
|
---|
[2023-09-02 16:02:58,352::train::INFO] [train] Iter 11684 | loss 1.4974 | loss(rot) 1.2817 | loss(pos) 0.1592 | loss(seq) 0.0565 | grad 5.2797 | lr 0.0010 | time_forward 1.1810 | time_backward 1.4010 |
[2023-09-02 16:03:03,641::train::INFO] [train] Iter 11685 | loss 1.9064 | loss(rot) 0.8232 | loss(pos) 0.7406 | loss(seq) 0.3426 | grad 8.6850 | lr 0.0010 | time_forward 2.2560 | time_backward 3.0310 |
[2023-09-02 16:03:11,540::train::INFO] [train] Iter 11686 | loss 1.3217 | loss(rot) 0.6440 | loss(pos) 0.2448 | loss(seq) 0.4328 | grad 4.7385 | lr 0.0010 | time_forward 3.2920 | time_backward 4.5920 |
[2023-09-02 16:03:19,266::train::INFO] [train] Iter 11687 | loss 1.3444 | loss(rot) 0.2236 | loss(pos) 0.2993 | loss(seq) 0.8215 | grad 3.9884 | lr 0.0010 | time_forward 3.3550 | time_backward 4.3680 |
[2023-09-02 16:03:27,562::train::INFO] [train] Iter 11688 | loss 1.9017 | loss(rot) 1.4098 | loss(pos) 0.4853 | loss(seq) 0.0067 | grad 6.1055 | lr 0.0010 | time_forward 3.4390 | time_backward 4.8540 |
[2023-09-02 16:03:35,092::train::INFO] [train] Iter 11689 | loss 1.5540 | loss(rot) 1.4286 | loss(pos) 0.1221 | loss(seq) 0.0033 | grad 4.6700 | lr 0.0010 | time_forward 3.0640 | time_backward 4.4630 |
[2023-09-02 16:03:43,608::train::INFO] [train] Iter 11690 | loss 2.3648 | loss(rot) 1.9859 | loss(pos) 0.1484 | loss(seq) 0.2305 | grad 4.0771 | lr 0.0010 | time_forward 3.3400 | time_backward 5.1710 |
[2023-09-02 16:03:52,836::train::INFO] [train] Iter 11691 | loss 1.1938 | loss(rot) 0.7619 | loss(pos) 0.0942 | loss(seq) 0.3377 | grad 4.4264 | lr 0.0010 | time_forward 5.1340 | time_backward 4.0910 |
[2023-09-02 16:04:00,240::train::INFO] [train] Iter 11692 | loss 3.2808 | loss(rot) 2.2453 | loss(pos) 0.7739 | loss(seq) 0.2616 | grad 5.9065 | lr 0.0010 | time_forward 3.2000 | time_backward 4.1990 |
[2023-09-02 16:04:08,744::train::INFO] [train] Iter 11693 | loss 2.6465 | loss(rot) 2.5677 | loss(pos) 0.0755 | loss(seq) 0.0033 | grad 6.5853 | lr 0.0010 | time_forward 3.4290 | time_backward 5.0710 |
[2023-09-02 16:04:11,960::train::INFO] [train] Iter 11694 | loss 2.3247 | loss(rot) 1.7490 | loss(pos) 0.2793 | loss(seq) 0.2964 | grad 4.0197 | lr 0.0010 | time_forward 1.3870 | time_backward 1.8270 |
[2023-09-02 16:04:14,382::train::INFO] [train] Iter 11695 | loss 3.2040 | loss(rot) 2.5422 | loss(pos) 0.6606 | loss(seq) 0.0012 | grad 5.2076 | lr 0.0010 | time_forward 1.1470 | time_backward 1.2720 |
[2023-09-02 16:04:23,062::train::INFO] [train] Iter 11696 | loss 0.9971 | loss(rot) 0.2300 | loss(pos) 0.3175 | loss(seq) 0.4497 | grad 2.9243 | lr 0.0010 | time_forward 3.1880 | time_backward 5.4720 |
[2023-09-02 16:04:26,062::train::INFO] [train] Iter 11697 | loss 1.4115 | loss(rot) 1.2731 | loss(pos) 0.0855 | loss(seq) 0.0529 | grad 5.7190 | lr 0.0010 | time_forward 1.3050 | time_backward 1.6910 |
[2023-09-02 16:04:32,791::train::INFO] [train] Iter 11698 | loss 1.0891 | loss(rot) 0.4349 | loss(pos) 0.3938 | loss(seq) 0.2605 | grad 4.7331 | lr 0.0010 | time_forward 2.7700 | time_backward 3.9480 |
[2023-09-02 16:04:41,192::train::INFO] [train] Iter 11699 | loss 2.4878 | loss(rot) 1.6470 | loss(pos) 0.3472 | loss(seq) 0.4936 | grad 3.5510 | lr 0.0010 | time_forward 3.3690 | time_backward 5.0290 |
[2023-09-02 16:04:48,540::train::INFO] [train] Iter 11700 | loss 1.9265 | loss(rot) 1.1906 | loss(pos) 0.2971 | loss(seq) 0.4388 | grad 5.5439 | lr 0.0010 | time_forward 2.9640 | time_backward 4.3820 |
[2023-09-02 16:04:51,560::train::INFO] [train] Iter 11701 | loss 1.7254 | loss(rot) 0.9489 | loss(pos) 0.2798 | loss(seq) 0.4967 | grad 3.4852 | lr 0.0010 | time_forward 1.2990 | time_backward 1.7170 |
[2023-09-02 16:04:58,216::train::INFO] [train] Iter 11702 | loss 2.1053 | loss(rot) 1.8997 | loss(pos) 0.2055 | loss(seq) 0.0001 | grad 7.4895 | lr 0.0010 | time_forward 2.7130 | time_backward 3.9400 |
[2023-09-02 16:05:06,806::train::INFO] [train] Iter 11703 | loss 1.6332 | loss(rot) 1.1760 | loss(pos) 0.1702 | loss(seq) 0.2870 | grad 4.9368 | lr 0.0010 | time_forward 3.4050 | time_backward 5.1810 |
[2023-09-02 16:05:15,567::train::INFO] [train] Iter 11704 | loss 1.1955 | loss(rot) 0.4157 | loss(pos) 0.3325 | loss(seq) 0.4474 | grad 3.4961 | lr 0.0010 | time_forward 3.3290 | time_backward 5.4300 |
[2023-09-02 16:05:24,241::train::INFO] [train] Iter 11705 | loss 0.5774 | loss(rot) 0.0298 | loss(pos) 0.5402 | loss(seq) 0.0074 | grad 5.1900 | lr 0.0010 | time_forward 3.4790 | time_backward 5.1910 |
[2023-09-02 16:05:32,771::train::INFO] [train] Iter 11706 | loss 1.5687 | loss(rot) 0.2255 | loss(pos) 1.1261 | loss(seq) 0.2171 | grad 8.3930 | lr 0.0010 | time_forward 3.4110 | time_backward 5.1150 |
[2023-09-02 16:05:35,395::train::INFO] [train] Iter 11707 | loss 0.9333 | loss(rot) 0.2335 | loss(pos) 0.4656 | loss(seq) 0.2342 | grad 4.0913 | lr 0.0010 | time_forward 1.2360 | time_backward 1.3850 |
[2023-09-02 16:05:44,205::train::INFO] [train] Iter 11708 | loss 1.6323 | loss(rot) 0.6678 | loss(pos) 0.6066 | loss(seq) 0.3579 | grad 4.4921 | lr 0.0010 | time_forward 3.6320 | time_backward 5.1740 |
[2023-09-02 16:05:52,355::train::INFO] [train] Iter 11709 | loss 0.9953 | loss(rot) 0.1805 | loss(pos) 0.7462 | loss(seq) 0.0686 | grad 5.5617 | lr 0.0010 | time_forward 3.4930 | time_backward 4.6530 |
[2023-09-02 16:05:54,969::train::INFO] [train] Iter 11710 | loss 2.4350 | loss(rot) 1.4644 | loss(pos) 0.2480 | loss(seq) 0.7226 | grad 4.7988 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3800 |
[2023-09-02 16:05:57,582::train::INFO] [train] Iter 11711 | loss 0.4512 | loss(rot) 0.0864 | loss(pos) 0.3519 | loss(seq) 0.0129 | grad 2.8605 | lr 0.0010 | time_forward 1.2420 | time_backward 1.3680 |
[2023-09-02 16:06:06,301::train::INFO] [train] Iter 11712 | loss 2.2394 | loss(rot) 2.0588 | loss(pos) 0.1806 | loss(seq) 0.0000 | grad 4.0314 | lr 0.0010 | time_forward 3.6560 | time_backward 5.0590 |
[2023-09-02 16:06:14,446::train::INFO] [train] Iter 11713 | loss 0.6261 | loss(rot) 0.4481 | loss(pos) 0.1781 | loss(seq) 0.0000 | grad 4.4423 | lr 0.0010 | time_forward 3.2810 | time_backward 4.8610 |
[2023-09-02 16:06:21,894::train::INFO] [train] Iter 11714 | loss 0.5953 | loss(rot) 0.0649 | loss(pos) 0.5172 | loss(seq) 0.0133 | grad 3.5914 | lr 0.0010 | time_forward 2.9820 | time_backward 4.4620 |
[2023-09-02 16:06:29,129::train::INFO] [train] Iter 11715 | loss 1.4897 | loss(rot) 1.2356 | loss(pos) 0.1158 | loss(seq) 0.1383 | grad 7.7462 | lr 0.0010 | time_forward 2.8840 | time_backward 4.3480 |
[2023-09-02 16:06:31,728::train::INFO] [train] Iter 11716 | loss 2.3297 | loss(rot) 1.4717 | loss(pos) 0.4470 | loss(seq) 0.4110 | grad 8.6041 | lr 0.0010 | time_forward 1.2080 | time_backward 1.3870 |
[2023-09-02 16:06:39,256::train::INFO] [train] Iter 11717 | loss 1.8734 | loss(rot) 1.0528 | loss(pos) 0.1954 | loss(seq) 0.6253 | grad 5.2777 | lr 0.0010 | time_forward 3.1410 | time_backward 4.3830 |
[2023-09-02 16:06:41,412::train::INFO] [train] Iter 11718 | loss 2.0657 | loss(rot) 1.4363 | loss(pos) 0.2376 | loss(seq) 0.3918 | grad 4.5729 | lr 0.0010 | time_forward 1.0170 | time_backward 1.1350 |
[2023-09-02 16:06:48,490::train::INFO] [train] Iter 11719 | loss 0.8217 | loss(rot) 0.2335 | loss(pos) 0.1869 | loss(seq) 0.4013 | grad 3.4969 | lr 0.0010 | time_forward 3.0290 | time_backward 4.0450 |
[2023-09-02 16:06:50,680::train::INFO] [train] Iter 11720 | loss 1.3512 | loss(rot) 0.0491 | loss(pos) 1.2949 | loss(seq) 0.0073 | grad 4.8579 | lr 0.0010 | time_forward 1.0280 | time_backward 1.1580 |
[2023-09-02 16:06:57,640::train::INFO] [train] Iter 11721 | loss 1.1986 | loss(rot) 0.4603 | loss(pos) 0.3524 | loss(seq) 0.3859 | grad 4.4879 | lr 0.0010 | time_forward 2.9290 | time_backward 4.0290 |
[2023-09-02 16:07:00,195::train::INFO] [train] Iter 11722 | loss 1.2580 | loss(rot) 0.4723 | loss(pos) 0.3395 | loss(seq) 0.4462 | grad 2.7938 | lr 0.0010 | time_forward 1.1710 | time_backward 1.3800 |
[2023-09-02 16:07:07,903::train::INFO] [train] Iter 11723 | loss 0.9217 | loss(rot) 0.3365 | loss(pos) 0.1735 | loss(seq) 0.4117 | grad 2.6038 | lr 0.0010 | time_forward 3.3230 | time_backward 4.3820 |
[2023-09-02 16:07:15,816::train::INFO] [train] Iter 11724 | loss 1.6691 | loss(rot) 0.1434 | loss(pos) 1.5230 | loss(seq) 0.0027 | grad 4.6833 | lr 0.0010 | time_forward 3.1350 | time_backward 4.7740 |
[2023-09-02 16:07:18,307::train::INFO] [train] Iter 11725 | loss 1.8741 | loss(rot) 1.0372 | loss(pos) 0.3358 | loss(seq) 0.5010 | grad 3.4138 | lr 0.0010 | time_forward 1.1340 | time_backward 1.3530 |
[2023-09-02 16:07:25,184::train::INFO] [train] Iter 11726 | loss 1.8962 | loss(rot) 1.7794 | loss(pos) 0.1168 | loss(seq) 0.0000 | grad 5.9856 | lr 0.0010 | time_forward 2.9760 | time_backward 3.8970 |
[2023-09-02 16:07:33,129::train::INFO] [train] Iter 11727 | loss 0.8036 | loss(rot) 0.3008 | loss(pos) 0.3772 | loss(seq) 0.1256 | grad 3.2613 | lr 0.0010 | time_forward 3.3960 | time_backward 4.5460 |
[2023-09-02 16:07:39,614::train::INFO] [train] Iter 11728 | loss 1.9183 | loss(rot) 1.3569 | loss(pos) 0.1877 | loss(seq) 0.3737 | grad 5.7836 | lr 0.0010 | time_forward 2.7400 | time_backward 3.7410 |
[2023-09-02 16:07:45,755::train::INFO] [train] Iter 11729 | loss 1.2480 | loss(rot) 0.3301 | loss(pos) 0.2649 | loss(seq) 0.6530 | grad 4.5490 | lr 0.0010 | time_forward 2.4910 | time_backward 3.6470 |
[2023-09-02 16:07:52,045::train::INFO] [train] Iter 11730 | loss 1.8165 | loss(rot) 0.5020 | loss(pos) 1.3108 | loss(seq) 0.0037 | grad 6.3382 | lr 0.0010 | time_forward 2.6870 | time_backward 3.6000 |
[2023-09-02 16:07:54,570::train::INFO] [train] Iter 11731 | loss 0.5543 | loss(rot) 0.1101 | loss(pos) 0.4071 | loss(seq) 0.0371 | grad 4.3094 | lr 0.0010 | time_forward 1.1590 | time_backward 1.3620 |
[2023-09-02 16:08:02,640::train::INFO] [train] Iter 11732 | loss 0.6623 | loss(rot) 0.1298 | loss(pos) 0.5186 | loss(seq) 0.0139 | grad 5.3567 | lr 0.0010 | time_forward 3.2650 | time_backward 4.8010 |
[2023-09-02 16:08:09,328::train::INFO] [train] Iter 11733 | loss 0.8230 | loss(rot) 0.6802 | loss(pos) 0.1428 | loss(seq) 0.0000 | grad 4.8850 | lr 0.0010 | time_forward 2.7900 | time_backward 3.8940 |
[2023-09-02 16:08:16,557::train::INFO] [train] Iter 11734 | loss 0.5520 | loss(rot) 0.0966 | loss(pos) 0.4387 | loss(seq) 0.0166 | grad 3.2538 | lr 0.0010 | time_forward 3.0910 | time_backward 4.1310 |
[2023-09-02 16:08:24,570::train::INFO] [train] Iter 11735 | loss 1.9546 | loss(rot) 1.7417 | loss(pos) 0.1940 | loss(seq) 0.0189 | grad 4.4549 | lr 0.0010 | time_forward 3.1860 | time_backward 4.8240 |
[2023-09-02 16:08:32,294::train::INFO] [train] Iter 11736 | loss 1.2833 | loss(rot) 0.4753 | loss(pos) 0.2442 | loss(seq) 0.5638 | grad 3.1483 | lr 0.0010 | time_forward 3.1730 | time_backward 4.5480 |
[2023-09-02 16:08:40,240::train::INFO] [train] Iter 11737 | loss 1.7026 | loss(rot) 1.1154 | loss(pos) 0.3075 | loss(seq) 0.2797 | grad 6.8628 | lr 0.0010 | time_forward 3.2440 | time_backward 4.6940 |
[2023-09-02 16:08:47,995::train::INFO] [train] Iter 11738 | loss 1.4002 | loss(rot) 0.1461 | loss(pos) 0.9582 | loss(seq) 0.2959 | grad 7.0609 | lr 0.0010 | time_forward 3.2320 | time_backward 4.5120 |
[2023-09-02 16:08:56,246::train::INFO] [train] Iter 11739 | loss 1.4520 | loss(rot) 0.0329 | loss(pos) 1.4131 | loss(seq) 0.0060 | grad 5.9654 | lr 0.0010 | time_forward 3.3720 | time_backward 4.8750 |
[2023-09-02 16:09:04,381::train::INFO] [train] Iter 11740 | loss 0.8306 | loss(rot) 0.0423 | loss(pos) 0.7772 | loss(seq) 0.0112 | grad 4.0384 | lr 0.0010 | time_forward 3.2930 | time_backward 4.8390 |
[2023-09-02 16:09:11,585::train::INFO] [train] Iter 11741 | loss 1.0773 | loss(rot) 0.5610 | loss(pos) 0.1646 | loss(seq) 0.3517 | grad 6.3972 | lr 0.0010 | time_forward 2.9580 | time_backward 4.2430 |
[2023-09-02 16:09:19,469::train::INFO] [train] Iter 11742 | loss 1.4534 | loss(rot) 0.4120 | loss(pos) 0.5467 | loss(seq) 0.4948 | grad 3.6171 | lr 0.0010 | time_forward 3.3130 | time_backward 4.5680 |
[2023-09-02 16:09:25,926::train::INFO] [train] Iter 11743 | loss 1.6388 | loss(rot) 0.1990 | loss(pos) 1.4363 | loss(seq) 0.0035 | grad 6.7293 | lr 0.0010 | time_forward 2.7420 | time_backward 3.7020 |
[2023-09-02 16:09:31,846::train::INFO] [train] Iter 11744 | loss 1.8392 | loss(rot) 1.1517 | loss(pos) 0.1996 | loss(seq) 0.4879 | grad 5.2872 | lr 0.0010 | time_forward 2.5560 | time_backward 3.3600 |
[2023-09-02 16:09:33,793::train::INFO] [train] Iter 11745 | loss 1.7391 | loss(rot) 0.8952 | loss(pos) 0.3907 | loss(seq) 0.4532 | grad 5.1447 | lr 0.0010 | time_forward 0.8660 | time_backward 1.0780 |
[2023-09-02 16:09:41,932::train::INFO] [train] Iter 11746 | loss 2.4343 | loss(rot) 1.3805 | loss(pos) 0.5138 | loss(seq) 0.5399 | grad 3.7301 | lr 0.0010 | time_forward 3.1770 | time_backward 4.9570 |
[2023-09-02 16:09:49,322::train::INFO] [train] Iter 11747 | loss 1.7742 | loss(rot) 1.0989 | loss(pos) 0.1973 | loss(seq) 0.4780 | grad 4.2711 | lr 0.0010 | time_forward 2.9660 | time_backward 4.4210 |
[2023-09-02 16:09:56,314::train::INFO] [train] Iter 11748 | loss 0.7516 | loss(rot) 0.2155 | loss(pos) 0.4764 | loss(seq) 0.0597 | grad 3.6771 | lr 0.0010 | time_forward 2.9530 | time_backward 4.0360 |
[2023-09-02 16:10:03,260::train::INFO] [train] Iter 11749 | loss 2.5013 | loss(rot) 1.9471 | loss(pos) 0.1989 | loss(seq) 0.3552 | grad 5.4943 | lr 0.0010 | time_forward 2.9920 | time_backward 3.9500 |
[2023-09-02 16:10:10,633::train::INFO] [train] Iter 11750 | loss 1.7619 | loss(rot) 1.5465 | loss(pos) 0.2150 | loss(seq) 0.0003 | grad 5.4418 | lr 0.0010 | time_forward 3.0600 | time_backward 4.3100 |
[2023-09-02 16:10:13,240::train::INFO] [train] Iter 11751 | loss 1.0529 | loss(rot) 0.8274 | loss(pos) 0.0952 | loss(seq) 0.1303 | grad 6.4285 | lr 0.0010 | time_forward 1.1820 | time_backward 1.4210 |
[2023-09-02 16:10:15,882::train::INFO] [train] Iter 11752 | loss 1.8506 | loss(rot) 0.8844 | loss(pos) 0.3599 | loss(seq) 0.6062 | grad 4.4220 | lr 0.0010 | time_forward 1.2130 | time_backward 1.4260 |
[2023-09-02 16:10:23,753::train::INFO] [train] Iter 11753 | loss 1.0760 | loss(rot) 0.1601 | loss(pos) 0.5959 | loss(seq) 0.3199 | grad 4.9059 | lr 0.0010 | time_forward 3.3360 | time_backward 4.5310 |
[2023-09-02 16:10:30,441::train::INFO] [train] Iter 11754 | loss 1.7868 | loss(rot) 0.9223 | loss(pos) 0.3069 | loss(seq) 0.5577 | grad 4.1120 | lr 0.0010 | time_forward 2.8360 | time_backward 3.8480 |
[2023-09-02 16:10:32,986::train::INFO] [train] Iter 11755 | loss 1.1805 | loss(rot) 0.5017 | loss(pos) 0.3834 | loss(seq) 0.2954 | grad 4.9421 | lr 0.0010 | time_forward 1.1640 | time_backward 1.3780 |
[2023-09-02 16:10:40,344::train::INFO] [train] Iter 11756 | loss 3.3212 | loss(rot) 0.0268 | loss(pos) 3.2944 | loss(seq) 0.0000 | grad 8.3831 | lr 0.0010 | time_forward 3.0680 | time_backward 4.2860 |
[2023-09-02 16:10:47,946::train::INFO] [train] Iter 11757 | loss 1.0366 | loss(rot) 0.3775 | loss(pos) 0.3036 | loss(seq) 0.3554 | grad 4.8470 | lr 0.0010 | time_forward 3.0610 | time_backward 4.5380 |
[2023-09-02 16:10:55,819::train::INFO] [train] Iter 11758 | loss 2.3269 | loss(rot) 1.6718 | loss(pos) 0.2046 | loss(seq) 0.4505 | grad 4.5795 | lr 0.0010 | time_forward 3.2780 | time_backward 4.5920 |
[2023-09-02 16:10:57,998::train::INFO] [train] Iter 11759 | loss 1.6876 | loss(rot) 1.4358 | loss(pos) 0.2497 | loss(seq) 0.0021 | grad 4.3027 | lr 0.0010 | time_forward 1.0000 | time_backward 1.1750 |
[2023-09-02 16:11:00,180::train::INFO] [train] Iter 11760 | loss 1.0831 | loss(rot) 0.5336 | loss(pos) 0.3447 | loss(seq) 0.2049 | grad 5.2440 | lr 0.0010 | time_forward 1.0120 | time_backward 1.1670 |
[2023-09-02 16:11:07,804::train::INFO] [train] Iter 11761 | loss 1.0478 | loss(rot) 0.2672 | loss(pos) 0.4426 | loss(seq) 0.3379 | grad 4.8254 | lr 0.0010 | time_forward 3.0270 | time_backward 4.5930 |
[2023-09-02 16:11:14,806::train::INFO] [train] Iter 11762 | loss 1.7124 | loss(rot) 0.1347 | loss(pos) 1.5673 | loss(seq) 0.0104 | grad 7.5502 | lr 0.0010 | time_forward 2.8560 | time_backward 4.1420 |
[2023-09-02 16:11:21,033::train::INFO] [train] Iter 11763 | loss 2.0372 | loss(rot) 1.4061 | loss(pos) 0.1091 | loss(seq) 0.5220 | grad 4.5146 | lr 0.0010 | time_forward 2.7220 | time_backward 3.5010 |
[2023-09-02 16:11:29,002::train::INFO] [train] Iter 11764 | loss 1.7404 | loss(rot) 1.6606 | loss(pos) 0.0779 | loss(seq) 0.0019 | grad 3.7209 | lr 0.0010 | time_forward 3.2620 | time_backward 4.7050 |
[2023-09-02 16:11:36,295::train::INFO] [train] Iter 11765 | loss 1.6908 | loss(rot) 1.4694 | loss(pos) 0.0895 | loss(seq) 0.1319 | grad 7.4908 | lr 0.0010 | time_forward 3.2440 | time_backward 4.0450 |
[2023-09-02 16:11:38,447::train::INFO] [train] Iter 11766 | loss 0.4698 | loss(rot) 0.1003 | loss(pos) 0.2796 | loss(seq) 0.0898 | grad 3.8124 | lr 0.0010 | time_forward 1.0100 | time_backward 1.1380 |
[2023-09-02 16:11:47,008::train::INFO] [train] Iter 11767 | loss 1.4804 | loss(rot) 1.2791 | loss(pos) 0.2012 | loss(seq) 0.0000 | grad 9.0012 | lr 0.0010 | time_forward 3.5900 | time_backward 4.9590 |
[2023-09-02 16:11:55,413::train::INFO] [train] Iter 11768 | loss 1.8492 | loss(rot) 1.0758 | loss(pos) 0.3135 | loss(seq) 0.4599 | grad 4.1555 | lr 0.0010 | time_forward 3.5510 | time_backward 4.8440 |
[2023-09-02 16:11:57,597::train::INFO] [train] Iter 11769 | loss 1.7118 | loss(rot) 1.3040 | loss(pos) 0.1294 | loss(seq) 0.2784 | grad 4.7139 | lr 0.0010 | time_forward 1.0270 | time_backward 1.1540 |
[2023-09-02 16:12:06,018::train::INFO] [train] Iter 11770 | loss 1.4404 | loss(rot) 0.9336 | loss(pos) 0.2603 | loss(seq) 0.2465 | grad 4.6767 | lr 0.0010 | time_forward 3.4550 | time_backward 4.9620 |
[2023-09-02 16:12:14,235::train::INFO] [train] Iter 11771 | loss 1.2706 | loss(rot) 0.6715 | loss(pos) 0.4441 | loss(seq) 0.1551 | grad 4.0282 | lr 0.0010 | time_forward 3.4370 | time_backward 4.7760 |
[2023-09-02 16:12:16,866::train::INFO] [train] Iter 11772 | loss 0.8044 | loss(rot) 0.1482 | loss(pos) 0.2161 | loss(seq) 0.4401 | grad 2.9759 | lr 0.0010 | time_forward 1.2180 | time_backward 1.3990 |
[2023-09-02 16:12:23,781::train::INFO] [train] Iter 11773 | loss 2.2243 | loss(rot) 0.0501 | loss(pos) 2.1730 | loss(seq) 0.0012 | grad 7.6036 | lr 0.0010 | time_forward 2.9490 | time_backward 3.9630 |
[2023-09-02 16:12:32,184::train::INFO] [train] Iter 11774 | loss 0.9932 | loss(rot) 0.1869 | loss(pos) 0.7625 | loss(seq) 0.0437 | grad 2.9471 | lr 0.0010 | time_forward 3.4980 | time_backward 4.9000 |
[2023-09-02 16:12:39,161::train::INFO] [train] Iter 11775 | loss 1.6822 | loss(rot) 1.5777 | loss(pos) 0.1040 | loss(seq) 0.0006 | grad 8.4557 | lr 0.0010 | time_forward 2.7060 | time_backward 4.2670 |
[2023-09-02 16:12:41,705::train::INFO] [train] Iter 11776 | loss 0.7425 | loss(rot) 0.6503 | loss(pos) 0.0677 | loss(seq) 0.0245 | grad 3.9659 | lr 0.0010 | time_forward 1.1820 | time_backward 1.3590 |
[2023-09-02 16:12:49,141::train::INFO] [train] Iter 11777 | loss 1.7099 | loss(rot) 0.0867 | loss(pos) 1.6170 | loss(seq) 0.0061 | grad 5.5835 | lr 0.0010 | time_forward 3.0070 | time_backward 4.4260 |
[2023-09-02 16:12:51,690::train::INFO] [train] Iter 11778 | loss 1.6982 | loss(rot) 0.5882 | loss(pos) 0.9123 | loss(seq) 0.1978 | grad 7.3080 | lr 0.0010 | time_forward 1.1920 | time_backward 1.3530 |
[2023-09-02 16:12:54,230::train::INFO] [train] Iter 11779 | loss 1.3153 | loss(rot) 0.6931 | loss(pos) 0.1388 | loss(seq) 0.4834 | grad 4.3180 | lr 0.0010 | time_forward 1.1520 | time_backward 1.3690 |
[2023-09-02 16:12:56,816::train::INFO] [train] Iter 11780 | loss 2.6833 | loss(rot) 2.5402 | loss(pos) 0.1396 | loss(seq) 0.0035 | grad 6.5729 | lr 0.0010 | time_forward 1.1920 | time_backward 1.3910 |
[2023-09-02 16:12:59,432::train::INFO] [train] Iter 11781 | loss 2.9525 | loss(rot) 0.8388 | loss(pos) 1.4843 | loss(seq) 0.6294 | grad 8.6899 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3800 |
[2023-09-02 16:13:05,871::train::INFO] [train] Iter 11782 | loss 1.4258 | loss(rot) 1.0995 | loss(pos) 0.1086 | loss(seq) 0.2177 | grad 5.4777 | lr 0.0010 | time_forward 2.5540 | time_backward 3.8810 |
[2023-09-02 16:13:08,397::train::INFO] [train] Iter 11783 | loss 2.0346 | loss(rot) 1.6921 | loss(pos) 0.3425 | loss(seq) 0.0000 | grad 4.5280 | lr 0.0010 | time_forward 1.1660 | time_backward 1.3570 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.