text
stringlengths 56
1.16k
|
---|
[2023-09-02 15:42:14,029::train::INFO] [train] Iter 11484 | loss 1.7615 | loss(rot) 0.9967 | loss(pos) 0.2919 | loss(seq) 0.4729 | grad 4.6626 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4380 |
[2023-09-02 15:42:23,499::train::INFO] [train] Iter 11485 | loss 3.1625 | loss(rot) 2.6797 | loss(pos) 0.3000 | loss(seq) 0.1828 | grad 5.3880 | lr 0.0010 | time_forward 3.8820 | time_backward 5.5840 |
[2023-09-02 15:42:30,718::train::INFO] [train] Iter 11486 | loss 2.1946 | loss(rot) 1.7928 | loss(pos) 0.2002 | loss(seq) 0.2016 | grad 6.6399 | lr 0.0010 | time_forward 2.9150 | time_backward 4.3020 |
[2023-09-02 15:42:38,397::train::INFO] [train] Iter 11487 | loss 2.9627 | loss(rot) 0.0658 | loss(pos) 2.8922 | loss(seq) 0.0047 | grad 8.3828 | lr 0.0010 | time_forward 3.2760 | time_backward 4.3990 |
[2023-09-02 15:42:46,440::train::INFO] [train] Iter 11488 | loss 1.5350 | loss(rot) 0.9607 | loss(pos) 0.0950 | loss(seq) 0.4794 | grad 4.2703 | lr 0.0010 | time_forward 3.4590 | time_backward 4.5790 |
[2023-09-02 15:42:49,093::train::INFO] [train] Iter 11489 | loss 1.9016 | loss(rot) 1.1972 | loss(pos) 0.2190 | loss(seq) 0.4854 | grad 4.6625 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4370 |
[2023-09-02 15:42:51,506::train::INFO] [train] Iter 11490 | loss 3.2275 | loss(rot) 2.6635 | loss(pos) 0.1572 | loss(seq) 0.4069 | grad 7.5597 | lr 0.0010 | time_forward 1.1290 | time_backward 1.2800 |
[2023-09-02 15:42:58,510::train::INFO] [train] Iter 11491 | loss 1.2853 | loss(rot) 0.5311 | loss(pos) 0.2725 | loss(seq) 0.4817 | grad 5.8427 | lr 0.0010 | time_forward 2.7960 | time_backward 4.1940 |
[2023-09-02 15:43:07,107::train::INFO] [train] Iter 11492 | loss 1.7640 | loss(rot) 0.9853 | loss(pos) 0.3584 | loss(seq) 0.4203 | grad 4.2427 | lr 0.0010 | time_forward 3.4370 | time_backward 5.1560 |
[2023-09-02 15:43:15,500::train::INFO] [train] Iter 11493 | loss 0.7626 | loss(rot) 0.2359 | loss(pos) 0.2837 | loss(seq) 0.2429 | grad 3.3526 | lr 0.0010 | time_forward 3.2610 | time_backward 5.1290 |
[2023-09-02 15:43:18,080::train::INFO] [train] Iter 11494 | loss 0.9332 | loss(rot) 0.3428 | loss(pos) 0.3549 | loss(seq) 0.2355 | grad 3.9482 | lr 0.0010 | time_forward 1.1770 | time_backward 1.3940 |
[2023-09-02 15:43:27,244::train::INFO] [train] Iter 11495 | loss 2.6672 | loss(rot) 1.8770 | loss(pos) 0.2246 | loss(seq) 0.5656 | grad 3.7544 | lr 0.0010 | time_forward 3.6060 | time_backward 5.5540 |
[2023-09-02 15:43:33,872::train::INFO] [train] Iter 11496 | loss 2.1251 | loss(rot) 1.8726 | loss(pos) 0.2505 | loss(seq) 0.0021 | grad 5.1064 | lr 0.0010 | time_forward 2.7480 | time_backward 3.8760 |
[2023-09-02 15:43:40,981::train::INFO] [train] Iter 11497 | loss 1.4246 | loss(rot) 1.1330 | loss(pos) 0.1079 | loss(seq) 0.1838 | grad 4.7407 | lr 0.0010 | time_forward 3.1090 | time_backward 3.9970 |
[2023-09-02 15:43:51,163::train::INFO] [train] Iter 11498 | loss 2.3577 | loss(rot) 2.0669 | loss(pos) 0.2599 | loss(seq) 0.0309 | grad 5.9348 | lr 0.0010 | time_forward 3.3580 | time_backward 6.8200 |
[2023-09-02 15:43:59,785::train::INFO] [train] Iter 11499 | loss 1.4657 | loss(rot) 0.5351 | loss(pos) 0.2820 | loss(seq) 0.6487 | grad 3.9162 | lr 0.0010 | time_forward 3.5830 | time_backward 5.0360 |
[2023-09-02 15:44:02,371::train::INFO] [train] Iter 11500 | loss 2.0149 | loss(rot) 1.7619 | loss(pos) 0.2530 | loss(seq) 0.0000 | grad 5.1684 | lr 0.0010 | time_forward 1.2220 | time_backward 1.3600 |
[2023-09-02 15:44:04,749::train::INFO] [train] Iter 11501 | loss 1.3834 | loss(rot) 0.4125 | loss(pos) 0.5731 | loss(seq) 0.3977 | grad 5.3409 | lr 0.0010 | time_forward 1.1400 | time_backward 1.2360 |
[2023-09-02 15:44:12,416::train::INFO] [train] Iter 11502 | loss 1.1144 | loss(rot) 1.0155 | loss(pos) 0.0947 | loss(seq) 0.0042 | grad 5.9619 | lr 0.0010 | time_forward 3.1490 | time_backward 4.4940 |
[2023-09-02 15:44:15,082::train::INFO] [train] Iter 11503 | loss 1.6708 | loss(rot) 0.1694 | loss(pos) 1.4971 | loss(seq) 0.0043 | grad 5.6088 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4220 |
[2023-09-02 15:44:23,666::train::INFO] [train] Iter 11504 | loss 1.3554 | loss(rot) 0.6082 | loss(pos) 0.3619 | loss(seq) 0.3853 | grad 4.1416 | lr 0.0010 | time_forward 3.5960 | time_backward 4.9600 |
[2023-09-02 15:44:32,240::train::INFO] [train] Iter 11505 | loss 2.5889 | loss(rot) 1.8124 | loss(pos) 0.3932 | loss(seq) 0.3833 | grad 6.5937 | lr 0.0010 | time_forward 3.4780 | time_backward 5.0880 |
[2023-09-02 15:44:39,643::train::INFO] [train] Iter 11506 | loss 1.3601 | loss(rot) 0.3559 | loss(pos) 0.4690 | loss(seq) 0.5352 | grad 4.4576 | lr 0.0010 | time_forward 2.7960 | time_backward 4.6020 |
[2023-09-02 15:44:42,295::train::INFO] [train] Iter 11507 | loss 1.5400 | loss(rot) 1.2449 | loss(pos) 0.1611 | loss(seq) 0.1339 | grad 9.6786 | lr 0.0010 | time_forward 1.2000 | time_backward 1.4500 |
[2023-09-02 15:44:44,899::train::INFO] [train] Iter 11508 | loss 2.1608 | loss(rot) 1.8673 | loss(pos) 0.2914 | loss(seq) 0.0021 | grad 4.7801 | lr 0.0010 | time_forward 1.2070 | time_backward 1.3930 |
[2023-09-02 15:44:47,548::train::INFO] [train] Iter 11509 | loss 1.6165 | loss(rot) 1.0943 | loss(pos) 0.1581 | loss(seq) 0.3641 | grad 5.0432 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4010 |
[2023-09-02 15:44:55,218::train::INFO] [train] Iter 11510 | loss 1.3791 | loss(rot) 1.1994 | loss(pos) 0.1452 | loss(seq) 0.0345 | grad 7.4705 | lr 0.0010 | time_forward 3.3980 | time_backward 4.2560 |
[2023-09-02 15:44:57,757::train::INFO] [train] Iter 11511 | loss 1.4810 | loss(rot) 1.2979 | loss(pos) 0.1041 | loss(seq) 0.0790 | grad 3.5500 | lr 0.0010 | time_forward 1.1930 | time_backward 1.3430 |
[2023-09-02 15:45:04,295::train::INFO] [train] Iter 11512 | loss 1.0506 | loss(rot) 0.0397 | loss(pos) 0.9956 | loss(seq) 0.0153 | grad 5.0201 | lr 0.0010 | time_forward 2.7370 | time_backward 3.7970 |
[2023-09-02 15:45:10,994::train::INFO] [train] Iter 11513 | loss 2.4546 | loss(rot) 2.1517 | loss(pos) 0.0510 | loss(seq) 0.2519 | grad 3.9526 | lr 0.0010 | time_forward 2.7910 | time_backward 3.9040 |
[2023-09-02 15:45:17,607::train::INFO] [train] Iter 11514 | loss 0.9767 | loss(rot) 0.4696 | loss(pos) 0.3829 | loss(seq) 0.1242 | grad 6.3192 | lr 0.0010 | time_forward 2.7180 | time_backward 3.8920 |
[2023-09-02 15:45:25,414::train::INFO] [train] Iter 11515 | loss 1.9672 | loss(rot) 0.1201 | loss(pos) 1.8312 | loss(seq) 0.0159 | grad 6.8637 | lr 0.0010 | time_forward 3.1970 | time_backward 4.6060 |
[2023-09-02 15:45:31,930::train::INFO] [train] Iter 11516 | loss 1.3523 | loss(rot) 0.8889 | loss(pos) 0.1030 | loss(seq) 0.3605 | grad 3.6708 | lr 0.0010 | time_forward 2.7340 | time_backward 3.7790 |
[2023-09-02 15:45:39,905::train::INFO] [train] Iter 11517 | loss 1.8845 | loss(rot) 1.0206 | loss(pos) 0.2985 | loss(seq) 0.5654 | grad 6.0568 | lr 0.0010 | time_forward 3.1970 | time_backward 4.7740 |
[2023-09-02 15:45:48,042::train::INFO] [train] Iter 11518 | loss 2.4663 | loss(rot) 2.2825 | loss(pos) 0.1839 | loss(seq) 0.0000 | grad 11.7847 | lr 0.0010 | time_forward 3.1990 | time_backward 4.9340 |
[2023-09-02 15:45:50,550::train::INFO] [train] Iter 11519 | loss 1.1833 | loss(rot) 0.5890 | loss(pos) 0.2317 | loss(seq) 0.3626 | grad 2.8413 | lr 0.0010 | time_forward 1.1480 | time_backward 1.3580 |
[2023-09-02 15:45:57,251::train::INFO] [train] Iter 11520 | loss 0.7093 | loss(rot) 0.0914 | loss(pos) 0.5893 | loss(seq) 0.0286 | grad 6.8775 | lr 0.0010 | time_forward 2.8640 | time_backward 3.8330 |
[2023-09-02 15:45:59,748::train::INFO] [train] Iter 11521 | loss 1.2158 | loss(rot) 0.0785 | loss(pos) 1.1299 | loss(seq) 0.0074 | grad 7.3400 | lr 0.0010 | time_forward 1.1450 | time_backward 1.3490 |
[2023-09-02 15:46:06,643::train::INFO] [train] Iter 11522 | loss 1.5555 | loss(rot) 1.0091 | loss(pos) 0.1459 | loss(seq) 0.4005 | grad 6.5242 | lr 0.0010 | time_forward 2.9480 | time_backward 3.9440 |
[2023-09-02 15:46:13,111::train::INFO] [train] Iter 11523 | loss 1.2212 | loss(rot) 0.7957 | loss(pos) 0.2078 | loss(seq) 0.2176 | grad 5.7005 | lr 0.0010 | time_forward 2.7870 | time_backward 3.6770 |
[2023-09-02 15:46:21,185::train::INFO] [train] Iter 11524 | loss 0.9372 | loss(rot) 0.2354 | loss(pos) 0.6613 | loss(seq) 0.0405 | grad 4.5758 | lr 0.0010 | time_forward 3.2700 | time_backward 4.8000 |
[2023-09-02 15:46:29,179::train::INFO] [train] Iter 11525 | loss 1.9105 | loss(rot) 0.8244 | loss(pos) 0.5042 | loss(seq) 0.5819 | grad 5.7827 | lr 0.0010 | time_forward 3.1580 | time_backward 4.8320 |
[2023-09-02 15:46:31,802::train::INFO] [train] Iter 11526 | loss 1.1368 | loss(rot) 0.1540 | loss(pos) 0.5655 | loss(seq) 0.4172 | grad 5.7794 | lr 0.0010 | time_forward 1.2040 | time_backward 1.4150 |
[2023-09-02 15:46:39,799::train::INFO] [train] Iter 11527 | loss 2.6720 | loss(rot) 2.4240 | loss(pos) 0.2242 | loss(seq) 0.0239 | grad 6.1515 | lr 0.0010 | time_forward 3.3890 | time_backward 4.6040 |
[2023-09-02 15:46:42,439::train::INFO] [train] Iter 11528 | loss 1.2582 | loss(rot) 0.5841 | loss(pos) 0.1794 | loss(seq) 0.4947 | grad 3.8113 | lr 0.0010 | time_forward 1.2110 | time_backward 1.4250 |
[2023-09-02 15:46:48,491::train::INFO] [train] Iter 11529 | loss 0.7997 | loss(rot) 0.4615 | loss(pos) 0.0614 | loss(seq) 0.2768 | grad 4.2730 | lr 0.0010 | time_forward 2.6170 | time_backward 3.4310 |
[2023-09-02 15:46:56,871::train::INFO] [train] Iter 11530 | loss 1.1617 | loss(rot) 0.3101 | loss(pos) 0.6182 | loss(seq) 0.2334 | grad 4.4629 | lr 0.0010 | time_forward 3.3130 | time_backward 5.0640 |
[2023-09-02 15:47:05,238::train::INFO] [train] Iter 11531 | loss 1.3654 | loss(rot) 0.6795 | loss(pos) 0.3811 | loss(seq) 0.3047 | grad 3.3520 | lr 0.0010 | time_forward 3.3170 | time_backward 5.0460 |
[2023-09-02 15:47:07,409::train::INFO] [train] Iter 11532 | loss 2.1344 | loss(rot) 1.4654 | loss(pos) 0.2354 | loss(seq) 0.4336 | grad 4.9444 | lr 0.0010 | time_forward 1.0160 | time_backward 1.1520 |
[2023-09-02 15:47:15,454::train::INFO] [train] Iter 11533 | loss 1.0372 | loss(rot) 0.1390 | loss(pos) 0.8767 | loss(seq) 0.0214 | grad 4.1352 | lr 0.0010 | time_forward 3.1820 | time_backward 4.8600 |
[2023-09-02 15:47:22,052::train::INFO] [train] Iter 11534 | loss 1.9044 | loss(rot) 1.7329 | loss(pos) 0.1704 | loss(seq) 0.0011 | grad 5.6287 | lr 0.0010 | time_forward 2.8170 | time_backward 3.7770 |
[2023-09-02 15:47:24,563::train::INFO] [train] Iter 11535 | loss 1.6271 | loss(rot) 0.1710 | loss(pos) 1.4147 | loss(seq) 0.0414 | grad 6.1301 | lr 0.0010 | time_forward 1.1620 | time_backward 1.3470 |
[2023-09-02 15:47:32,640::train::INFO] [train] Iter 11536 | loss 1.6375 | loss(rot) 0.7503 | loss(pos) 0.4208 | loss(seq) 0.4663 | grad 5.0887 | lr 0.0010 | time_forward 3.3970 | time_backward 4.6760 |
[2023-09-02 15:47:40,538::train::INFO] [train] Iter 11537 | loss 1.3300 | loss(rot) 0.6683 | loss(pos) 0.2236 | loss(seq) 0.4380 | grad 3.0685 | lr 0.0010 | time_forward 3.2280 | time_backward 4.6660 |
[2023-09-02 15:47:47,722::train::INFO] [train] Iter 11538 | loss 1.8713 | loss(rot) 1.1301 | loss(pos) 0.2541 | loss(seq) 0.4871 | grad 3.8411 | lr 0.0010 | time_forward 3.0940 | time_backward 4.0870 |
[2023-09-02 15:47:56,135::train::INFO] [train] Iter 11539 | loss 1.1113 | loss(rot) 0.3026 | loss(pos) 0.5482 | loss(seq) 0.2605 | grad 4.2724 | lr 0.0010 | time_forward 3.3790 | time_backward 5.0140 |
[2023-09-02 15:47:58,499::train::INFO] [train] Iter 11540 | loss 2.0640 | loss(rot) 1.3895 | loss(pos) 0.1397 | loss(seq) 0.5348 | grad 3.9383 | lr 0.0010 | time_forward 1.1220 | time_backward 1.2390 |
[2023-09-02 15:48:03,808::train::INFO] [train] Iter 11541 | loss 2.3519 | loss(rot) 1.8065 | loss(pos) 0.1478 | loss(seq) 0.3976 | grad 5.6964 | lr 0.0010 | time_forward 2.2780 | time_backward 3.0180 |
[2023-09-02 15:48:10,966::train::INFO] [train] Iter 11542 | loss 0.9101 | loss(rot) 0.7707 | loss(pos) 0.1394 | loss(seq) 0.0000 | grad 5.0220 | lr 0.0010 | time_forward 2.8980 | time_backward 4.2560 |
[2023-09-02 15:48:13,493::train::INFO] [train] Iter 11543 | loss 1.8977 | loss(rot) 1.3341 | loss(pos) 0.2087 | loss(seq) 0.3548 | grad 5.1429 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3430 |
[2023-09-02 15:48:15,654::train::INFO] [train] Iter 11544 | loss 1.5835 | loss(rot) 1.0649 | loss(pos) 0.1327 | loss(seq) 0.3858 | grad 4.4212 | lr 0.0010 | time_forward 1.0210 | time_backward 1.1370 |
[2023-09-02 15:48:23,071::train::INFO] [train] Iter 11545 | loss 0.8619 | loss(rot) 0.3346 | loss(pos) 0.2641 | loss(seq) 0.2632 | grad 2.9385 | lr 0.0010 | time_forward 3.0840 | time_backward 4.3290 |
[2023-09-02 15:48:30,523::train::INFO] [train] Iter 11546 | loss 1.3736 | loss(rot) 1.1871 | loss(pos) 0.1311 | loss(seq) 0.0554 | grad 7.5289 | lr 0.0010 | time_forward 3.0750 | time_backward 4.3730 |
[2023-09-02 15:48:38,013::train::INFO] [train] Iter 11547 | loss 0.5795 | loss(rot) 0.2776 | loss(pos) 0.2628 | loss(seq) 0.0392 | grad 3.3554 | lr 0.0010 | time_forward 3.1160 | time_backward 4.3710 |
[2023-09-02 15:48:45,362::train::INFO] [train] Iter 11548 | loss 2.2226 | loss(rot) 1.6503 | loss(pos) 0.1189 | loss(seq) 0.4534 | grad 5.3652 | lr 0.0010 | time_forward 3.0650 | time_backward 4.2800 |
[2023-09-02 15:48:47,923::train::INFO] [train] Iter 11549 | loss 2.7987 | loss(rot) 2.5431 | loss(pos) 0.0969 | loss(seq) 0.1587 | grad 4.5461 | lr 0.0010 | time_forward 1.1840 | time_backward 1.3730 |
[2023-09-02 15:48:50,266::train::INFO] [train] Iter 11550 | loss 1.8291 | loss(rot) 0.0252 | loss(pos) 1.8004 | loss(seq) 0.0035 | grad 6.9627 | lr 0.0010 | time_forward 1.1060 | time_backward 1.2330 |
[2023-09-02 15:48:57,451::train::INFO] [train] Iter 11551 | loss 1.1719 | loss(rot) 0.4443 | loss(pos) 0.5926 | loss(seq) 0.1351 | grad 5.0995 | lr 0.0010 | time_forward 2.9780 | time_backward 4.1930 |
[2023-09-02 15:48:59,941::train::INFO] [train] Iter 11552 | loss 0.9227 | loss(rot) 0.4018 | loss(pos) 0.2986 | loss(seq) 0.2223 | grad 3.9604 | lr 0.0010 | time_forward 1.1480 | time_backward 1.3380 |
[2023-09-02 15:49:06,657::train::INFO] [train] Iter 11553 | loss 1.0813 | loss(rot) 0.1655 | loss(pos) 0.5540 | loss(seq) 0.3618 | grad 4.6750 | lr 0.0010 | time_forward 2.9310 | time_backward 3.7810 |
[2023-09-02 15:49:14,670::train::INFO] [train] Iter 11554 | loss 2.0610 | loss(rot) 1.0951 | loss(pos) 0.3727 | loss(seq) 0.5933 | grad 3.4534 | lr 0.0010 | time_forward 3.4680 | time_backward 4.5420 |
[2023-09-02 15:49:21,992::train::INFO] [train] Iter 11555 | loss 2.1238 | loss(rot) 1.6815 | loss(pos) 0.1129 | loss(seq) 0.3294 | grad 3.6271 | lr 0.0010 | time_forward 3.2080 | time_backward 4.1110 |
[2023-09-02 15:49:24,497::train::INFO] [train] Iter 11556 | loss 0.8192 | loss(rot) 0.2685 | loss(pos) 0.4836 | loss(seq) 0.0670 | grad 6.1662 | lr 0.0010 | time_forward 1.1570 | time_backward 1.3450 |
[2023-09-02 15:49:26,185::train::INFO] [train] Iter 11557 | loss 5.1499 | loss(rot) 3.2808 | loss(pos) 1.4495 | loss(seq) 0.4195 | grad 26.2213 | lr 0.0010 | time_forward 0.7540 | time_backward 0.9190 |
[2023-09-02 15:49:32,936::train::INFO] [train] Iter 11558 | loss 1.4490 | loss(rot) 0.5667 | loss(pos) 0.2995 | loss(seq) 0.5828 | grad 4.0499 | lr 0.0010 | time_forward 2.9160 | time_backward 3.8310 |
[2023-09-02 15:49:35,454::train::INFO] [train] Iter 11559 | loss 2.4098 | loss(rot) 2.1419 | loss(pos) 0.2678 | loss(seq) 0.0001 | grad 7.6591 | lr 0.0010 | time_forward 1.1540 | time_backward 1.3600 |
[2023-09-02 15:49:43,330::train::INFO] [train] Iter 11560 | loss 1.7578 | loss(rot) 1.3909 | loss(pos) 0.1811 | loss(seq) 0.1857 | grad 6.3649 | lr 0.0010 | time_forward 3.2610 | time_backward 4.6120 |
[2023-09-02 15:49:51,182::train::INFO] [train] Iter 11561 | loss 1.7735 | loss(rot) 0.9753 | loss(pos) 0.2203 | loss(seq) 0.5779 | grad 4.9646 | lr 0.0010 | time_forward 3.3020 | time_backward 4.5380 |
[2023-09-02 15:49:54,197::train::INFO] [train] Iter 11562 | loss 1.8776 | loss(rot) 0.9985 | loss(pos) 0.4043 | loss(seq) 0.4749 | grad 4.8496 | lr 0.0010 | time_forward 1.3250 | time_backward 1.6860 |
[2023-09-02 15:49:57,260::train::INFO] [train] Iter 11563 | loss 2.4837 | loss(rot) 2.0365 | loss(pos) 0.3486 | loss(seq) 0.0986 | grad 5.3888 | lr 0.0010 | time_forward 1.3380 | time_backward 1.7220 |
[2023-09-02 15:50:05,329::train::INFO] [train] Iter 11564 | loss 2.6286 | loss(rot) 2.1619 | loss(pos) 0.1608 | loss(seq) 0.3059 | grad 3.6418 | lr 0.0010 | time_forward 3.1930 | time_backward 4.8740 |
[2023-09-02 15:50:13,205::train::INFO] [train] Iter 11565 | loss 1.4161 | loss(rot) 0.7431 | loss(pos) 0.1352 | loss(seq) 0.5378 | grad 4.1152 | lr 0.0010 | time_forward 3.1800 | time_backward 4.6920 |
[2023-09-02 15:50:21,090::train::INFO] [train] Iter 11566 | loss 2.4455 | loss(rot) 2.2038 | loss(pos) 0.2357 | loss(seq) 0.0061 | grad 10.3378 | lr 0.0010 | time_forward 3.2130 | time_backward 4.6680 |
[2023-09-02 15:50:26,808::train::INFO] [train] Iter 11567 | loss 0.8844 | loss(rot) 0.0821 | loss(pos) 0.7964 | loss(seq) 0.0058 | grad 5.2704 | lr 0.0010 | time_forward 2.4360 | time_backward 3.2700 |
[2023-09-02 15:50:34,939::train::INFO] [train] Iter 11568 | loss 2.1861 | loss(rot) 1.8289 | loss(pos) 0.2070 | loss(seq) 0.1502 | grad 4.8254 | lr 0.0010 | time_forward 3.2600 | time_backward 4.8670 |
[2023-09-02 15:50:42,706::train::INFO] [train] Iter 11569 | loss 2.2639 | loss(rot) 1.5544 | loss(pos) 0.2094 | loss(seq) 0.5002 | grad 4.1279 | lr 0.0010 | time_forward 3.1830 | time_backward 4.5820 |
[2023-09-02 15:50:45,308::train::INFO] [train] Iter 11570 | loss 1.1122 | loss(rot) 0.3106 | loss(pos) 0.5080 | loss(seq) 0.2936 | grad 3.7183 | lr 0.0010 | time_forward 1.2100 | time_backward 1.3880 |
[2023-09-02 15:50:52,665::train::INFO] [train] Iter 11571 | loss 1.8279 | loss(rot) 0.0434 | loss(pos) 1.7800 | loss(seq) 0.0045 | grad 8.1818 | lr 0.0010 | time_forward 3.0640 | time_backward 4.2720 |
[2023-09-02 15:51:00,048::train::INFO] [train] Iter 11572 | loss 2.1444 | loss(rot) 0.6749 | loss(pos) 0.9305 | loss(seq) 0.5389 | grad 8.4074 | lr 0.0010 | time_forward 3.0120 | time_backward 4.3680 |
[2023-09-02 15:51:09,485::train::INFO] [train] Iter 11573 | loss 1.3358 | loss(rot) 0.3769 | loss(pos) 0.6266 | loss(seq) 0.3323 | grad 4.4817 | lr 0.0010 | time_forward 3.9910 | time_backward 5.4430 |
[2023-09-02 15:51:17,097::train::INFO] [train] Iter 11574 | loss 0.7195 | loss(rot) 0.2424 | loss(pos) 0.4101 | loss(seq) 0.0670 | grad 3.5902 | lr 0.0010 | time_forward 3.2240 | time_backward 4.3850 |
[2023-09-02 15:51:26,099::train::INFO] [train] Iter 11575 | loss 1.8166 | loss(rot) 1.6243 | loss(pos) 0.1903 | loss(seq) 0.0020 | grad 4.3592 | lr 0.0010 | time_forward 3.3860 | time_backward 5.6120 |
[2023-09-02 15:51:34,980::train::INFO] [train] Iter 11576 | loss 2.1205 | loss(rot) 1.2735 | loss(pos) 0.3770 | loss(seq) 0.4700 | grad 6.7863 | lr 0.0010 | time_forward 3.4620 | time_backward 5.4160 |
[2023-09-02 15:51:43,122::train::INFO] [train] Iter 11577 | loss 1.5206 | loss(rot) 1.1709 | loss(pos) 0.3085 | loss(seq) 0.0412 | grad 6.2014 | lr 0.0010 | time_forward 3.4350 | time_backward 4.7040 |
[2023-09-02 15:51:50,700::train::INFO] [train] Iter 11578 | loss 1.0947 | loss(rot) 0.2367 | loss(pos) 0.8231 | loss(seq) 0.0349 | grad 4.6330 | lr 0.0010 | time_forward 3.2590 | time_backward 4.3160 |
[2023-09-02 15:51:58,197::train::INFO] [train] Iter 11579 | loss 1.4840 | loss(rot) 0.7322 | loss(pos) 0.3300 | loss(seq) 0.4218 | grad 3.6533 | lr 0.0010 | time_forward 3.2120 | time_backward 4.2820 |
[2023-09-02 15:52:07,022::train::INFO] [train] Iter 11580 | loss 1.1901 | loss(rot) 0.3429 | loss(pos) 0.3655 | loss(seq) 0.4817 | grad 3.5489 | lr 0.0010 | time_forward 3.6330 | time_backward 5.1890 |
[2023-09-02 15:52:15,270::train::INFO] [train] Iter 11581 | loss 1.6789 | loss(rot) 1.2247 | loss(pos) 0.1045 | loss(seq) 0.3496 | grad 5.1402 | lr 0.0010 | time_forward 3.4730 | time_backward 4.7720 |
[2023-09-02 15:52:23,031::train::INFO] [train] Iter 11582 | loss 2.1082 | loss(rot) 1.9035 | loss(pos) 0.2047 | loss(seq) 0.0000 | grad 5.1943 | lr 0.0010 | time_forward 3.2920 | time_backward 4.4660 |
[2023-09-02 15:52:25,605::train::INFO] [train] Iter 11583 | loss 1.6256 | loss(rot) 1.4318 | loss(pos) 0.1915 | loss(seq) 0.0022 | grad 5.4487 | lr 0.0010 | time_forward 1.1960 | time_backward 1.3740 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.