text
stringlengths
56
1.16k
[2023-09-02 15:19:02,610::train::INFO] [train] Iter 11284 | loss 1.7448 | loss(rot) 1.5178 | loss(pos) 0.1093 | loss(seq) 0.1177 | grad 3.9997 | lr 0.0010 | time_forward 3.7070 | time_backward 5.0850
[2023-09-02 15:19:10,643::train::INFO] [train] Iter 11285 | loss 1.1173 | loss(rot) 0.2304 | loss(pos) 0.3306 | loss(seq) 0.5562 | grad 6.0824 | lr 0.0010 | time_forward 3.0920 | time_backward 4.9370
[2023-09-02 15:19:13,283::train::INFO] [train] Iter 11286 | loss 2.1238 | loss(rot) 1.0553 | loss(pos) 0.6611 | loss(seq) 0.4074 | grad 7.0861 | lr 0.0010 | time_forward 1.1260 | time_backward 1.5100
[2023-09-02 15:19:21,557::train::INFO] [train] Iter 11287 | loss 2.2789 | loss(rot) 1.9714 | loss(pos) 0.1178 | loss(seq) 0.1897 | grad 5.0012 | lr 0.0010 | time_forward 3.6370 | time_backward 4.6330
[2023-09-02 15:19:24,218::train::INFO] [train] Iter 11288 | loss 1.6606 | loss(rot) 0.8058 | loss(pos) 0.2769 | loss(seq) 0.5779 | grad 3.8843 | lr 0.0010 | time_forward 1.2380 | time_backward 1.4200
[2023-09-02 15:19:31,972::train::INFO] [train] Iter 11289 | loss 4.1056 | loss(rot) 0.1648 | loss(pos) 3.9407 | loss(seq) 0.0000 | grad 10.4931 | lr 0.0010 | time_forward 3.2060 | time_backward 4.5440
[2023-09-02 15:19:41,010::train::INFO] [train] Iter 11290 | loss 2.5182 | loss(rot) 2.2100 | loss(pos) 0.3076 | loss(seq) 0.0007 | grad 4.2788 | lr 0.0010 | time_forward 3.6200 | time_backward 5.4140
[2023-09-02 15:19:48,325::train::INFO] [train] Iter 11291 | loss 1.7453 | loss(rot) 0.4340 | loss(pos) 1.1255 | loss(seq) 0.1858 | grad 4.2525 | lr 0.0010 | time_forward 2.9620 | time_backward 4.3370
[2023-09-02 15:20:10,909::train::INFO] [train] Iter 11292 | loss 1.0286 | loss(rot) 0.2921 | loss(pos) 0.4917 | loss(seq) 0.2448 | grad 3.1380 | lr 0.0010 | time_forward 16.0080 | time_backward 6.5720
[2023-09-02 15:20:13,884::train::INFO] [train] Iter 11293 | loss 2.1364 | loss(rot) 1.4754 | loss(pos) 0.1611 | loss(seq) 0.4999 | grad 8.1303 | lr 0.0010 | time_forward 1.4590 | time_backward 1.5120
[2023-09-02 15:20:30,409::train::INFO] [train] Iter 11294 | loss 1.6388 | loss(rot) 0.7285 | loss(pos) 0.2381 | loss(seq) 0.6722 | grad 5.0896 | lr 0.0010 | time_forward 7.1560 | time_backward 9.3650
[2023-09-02 15:20:40,929::train::INFO] [train] Iter 11295 | loss 2.3439 | loss(rot) 2.1629 | loss(pos) 0.1558 | loss(seq) 0.0252 | grad 4.2414 | lr 0.0010 | time_forward 4.7530 | time_backward 5.7630
[2023-09-02 15:20:47,594::train::INFO] [train] Iter 11296 | loss 1.5488 | loss(rot) 1.4145 | loss(pos) 0.1312 | loss(seq) 0.0032 | grad 4.9708 | lr 0.0010 | time_forward 2.8500 | time_backward 3.8110
[2023-09-02 15:20:56,321::train::INFO] [train] Iter 11297 | loss 0.8880 | loss(rot) 0.6456 | loss(pos) 0.2394 | loss(seq) 0.0030 | grad 6.5320 | lr 0.0010 | time_forward 3.7010 | time_backward 5.0240
[2023-09-02 15:21:06,699::train::INFO] [train] Iter 11298 | loss 1.1397 | loss(rot) 0.1925 | loss(pos) 0.6481 | loss(seq) 0.2990 | grad 5.2431 | lr 0.0010 | time_forward 4.1570 | time_backward 6.2160
[2023-09-02 15:21:16,526::train::INFO] [train] Iter 11299 | loss 0.8448 | loss(rot) 0.1783 | loss(pos) 0.6312 | loss(seq) 0.0353 | grad 3.9633 | lr 0.0010 | time_forward 4.2770 | time_backward 5.5280
[2023-09-02 15:21:27,567::train::INFO] [train] Iter 11300 | loss 1.9340 | loss(rot) 1.7625 | loss(pos) 0.1443 | loss(seq) 0.0272 | grad 4.3128 | lr 0.0010 | time_forward 4.9960 | time_backward 6.0420
[2023-09-02 15:21:36,888::train::INFO] [train] Iter 11301 | loss 1.5333 | loss(rot) 0.4785 | loss(pos) 0.6562 | loss(seq) 0.3986 | grad 3.8830 | lr 0.0010 | time_forward 3.7170 | time_backward 5.6000
[2023-09-02 15:21:47,810::train::INFO] [train] Iter 11302 | loss 0.6590 | loss(rot) 0.1937 | loss(pos) 0.4133 | loss(seq) 0.0520 | grad 4.3985 | lr 0.0010 | time_forward 5.6550 | time_backward 5.2640
[2023-09-02 15:21:50,944::train::INFO] [train] Iter 11303 | loss 2.5154 | loss(rot) 1.3073 | loss(pos) 0.6135 | loss(seq) 0.5946 | grad 4.0522 | lr 0.0010 | time_forward 1.3900 | time_backward 1.7400
[2023-09-02 15:21:59,300::train::INFO] [train] Iter 11304 | loss 2.6064 | loss(rot) 2.1327 | loss(pos) 0.0666 | loss(seq) 0.4070 | grad 4.3437 | lr 0.0010 | time_forward 3.1720 | time_backward 5.1800
[2023-09-02 15:22:01,948::train::INFO] [train] Iter 11305 | loss 1.4430 | loss(rot) 0.5184 | loss(pos) 0.4565 | loss(seq) 0.4682 | grad 4.5267 | lr 0.0010 | time_forward 1.1880 | time_backward 1.4560
[2023-09-02 15:22:23,002::train::INFO] [train] Iter 11306 | loss 1.4783 | loss(rot) 1.3138 | loss(pos) 0.1457 | loss(seq) 0.0188 | grad 5.7891 | lr 0.0010 | time_forward 16.0820 | time_backward 4.9680
[2023-09-02 15:22:25,722::train::INFO] [train] Iter 11307 | loss 2.8793 | loss(rot) 2.5212 | loss(pos) 0.2264 | loss(seq) 0.1316 | grad 4.5745 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4320
[2023-09-02 15:22:33,608::train::INFO] [train] Iter 11308 | loss 1.0464 | loss(rot) 0.0812 | loss(pos) 0.9507 | loss(seq) 0.0145 | grad 4.9955 | lr 0.0010 | time_forward 3.3740 | time_backward 4.5080
[2023-09-02 15:22:43,943::train::INFO] [train] Iter 11309 | loss 0.8979 | loss(rot) 0.0133 | loss(pos) 0.8815 | loss(seq) 0.0032 | grad 5.1033 | lr 0.0010 | time_forward 5.6230 | time_backward 4.7080
[2023-09-02 15:22:56,439::train::INFO] [train] Iter 11310 | loss 1.5587 | loss(rot) 0.8662 | loss(pos) 0.1589 | loss(seq) 0.5335 | grad 3.8742 | lr 0.0010 | time_forward 6.6380 | time_backward 5.8550
[2023-09-02 15:23:01,514::train::INFO] [train] Iter 11311 | loss 1.2263 | loss(rot) 0.3213 | loss(pos) 0.5861 | loss(seq) 0.3188 | grad 5.1842 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4010
[2023-09-02 15:23:11,820::train::INFO] [train] Iter 11312 | loss 1.6102 | loss(rot) 1.5313 | loss(pos) 0.0474 | loss(seq) 0.0315 | grad 6.0086 | lr 0.0010 | time_forward 6.0990 | time_backward 4.2030
[2023-09-02 15:23:20,925::train::INFO] [train] Iter 11313 | loss 1.5495 | loss(rot) 0.0719 | loss(pos) 1.4744 | loss(seq) 0.0032 | grad 7.3757 | lr 0.0010 | time_forward 4.7160 | time_backward 4.3860
[2023-09-02 15:23:29,853::train::INFO] [train] Iter 11314 | loss 1.2558 | loss(rot) 0.9422 | loss(pos) 0.0849 | loss(seq) 0.2287 | grad 4.3257 | lr 0.0010 | time_forward 4.2860 | time_backward 4.6380
[2023-09-02 15:23:41,344::train::INFO] [train] Iter 11315 | loss 1.3936 | loss(rot) 0.4892 | loss(pos) 0.2149 | loss(seq) 0.6895 | grad 4.3071 | lr 0.0010 | time_forward 6.6450 | time_backward 4.8420
[2023-09-02 15:24:08,561::train::INFO] [train] Iter 11316 | loss 0.8210 | loss(rot) 0.0486 | loss(pos) 0.7504 | loss(seq) 0.0220 | grad 5.6908 | lr 0.0010 | time_forward 11.3680 | time_backward 15.8450
[2023-09-02 15:24:10,776::train::INFO] [train] Iter 11317 | loss 1.9674 | loss(rot) 0.9876 | loss(pos) 0.3941 | loss(seq) 0.5856 | grad 5.6426 | lr 0.0010 | time_forward 1.0450 | time_backward 1.1660
[2023-09-02 15:24:17,186::train::INFO] [train] Iter 11318 | loss 1.3698 | loss(rot) 1.1428 | loss(pos) 0.0907 | loss(seq) 0.1363 | grad 5.3141 | lr 0.0010 | time_forward 2.8620 | time_backward 3.5440
[2023-09-02 15:24:25,886::train::INFO] [train] Iter 11319 | loss 1.7564 | loss(rot) 0.3572 | loss(pos) 0.5704 | loss(seq) 0.8288 | grad 3.8430 | lr 0.0010 | time_forward 3.4860 | time_backward 5.2110
[2023-09-02 15:24:34,553::train::INFO] [train] Iter 11320 | loss 2.1406 | loss(rot) 1.7922 | loss(pos) 0.3484 | loss(seq) 0.0000 | grad 7.1366 | lr 0.0010 | time_forward 3.8260 | time_backward 4.8370
[2023-09-02 15:24:44,359::train::INFO] [train] Iter 11321 | loss 1.5202 | loss(rot) 1.0567 | loss(pos) 0.1195 | loss(seq) 0.3440 | grad 3.6473 | lr 0.0010 | time_forward 3.8610 | time_backward 5.9410
[2023-09-02 15:24:53,787::train::INFO] [train] Iter 11322 | loss 2.0471 | loss(rot) 1.6249 | loss(pos) 0.1785 | loss(seq) 0.2437 | grad 6.0909 | lr 0.0010 | time_forward 3.8800 | time_backward 5.5340
[2023-09-02 15:25:01,759::train::INFO] [train] Iter 11323 | loss 1.0771 | loss(rot) 0.4536 | loss(pos) 0.2322 | loss(seq) 0.3913 | grad 3.4858 | lr 0.0010 | time_forward 3.4450 | time_backward 4.5230
[2023-09-02 15:25:09,421::train::INFO] [train] Iter 11324 | loss 2.9477 | loss(rot) 2.0580 | loss(pos) 0.3437 | loss(seq) 0.5461 | grad 3.8492 | lr 0.0010 | time_forward 3.1930 | time_backward 4.4650
[2023-09-02 15:25:17,433::train::INFO] [train] Iter 11325 | loss 1.2074 | loss(rot) 1.0262 | loss(pos) 0.1744 | loss(seq) 0.0069 | grad 6.3238 | lr 0.0010 | time_forward 3.4860 | time_backward 4.5220
[2023-09-02 15:25:26,785::train::INFO] [train] Iter 11326 | loss 1.7206 | loss(rot) 1.0287 | loss(pos) 0.1324 | loss(seq) 0.5595 | grad 4.6717 | lr 0.0010 | time_forward 3.7330 | time_backward 5.6140
[2023-09-02 15:25:30,111::train::INFO] [train] Iter 11327 | loss 2.0025 | loss(rot) 1.0899 | loss(pos) 0.2505 | loss(seq) 0.6621 | grad 3.5254 | lr 0.0010 | time_forward 1.3850 | time_backward 1.9380
[2023-09-02 15:25:37,796::train::INFO] [train] Iter 11328 | loss 0.9459 | loss(rot) 0.1586 | loss(pos) 0.6545 | loss(seq) 0.1329 | grad 4.6359 | lr 0.0010 | time_forward 3.3090 | time_backward 4.3710
[2023-09-02 15:25:45,053::train::INFO] [train] Iter 11329 | loss 1.3192 | loss(rot) 0.8836 | loss(pos) 0.1457 | loss(seq) 0.2899 | grad 4.9825 | lr 0.0010 | time_forward 3.0590 | time_backward 4.1950
[2023-09-02 15:25:51,065::train::INFO] [train] Iter 11330 | loss 2.5000 | loss(rot) 1.7895 | loss(pos) 0.2994 | loss(seq) 0.4111 | grad 4.5076 | lr 0.0010 | time_forward 2.5860 | time_backward 3.4220
[2023-09-02 15:25:53,922::train::INFO] [train] Iter 11331 | loss 1.2987 | loss(rot) 1.1286 | loss(pos) 0.1700 | loss(seq) 0.0000 | grad 4.5613 | lr 0.0010 | time_forward 1.2750 | time_backward 1.5780
[2023-09-02 15:25:56,681::train::INFO] [train] Iter 11332 | loss 1.9386 | loss(rot) 1.6725 | loss(pos) 0.1247 | loss(seq) 0.1415 | grad 6.4683 | lr 0.0010 | time_forward 1.3720 | time_backward 1.3840
[2023-09-02 15:26:00,423::train::INFO] [train] Iter 11333 | loss 2.2494 | loss(rot) 1.5280 | loss(pos) 0.2316 | loss(seq) 0.4899 | grad 4.7136 | lr 0.0010 | time_forward 1.8390 | time_backward 1.8990
[2023-09-02 15:26:07,647::train::INFO] [train] Iter 11334 | loss 1.1153 | loss(rot) 0.5336 | loss(pos) 0.2969 | loss(seq) 0.2849 | grad 4.9140 | lr 0.0010 | time_forward 3.7340 | time_backward 3.4870
[2023-09-02 15:26:15,026::train::INFO] [train] Iter 11335 | loss 0.8034 | loss(rot) 0.1301 | loss(pos) 0.6267 | loss(seq) 0.0466 | grad 4.6048 | lr 0.0010 | time_forward 3.0070 | time_backward 4.3690
[2023-09-02 15:26:22,182::train::INFO] [train] Iter 11336 | loss 1.1359 | loss(rot) 0.1266 | loss(pos) 0.7098 | loss(seq) 0.2995 | grad 4.9623 | lr 0.0010 | time_forward 2.9580 | time_backward 4.1950
[2023-09-02 15:26:26,211::train::INFO] [train] Iter 11337 | loss 1.3126 | loss(rot) 1.1317 | loss(pos) 0.0424 | loss(seq) 0.1385 | grad 3.8949 | lr 0.0010 | time_forward 1.7970 | time_backward 2.2230
[2023-09-02 15:26:34,338::train::INFO] [train] Iter 11338 | loss 1.8632 | loss(rot) 1.2509 | loss(pos) 0.1036 | loss(seq) 0.5087 | grad 3.9200 | lr 0.0010 | time_forward 3.4280 | time_backward 4.6700
[2023-09-02 15:26:40,529::train::INFO] [train] Iter 11339 | loss 1.4265 | loss(rot) 0.7220 | loss(pos) 0.2030 | loss(seq) 0.5016 | grad 3.3753 | lr 0.0010 | time_forward 2.6840 | time_backward 3.5040
[2023-09-02 15:26:48,794::train::INFO] [train] Iter 11340 | loss 1.2535 | loss(rot) 1.1395 | loss(pos) 0.1069 | loss(seq) 0.0071 | grad 6.0808 | lr 0.0010 | time_forward 3.3730 | time_backward 4.8890
[2023-09-02 15:26:57,017::train::INFO] [train] Iter 11341 | loss 1.3440 | loss(rot) 0.5908 | loss(pos) 0.2768 | loss(seq) 0.4764 | grad 3.1469 | lr 0.0010 | time_forward 3.1600 | time_backward 5.0590
[2023-09-02 15:26:59,964::train::INFO] [train] Iter 11342 | loss 3.6550 | loss(rot) 0.0101 | loss(pos) 3.6449 | loss(seq) 0.0000 | grad 11.2856 | lr 0.0010 | time_forward 1.2840 | time_backward 1.6590
[2023-09-02 15:27:07,754::train::INFO] [train] Iter 11343 | loss 0.5123 | loss(rot) 0.1271 | loss(pos) 0.3452 | loss(seq) 0.0399 | grad 3.6511 | lr 0.0010 | time_forward 3.2420 | time_backward 4.5460
[2023-09-02 15:27:10,322::train::INFO] [train] Iter 11344 | loss 1.6417 | loss(rot) 0.6634 | loss(pos) 0.4270 | loss(seq) 0.5513 | grad 4.3617 | lr 0.0010 | time_forward 1.1920 | time_backward 1.3720
[2023-09-02 15:27:12,479::train::INFO] [train] Iter 11345 | loss 1.9834 | loss(rot) 1.8609 | loss(pos) 0.1083 | loss(seq) 0.0142 | grad 5.1408 | lr 0.0010 | time_forward 1.0160 | time_backward 1.1380
[2023-09-02 15:27:14,995::train::INFO] [train] Iter 11346 | loss 2.0684 | loss(rot) 1.8645 | loss(pos) 0.2039 | loss(seq) 0.0000 | grad 7.1039 | lr 0.0010 | time_forward 1.1570 | time_backward 1.3560
[2023-09-02 15:27:22,872::train::INFO] [train] Iter 11347 | loss 0.9628 | loss(rot) 0.1339 | loss(pos) 0.2017 | loss(seq) 0.6272 | grad 3.1389 | lr 0.0010 | time_forward 3.3070 | time_backward 4.5650
[2023-09-02 15:27:30,989::train::INFO] [train] Iter 11348 | loss 1.6163 | loss(rot) 1.4852 | loss(pos) 0.1048 | loss(seq) 0.0263 | grad 7.2014 | lr 0.0010 | time_forward 3.3850 | time_backward 4.7280
[2023-09-02 15:27:36,579::train::INFO] [train] Iter 11349 | loss 0.8681 | loss(rot) 0.6158 | loss(pos) 0.2523 | loss(seq) 0.0000 | grad 7.8879 | lr 0.0010 | time_forward 2.4540 | time_backward 3.1330
[2023-09-02 15:27:44,500::train::INFO] [train] Iter 11350 | loss 1.3283 | loss(rot) 0.8531 | loss(pos) 0.1507 | loss(seq) 0.3245 | grad 4.6061 | lr 0.0010 | time_forward 3.2310 | time_backward 4.6860
[2023-09-02 15:27:52,280::train::INFO] [train] Iter 11351 | loss 1.3385 | loss(rot) 1.0840 | loss(pos) 0.1572 | loss(seq) 0.0972 | grad 5.4597 | lr 0.0010 | time_forward 3.2530 | time_backward 4.5230
[2023-09-02 15:27:59,720::train::INFO] [train] Iter 11352 | loss 1.6440 | loss(rot) 0.3952 | loss(pos) 1.2169 | loss(seq) 0.0319 | grad 7.8844 | lr 0.0010 | time_forward 3.0550 | time_backward 4.3810
[2023-09-02 15:28:06,975::train::INFO] [train] Iter 11353 | loss 1.8132 | loss(rot) 0.1787 | loss(pos) 1.6289 | loss(seq) 0.0056 | grad 5.8554 | lr 0.0010 | time_forward 3.1430 | time_backward 4.1080
[2023-09-02 15:28:15,239::train::INFO] [train] Iter 11354 | loss 2.3586 | loss(rot) 1.9739 | loss(pos) 0.1380 | loss(seq) 0.2467 | grad 5.3259 | lr 0.0010 | time_forward 3.1950 | time_backward 5.0650
[2023-09-02 15:28:18,171::train::INFO] [train] Iter 11355 | loss 2.4599 | loss(rot) 1.5929 | loss(pos) 0.4435 | loss(seq) 0.4235 | grad 3.9022 | lr 0.0010 | time_forward 1.2860 | time_backward 1.6430
[2023-09-02 15:28:21,339::train::INFO] [train] Iter 11356 | loss 2.1358 | loss(rot) 1.2085 | loss(pos) 0.4277 | loss(seq) 0.4996 | grad 3.8337 | lr 0.0010 | time_forward 1.3210 | time_backward 1.8440
[2023-09-02 15:28:28,231::train::INFO] [train] Iter 11357 | loss 0.7904 | loss(rot) 0.2336 | loss(pos) 0.3437 | loss(seq) 0.2131 | grad 2.5915 | lr 0.0010 | time_forward 2.9190 | time_backward 3.9690
[2023-09-02 15:28:36,420::train::INFO] [train] Iter 11358 | loss 2.1608 | loss(rot) 1.8210 | loss(pos) 0.1152 | loss(seq) 0.2246 | grad 5.4035 | lr 0.0010 | time_forward 3.3440 | time_backward 4.8410
[2023-09-02 15:28:44,132::train::INFO] [train] Iter 11359 | loss 2.4875 | loss(rot) 2.3053 | loss(pos) 0.1236 | loss(seq) 0.0586 | grad 4.0272 | lr 0.0010 | time_forward 3.1270 | time_backward 4.5720
[2023-09-02 15:29:04,217::train::INFO] [train] Iter 11360 | loss 1.1845 | loss(rot) 0.5687 | loss(pos) 0.2363 | loss(seq) 0.3795 | grad 5.5749 | lr 0.0010 | time_forward 13.1640 | time_backward 6.9180
[2023-09-02 15:29:12,377::train::INFO] [train] Iter 11361 | loss 1.9447 | loss(rot) 1.6970 | loss(pos) 0.1593 | loss(seq) 0.0883 | grad 5.3137 | lr 0.0010 | time_forward 3.2490 | time_backward 4.9070
[2023-09-02 15:29:19,293::train::INFO] [train] Iter 11362 | loss 1.6528 | loss(rot) 1.2529 | loss(pos) 0.0984 | loss(seq) 0.3015 | grad 3.2903 | lr 0.0010 | time_forward 2.9650 | time_backward 3.9480
[2023-09-02 15:29:27,606::train::INFO] [train] Iter 11363 | loss 1.8094 | loss(rot) 0.7262 | loss(pos) 0.4935 | loss(seq) 0.5897 | grad 3.7982 | lr 0.0010 | time_forward 3.5560 | time_backward 4.7530
[2023-09-02 15:29:30,198::train::INFO] [train] Iter 11364 | loss 1.8518 | loss(rot) 1.2679 | loss(pos) 0.2237 | loss(seq) 0.3602 | grad 6.9782 | lr 0.0010 | time_forward 1.2060 | time_backward 1.3820
[2023-09-02 15:29:38,141::train::INFO] [train] Iter 11365 | loss 2.1049 | loss(rot) 1.2338 | loss(pos) 0.3641 | loss(seq) 0.5070 | grad 6.6776 | lr 0.0010 | time_forward 3.3790 | time_backward 4.5620
[2023-09-02 15:29:41,078::train::INFO] [train] Iter 11366 | loss 2.2454 | loss(rot) 2.0513 | loss(pos) 0.1935 | loss(seq) 0.0007 | grad 5.4699 | lr 0.0010 | time_forward 1.3150 | time_backward 1.6190
[2023-09-02 15:29:43,662::train::INFO] [train] Iter 11367 | loss 1.1614 | loss(rot) 0.9696 | loss(pos) 0.1118 | loss(seq) 0.0799 | grad 8.7348 | lr 0.0010 | time_forward 1.2060 | time_backward 1.3740
[2023-09-02 15:29:51,171::train::INFO] [train] Iter 11368 | loss 1.5842 | loss(rot) 1.3568 | loss(pos) 0.2243 | loss(seq) 0.0031 | grad 7.5123 | lr 0.0010 | time_forward 3.2410 | time_backward 4.2650
[2023-09-02 15:29:58,449::train::INFO] [train] Iter 11369 | loss 1.0624 | loss(rot) 0.2475 | loss(pos) 0.4549 | loss(seq) 0.3600 | grad 3.2910 | lr 0.0010 | time_forward 3.1440 | time_backward 4.1290
[2023-09-02 15:30:04,468::train::INFO] [train] Iter 11370 | loss 2.1050 | loss(rot) 1.5190 | loss(pos) 0.1673 | loss(seq) 0.4187 | grad 5.1484 | lr 0.0010 | time_forward 2.6090 | time_backward 3.4070
[2023-09-02 15:30:11,683::train::INFO] [train] Iter 11371 | loss 0.8107 | loss(rot) 0.2284 | loss(pos) 0.5287 | loss(seq) 0.0536 | grad 4.9865 | lr 0.0010 | time_forward 3.1470 | time_backward 4.0630
[2023-09-02 15:30:14,229::train::INFO] [train] Iter 11372 | loss 1.3885 | loss(rot) 1.1270 | loss(pos) 0.2115 | loss(seq) 0.0501 | grad 5.6429 | lr 0.0010 | time_forward 1.1780 | time_backward 1.3640
[2023-09-02 15:30:20,214::train::INFO] [train] Iter 11373 | loss 2.3924 | loss(rot) 0.0355 | loss(pos) 2.3548 | loss(seq) 0.0022 | grad 11.0537 | lr 0.0010 | time_forward 2.5680 | time_backward 3.4140
[2023-09-02 15:30:27,522::train::INFO] [train] Iter 11374 | loss 1.4918 | loss(rot) 0.7828 | loss(pos) 0.1924 | loss(seq) 0.5166 | grad 3.8775 | lr 0.0010 | time_forward 2.9630 | time_backward 4.3430
[2023-09-02 15:30:30,130::train::INFO] [train] Iter 11375 | loss 1.8223 | loss(rot) 1.6506 | loss(pos) 0.1488 | loss(seq) 0.0229 | grad 5.5228 | lr 0.0010 | time_forward 1.1940 | time_backward 1.4110
[2023-09-02 15:30:38,179::train::INFO] [train] Iter 11376 | loss 2.0809 | loss(rot) 1.2721 | loss(pos) 0.2756 | loss(seq) 0.5332 | grad 3.0832 | lr 0.0010 | time_forward 3.4160 | time_backward 4.6290
[2023-09-02 15:30:43,814::train::INFO] [train] Iter 11377 | loss 2.4388 | loss(rot) 1.8605 | loss(pos) 0.1457 | loss(seq) 0.4326 | grad 3.0097 | lr 0.0010 | time_forward 2.2770 | time_backward 3.3550
[2023-09-02 15:30:52,099::train::INFO] [train] Iter 11378 | loss 1.4358 | loss(rot) 1.2833 | loss(pos) 0.0561 | loss(seq) 0.0963 | grad 6.9193 | lr 0.0010 | time_forward 3.2950 | time_backward 4.9860
[2023-09-02 15:30:59,056::train::INFO] [train] Iter 11379 | loss 1.1057 | loss(rot) 0.4924 | loss(pos) 0.5131 | loss(seq) 0.1002 | grad 4.9237 | lr 0.0010 | time_forward 3.0010 | time_backward 3.9520
[2023-09-02 15:31:05,470::train::INFO] [train] Iter 11380 | loss 1.9352 | loss(rot) 1.7432 | loss(pos) 0.0993 | loss(seq) 0.0927 | grad 4.6273 | lr 0.0010 | time_forward 2.7590 | time_backward 3.6520
[2023-09-02 15:31:08,586::train::INFO] [train] Iter 11381 | loss 0.7448 | loss(rot) 0.2839 | loss(pos) 0.4105 | loss(seq) 0.0504 | grad 2.4955 | lr 0.0010 | time_forward 1.3450 | time_backward 1.7670
[2023-09-02 15:31:16,394::train::INFO] [train] Iter 11382 | loss 0.9053 | loss(rot) 0.2671 | loss(pos) 0.1636 | loss(seq) 0.4746 | grad 3.7424 | lr 0.0010 | time_forward 3.1880 | time_backward 4.6170
[2023-09-02 15:31:25,123::train::INFO] [train] Iter 11383 | loss 2.2862 | loss(rot) 1.2693 | loss(pos) 0.5089 | loss(seq) 0.5080 | grad 4.0148 | lr 0.0010 | time_forward 3.6720 | time_backward 5.0530