text
stringlengths 56
1.16k
|
---|
[2023-09-02 15:07:45,313::train::INFO] [train] Iter 11184 | loss 1.8899 | loss(rot) 1.6786 | loss(pos) 0.2107 | loss(seq) 0.0007 | grad 4.5222 | lr 0.0010 | time_forward 3.6490 | time_backward 5.4780 |
[2023-09-02 15:07:53,195::train::INFO] [train] Iter 11185 | loss 1.6290 | loss(rot) 0.8242 | loss(pos) 0.3042 | loss(seq) 0.5005 | grad 4.5158 | lr 0.0010 | time_forward 3.4200 | time_backward 4.4460 |
[2023-09-02 15:08:02,513::train::INFO] [train] Iter 11186 | loss 2.3827 | loss(rot) 1.7573 | loss(pos) 0.1535 | loss(seq) 0.4718 | grad 3.9263 | lr 0.0010 | time_forward 3.8950 | time_backward 5.4200 |
[2023-09-02 15:08:10,930::train::INFO] [train] Iter 11187 | loss 1.2834 | loss(rot) 1.0716 | loss(pos) 0.2032 | loss(seq) 0.0086 | grad 4.0974 | lr 0.0010 | time_forward 3.5330 | time_backward 4.8670 |
[2023-09-02 15:08:13,597::train::INFO] [train] Iter 11188 | loss 2.0430 | loss(rot) 1.7839 | loss(pos) 0.0897 | loss(seq) 0.1694 | grad 3.5776 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4260 |
[2023-09-02 15:08:21,676::train::INFO] [train] Iter 11189 | loss 2.4936 | loss(rot) 2.2696 | loss(pos) 0.2083 | loss(seq) 0.0158 | grad 5.2213 | lr 0.0010 | time_forward 3.4930 | time_backward 4.5840 |
[2023-09-02 15:08:28,841::train::INFO] [train] Iter 11190 | loss 1.2422 | loss(rot) 0.5450 | loss(pos) 0.1758 | loss(seq) 0.5214 | grad 5.1967 | lr 0.0010 | time_forward 3.0920 | time_backward 4.0680 |
[2023-09-02 15:08:36,874::train::INFO] [train] Iter 11191 | loss 0.9483 | loss(rot) 0.4005 | loss(pos) 0.2377 | loss(seq) 0.3101 | grad 5.4070 | lr 0.0010 | time_forward 3.3000 | time_backward 4.7290 |
[2023-09-02 15:08:39,657::train::INFO] [train] Iter 11192 | loss 1.9267 | loss(rot) 1.7428 | loss(pos) 0.0880 | loss(seq) 0.0958 | grad 6.6250 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4710 |
[2023-09-02 15:08:42,185::train::INFO] [train] Iter 11193 | loss 2.1920 | loss(rot) 1.2500 | loss(pos) 0.5638 | loss(seq) 0.3781 | grad 5.4681 | lr 0.0010 | time_forward 1.2010 | time_backward 1.3030 |
[2023-09-02 15:08:45,070::train::INFO] [train] Iter 11194 | loss 1.9675 | loss(rot) 1.2105 | loss(pos) 0.2088 | loss(seq) 0.5482 | grad 5.2770 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5690 |
[2023-09-02 15:08:53,342::train::INFO] [train] Iter 11195 | loss 1.9823 | loss(rot) 1.7943 | loss(pos) 0.1874 | loss(seq) 0.0006 | grad 5.1363 | lr 0.0010 | time_forward 3.4320 | time_backward 4.8360 |
[2023-09-02 15:08:55,939::train::INFO] [train] Iter 11196 | loss 2.3586 | loss(rot) 2.2575 | loss(pos) 0.0969 | loss(seq) 0.0043 | grad 11.6101 | lr 0.0010 | time_forward 1.1950 | time_backward 1.3980 |
[2023-09-02 15:09:07,610::train::INFO] [train] Iter 11197 | loss 0.8392 | loss(rot) 0.5414 | loss(pos) 0.0490 | loss(seq) 0.2487 | grad 3.9034 | lr 0.0010 | time_forward 5.7890 | time_backward 5.8780 |
[2023-09-02 15:09:16,748::train::INFO] [train] Iter 11198 | loss 0.9569 | loss(rot) 0.1203 | loss(pos) 0.8152 | loss(seq) 0.0214 | grad 6.8156 | lr 0.0010 | time_forward 3.7550 | time_backward 5.3790 |
[2023-09-02 15:09:25,957::train::INFO] [train] Iter 11199 | loss 2.1212 | loss(rot) 1.9469 | loss(pos) 0.1730 | loss(seq) 0.0013 | grad 4.9077 | lr 0.0010 | time_forward 3.7580 | time_backward 5.4480 |
[2023-09-02 15:09:28,404::train::INFO] [train] Iter 11200 | loss 1.4150 | loss(rot) 1.3127 | loss(pos) 0.1020 | loss(seq) 0.0003 | grad 6.0004 | lr 0.0010 | time_forward 1.1490 | time_backward 1.2960 |
[2023-09-02 15:09:35,845::train::INFO] [train] Iter 11201 | loss 2.7364 | loss(rot) 2.5079 | loss(pos) 0.1947 | loss(seq) 0.0337 | grad 8.1509 | lr 0.0010 | time_forward 3.1690 | time_backward 4.2680 |
[2023-09-02 15:09:45,215::train::INFO] [train] Iter 11202 | loss 1.9242 | loss(rot) 1.1232 | loss(pos) 0.1393 | loss(seq) 0.6617 | grad 4.4981 | lr 0.0010 | time_forward 3.9600 | time_backward 5.4070 |
[2023-09-02 15:09:53,652::train::INFO] [train] Iter 11203 | loss 1.5477 | loss(rot) 1.3871 | loss(pos) 0.1575 | loss(seq) 0.0031 | grad 7.2000 | lr 0.0010 | time_forward 3.5860 | time_backward 4.8480 |
[2023-09-02 15:10:01,351::train::INFO] [train] Iter 11204 | loss 0.6575 | loss(rot) 0.2603 | loss(pos) 0.2907 | loss(seq) 0.1065 | grad 3.5988 | lr 0.0010 | time_forward 3.3140 | time_backward 4.3800 |
[2023-09-02 15:10:10,573::train::INFO] [train] Iter 11205 | loss 1.3459 | loss(rot) 0.7053 | loss(pos) 0.2093 | loss(seq) 0.4313 | grad 3.6975 | lr 0.0010 | time_forward 3.8610 | time_backward 5.3570 |
[2023-09-02 15:10:19,750::train::INFO] [train] Iter 11206 | loss 2.4769 | loss(rot) 1.4304 | loss(pos) 0.5590 | loss(seq) 0.4874 | grad 4.6953 | lr 0.0010 | time_forward 3.8940 | time_backward 5.2810 |
[2023-09-02 15:10:27,936::train::INFO] [train] Iter 11207 | loss 1.4866 | loss(rot) 0.6078 | loss(pos) 0.5064 | loss(seq) 0.3723 | grad 5.3979 | lr 0.0010 | time_forward 3.4350 | time_backward 4.7480 |
[2023-09-02 15:10:30,582::train::INFO] [train] Iter 11208 | loss 1.1426 | loss(rot) 0.8017 | loss(pos) 0.0882 | loss(seq) 0.2527 | grad 5.1452 | lr 0.0010 | time_forward 1.1870 | time_backward 1.4550 |
[2023-09-02 15:10:33,209::train::INFO] [train] Iter 11209 | loss 2.1190 | loss(rot) 1.8928 | loss(pos) 0.0863 | loss(seq) 0.1399 | grad 7.7725 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3930 |
[2023-09-02 15:10:35,301::train::INFO] [train] Iter 11210 | loss 1.5648 | loss(rot) 0.6032 | loss(pos) 0.2486 | loss(seq) 0.7129 | grad 12.0438 | lr 0.0010 | time_forward 0.9420 | time_backward 1.1460 |
[2023-09-02 15:10:37,917::train::INFO] [train] Iter 11211 | loss 1.0421 | loss(rot) 0.2083 | loss(pos) 0.7849 | loss(seq) 0.0489 | grad 4.2124 | lr 0.0010 | time_forward 1.2240 | time_backward 1.3690 |
[2023-09-02 15:10:47,483::train::INFO] [train] Iter 11212 | loss 2.2118 | loss(rot) 1.2088 | loss(pos) 0.3415 | loss(seq) 0.6614 | grad 3.6090 | lr 0.0010 | time_forward 3.6330 | time_backward 5.9290 |
[2023-09-02 15:10:56,697::train::INFO] [train] Iter 11213 | loss 2.6112 | loss(rot) 2.3423 | loss(pos) 0.2527 | loss(seq) 0.0162 | grad 4.2768 | lr 0.0010 | time_forward 4.2740 | time_backward 4.9370 |
[2023-09-02 15:10:59,419::train::INFO] [train] Iter 11214 | loss 1.2306 | loss(rot) 0.3456 | loss(pos) 0.4462 | loss(seq) 0.4387 | grad 3.7396 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4600 |
[2023-09-02 15:11:08,153::train::INFO] [train] Iter 11215 | loss 0.9862 | loss(rot) 0.2169 | loss(pos) 0.2941 | loss(seq) 0.4752 | grad 4.4164 | lr 0.0010 | time_forward 3.4530 | time_backward 5.2770 |
[2023-09-02 15:11:20,851::train::INFO] [train] Iter 11216 | loss 1.9841 | loss(rot) 1.1241 | loss(pos) 0.5912 | loss(seq) 0.2689 | grad 6.9877 | lr 0.0010 | time_forward 6.5400 | time_backward 6.1540 |
[2023-09-02 15:11:29,640::train::INFO] [train] Iter 11217 | loss 1.0529 | loss(rot) 0.6107 | loss(pos) 0.2598 | loss(seq) 0.1823 | grad 2.9922 | lr 0.0010 | time_forward 3.8560 | time_backward 4.9260 |
[2023-09-02 15:11:40,093::train::INFO] [train] Iter 11218 | loss 1.1442 | loss(rot) 0.1955 | loss(pos) 0.9120 | loss(seq) 0.0367 | grad 4.2799 | lr 0.0010 | time_forward 4.0130 | time_backward 6.4320 |
[2023-09-02 15:11:49,418::train::INFO] [train] Iter 11219 | loss 1.6797 | loss(rot) 0.0576 | loss(pos) 1.6144 | loss(seq) 0.0077 | grad 7.3383 | lr 0.0010 | time_forward 3.8980 | time_backward 5.4140 |
[2023-09-02 15:11:57,298::train::INFO] [train] Iter 11220 | loss 0.6866 | loss(rot) 0.2012 | loss(pos) 0.4498 | loss(seq) 0.0356 | grad 4.1652 | lr 0.0010 | time_forward 3.4060 | time_backward 4.4720 |
[2023-09-02 15:12:00,057::train::INFO] [train] Iter 11221 | loss 1.6318 | loss(rot) 1.4552 | loss(pos) 0.1453 | loss(seq) 0.0313 | grad 5.3018 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4720 |
[2023-09-02 15:12:02,819::train::INFO] [train] Iter 11222 | loss 1.5992 | loss(rot) 0.5742 | loss(pos) 0.9660 | loss(seq) 0.0590 | grad 5.8127 | lr 0.0010 | time_forward 1.2500 | time_backward 1.5080 |
[2023-09-02 15:12:06,212::train::INFO] [train] Iter 11223 | loss 1.0569 | loss(rot) 0.3843 | loss(pos) 0.4565 | loss(seq) 0.2161 | grad 2.9574 | lr 0.0010 | time_forward 1.5020 | time_backward 1.8880 |
[2023-09-02 15:12:08,702::train::INFO] [train] Iter 11224 | loss 2.9995 | loss(rot) 2.0150 | loss(pos) 0.4729 | loss(seq) 0.5116 | grad 4.9915 | lr 0.0010 | time_forward 1.2360 | time_backward 1.2500 |
[2023-09-02 15:12:17,190::train::INFO] [train] Iter 11225 | loss 1.4953 | loss(rot) 1.3115 | loss(pos) 0.1826 | loss(seq) 0.0012 | grad 7.3630 | lr 0.0010 | time_forward 3.7200 | time_backward 4.7650 |
[2023-09-02 15:12:20,554::train::INFO] [train] Iter 11226 | loss 2.2441 | loss(rot) 1.8573 | loss(pos) 0.2866 | loss(seq) 0.1002 | grad 4.2547 | lr 0.0010 | time_forward 1.4690 | time_backward 1.8910 |
[2023-09-02 15:12:28,519::train::INFO] [train] Iter 11227 | loss 1.1386 | loss(rot) 0.9431 | loss(pos) 0.1524 | loss(seq) 0.0431 | grad 4.1310 | lr 0.0010 | time_forward 3.4900 | time_backward 4.4730 |
[2023-09-02 15:12:36,137::train::INFO] [train] Iter 11228 | loss 1.2143 | loss(rot) 0.1006 | loss(pos) 1.1018 | loss(seq) 0.0119 | grad 6.3694 | lr 0.0010 | time_forward 2.9690 | time_backward 4.5330 |
[2023-09-02 15:12:39,338::train::INFO] [train] Iter 11229 | loss 1.7605 | loss(rot) 0.7963 | loss(pos) 0.6147 | loss(seq) 0.3494 | grad 4.6106 | lr 0.0010 | time_forward 1.5260 | time_backward 1.6710 |
[2023-09-02 15:12:42,083::train::INFO] [train] Iter 11230 | loss 1.8158 | loss(rot) 1.5601 | loss(pos) 0.2545 | loss(seq) 0.0013 | grad 6.6613 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4800 |
[2023-09-02 15:12:44,854::train::INFO] [train] Iter 11231 | loss 1.5486 | loss(rot) 1.3874 | loss(pos) 0.1429 | loss(seq) 0.0183 | grad 5.8123 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4530 |
[2023-09-02 15:12:54,134::train::INFO] [train] Iter 11232 | loss 1.3169 | loss(rot) 0.0533 | loss(pos) 1.2455 | loss(seq) 0.0181 | grad 8.4117 | lr 0.0010 | time_forward 3.8160 | time_backward 5.4600 |
[2023-09-02 15:13:02,636::train::INFO] [train] Iter 11233 | loss 3.2818 | loss(rot) 0.0214 | loss(pos) 3.2596 | loss(seq) 0.0007 | grad 14.3857 | lr 0.0010 | time_forward 3.8220 | time_backward 4.6770 |
[2023-09-02 15:13:12,029::train::INFO] [train] Iter 11234 | loss 1.2419 | loss(rot) 0.8575 | loss(pos) 0.0645 | loss(seq) 0.3198 | grad 4.0429 | lr 0.0010 | time_forward 4.1370 | time_backward 5.2530 |
[2023-09-02 15:13:20,418::train::INFO] [train] Iter 11235 | loss 2.5806 | loss(rot) 2.3551 | loss(pos) 0.0972 | loss(seq) 0.1283 | grad 3.5803 | lr 0.0010 | time_forward 3.8380 | time_backward 4.5480 |
[2023-09-02 15:13:29,038::train::INFO] [train] Iter 11236 | loss 1.9024 | loss(rot) 1.5231 | loss(pos) 0.2086 | loss(seq) 0.1707 | grad 4.9976 | lr 0.0010 | time_forward 3.3820 | time_backward 4.9940 |
[2023-09-02 15:13:32,152::train::INFO] [train] Iter 11237 | loss 2.0499 | loss(rot) 1.8173 | loss(pos) 0.2263 | loss(seq) 0.0063 | grad 5.9938 | lr 0.0010 | time_forward 1.6660 | time_backward 1.4440 |
[2023-09-02 15:13:34,971::train::INFO] [train] Iter 11238 | loss 1.2155 | loss(rot) 0.5451 | loss(pos) 0.2214 | loss(seq) 0.4490 | grad 2.9613 | lr 0.0010 | time_forward 1.3710 | time_backward 1.4240 |
[2023-09-02 15:13:38,373::train::INFO] [train] Iter 11239 | loss 1.7093 | loss(rot) 1.1967 | loss(pos) 0.1410 | loss(seq) 0.3716 | grad 4.0355 | lr 0.0010 | time_forward 1.4250 | time_backward 1.9750 |
[2023-09-02 15:13:41,071::train::INFO] [train] Iter 11240 | loss 2.6570 | loss(rot) 2.2973 | loss(pos) 0.1343 | loss(seq) 0.2254 | grad 3.7319 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4580 |
[2023-09-02 15:13:43,746::train::INFO] [train] Iter 11241 | loss 1.3844 | loss(rot) 1.1652 | loss(pos) 0.1560 | loss(seq) 0.0632 | grad 8.4427 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4200 |
[2023-09-02 15:13:52,861::train::INFO] [train] Iter 11242 | loss 2.0101 | loss(rot) 1.6079 | loss(pos) 0.0705 | loss(seq) 0.3316 | grad 4.8897 | lr 0.0010 | time_forward 3.7080 | time_backward 5.4030 |
[2023-09-02 15:14:01,660::train::INFO] [train] Iter 11243 | loss 1.0939 | loss(rot) 0.3845 | loss(pos) 0.3700 | loss(seq) 0.3394 | grad 4.4549 | lr 0.0010 | time_forward 3.9100 | time_backward 4.8860 |
[2023-09-02 15:14:09,231::train::INFO] [train] Iter 11244 | loss 2.0169 | loss(rot) 0.3803 | loss(pos) 1.6238 | loss(seq) 0.0128 | grad 6.6259 | lr 0.0010 | time_forward 3.3750 | time_backward 4.1920 |
[2023-09-02 15:14:15,950::train::INFO] [train] Iter 11245 | loss 1.0879 | loss(rot) 0.7326 | loss(pos) 0.0977 | loss(seq) 0.2576 | grad 5.0191 | lr 0.0010 | time_forward 2.7310 | time_backward 3.9850 |
[2023-09-02 15:14:25,553::train::INFO] [train] Iter 11246 | loss 0.6172 | loss(rot) 0.1120 | loss(pos) 0.4891 | loss(seq) 0.0161 | grad 3.9156 | lr 0.0010 | time_forward 3.7480 | time_backward 5.8510 |
[2023-09-02 15:14:34,464::train::INFO] [train] Iter 11247 | loss 2.3296 | loss(rot) 1.8476 | loss(pos) 0.4820 | loss(seq) 0.0000 | grad 5.8153 | lr 0.0010 | time_forward 3.7010 | time_backward 5.2060 |
[2023-09-02 15:14:44,030::train::INFO] [train] Iter 11248 | loss 2.9272 | loss(rot) 0.1234 | loss(pos) 2.8020 | loss(seq) 0.0018 | grad 7.0396 | lr 0.0010 | time_forward 3.9630 | time_backward 5.5990 |
[2023-09-02 15:14:51,984::train::INFO] [train] Iter 11249 | loss 1.4305 | loss(rot) 0.5842 | loss(pos) 0.4777 | loss(seq) 0.3686 | grad 3.6205 | lr 0.0010 | time_forward 3.4070 | time_backward 4.5310 |
[2023-09-02 15:14:54,400::train::INFO] [train] Iter 11250 | loss 1.3944 | loss(rot) 1.2375 | loss(pos) 0.0825 | loss(seq) 0.0744 | grad 7.8987 | lr 0.0010 | time_forward 1.2120 | time_backward 1.2010 |
[2023-09-02 15:15:03,975::train::INFO] [train] Iter 11251 | loss 1.4016 | loss(rot) 0.1586 | loss(pos) 0.7183 | loss(seq) 0.5247 | grad 5.0984 | lr 0.0010 | time_forward 3.7990 | time_backward 5.7590 |
[2023-09-02 15:15:11,806::train::INFO] [train] Iter 11252 | loss 2.0003 | loss(rot) 1.8290 | loss(pos) 0.1513 | loss(seq) 0.0200 | grad 4.0510 | lr 0.0010 | time_forward 3.1240 | time_backward 4.7040 |
[2023-09-02 15:15:17,161::train::INFO] [train] Iter 11253 | loss 2.0124 | loss(rot) 1.6031 | loss(pos) 0.2290 | loss(seq) 0.1802 | grad 4.1026 | lr 0.0010 | time_forward 2.2310 | time_backward 3.1190 |
[2023-09-02 15:15:25,269::train::INFO] [train] Iter 11254 | loss 1.3376 | loss(rot) 0.5768 | loss(pos) 0.6631 | loss(seq) 0.0977 | grad 5.9700 | lr 0.0010 | time_forward 3.5030 | time_backward 4.6020 |
[2023-09-02 15:15:27,626::train::INFO] [train] Iter 11255 | loss 1.1723 | loss(rot) 0.9753 | loss(pos) 0.1970 | loss(seq) 0.0000 | grad 8.4082 | lr 0.0010 | time_forward 1.0790 | time_backward 1.2740 |
[2023-09-02 15:15:37,156::train::INFO] [train] Iter 11256 | loss 2.5626 | loss(rot) 1.5767 | loss(pos) 0.3454 | loss(seq) 0.6404 | grad 4.0787 | lr 0.0010 | time_forward 3.8980 | time_backward 5.6300 |
[2023-09-02 15:15:45,924::train::INFO] [train] Iter 11257 | loss 1.0126 | loss(rot) 0.2386 | loss(pos) 0.7609 | loss(seq) 0.0131 | grad 3.7357 | lr 0.0010 | time_forward 3.4900 | time_backward 5.2740 |
[2023-09-02 15:15:48,655::train::INFO] [train] Iter 11258 | loss 2.0692 | loss(rot) 1.4605 | loss(pos) 0.1639 | loss(seq) 0.4448 | grad 4.3168 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4640 |
[2023-09-02 15:15:58,316::train::INFO] [train] Iter 11259 | loss 2.9993 | loss(rot) 2.7252 | loss(pos) 0.2741 | loss(seq) 0.0000 | grad 4.9048 | lr 0.0010 | time_forward 4.0100 | time_backward 5.6480 |
[2023-09-02 15:16:07,344::train::INFO] [train] Iter 11260 | loss 0.9391 | loss(rot) 0.1018 | loss(pos) 0.8268 | loss(seq) 0.0106 | grad 4.4896 | lr 0.0010 | time_forward 3.5350 | time_backward 5.4900 |
[2023-09-02 15:16:22,594::train::INFO] [train] Iter 11261 | loss 0.7932 | loss(rot) 0.2351 | loss(pos) 0.1899 | loss(seq) 0.3682 | grad 3.1788 | lr 0.0010 | time_forward 8.9260 | time_backward 6.3210 |
[2023-09-02 15:16:32,191::train::INFO] [train] Iter 11262 | loss 1.7364 | loss(rot) 1.3086 | loss(pos) 0.1543 | loss(seq) 0.2734 | grad 4.5109 | lr 0.0010 | time_forward 3.8720 | time_backward 5.7210 |
[2023-09-02 15:16:39,806::train::INFO] [train] Iter 11263 | loss 1.8774 | loss(rot) 1.6151 | loss(pos) 0.2365 | loss(seq) 0.0259 | grad 4.6554 | lr 0.0010 | time_forward 3.2560 | time_backward 4.3550 |
[2023-09-02 15:16:48,717::train::INFO] [train] Iter 11264 | loss 1.9112 | loss(rot) 1.7707 | loss(pos) 0.1334 | loss(seq) 0.0070 | grad 5.6616 | lr 0.0010 | time_forward 3.6140 | time_backward 5.2940 |
[2023-09-02 15:16:52,377::train::INFO] [train] Iter 11265 | loss 2.1996 | loss(rot) 1.9925 | loss(pos) 0.2065 | loss(seq) 0.0007 | grad 5.4014 | lr 0.0010 | time_forward 1.6090 | time_backward 2.0460 |
[2023-09-02 15:16:55,134::train::INFO] [train] Iter 11266 | loss 1.0956 | loss(rot) 0.9388 | loss(pos) 0.1567 | loss(seq) 0.0000 | grad 6.5275 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4930 |
[2023-09-02 15:16:58,450::train::INFO] [train] Iter 11267 | loss 0.5377 | loss(rot) 0.0892 | loss(pos) 0.4300 | loss(seq) 0.0186 | grad 4.1501 | lr 0.0010 | time_forward 1.4020 | time_backward 1.8740 |
[2023-09-02 15:17:05,959::train::INFO] [train] Iter 11268 | loss 0.9177 | loss(rot) 0.3467 | loss(pos) 0.1209 | loss(seq) 0.4502 | grad 3.3118 | lr 0.0010 | time_forward 3.0150 | time_backward 4.4900 |
[2023-09-02 15:17:14,560::train::INFO] [train] Iter 11269 | loss 2.0696 | loss(rot) 1.7176 | loss(pos) 0.0960 | loss(seq) 0.2560 | grad 3.3310 | lr 0.0010 | time_forward 3.5050 | time_backward 5.0930 |
[2023-09-02 15:17:17,237::train::INFO] [train] Iter 11270 | loss 1.4729 | loss(rot) 0.7242 | loss(pos) 0.4614 | loss(seq) 0.2873 | grad 4.2279 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4080 |
[2023-09-02 15:17:19,524::train::INFO] [train] Iter 11271 | loss 2.6911 | loss(rot) 0.5964 | loss(pos) 2.0831 | loss(seq) 0.0116 | grad 6.8282 | lr 0.0010 | time_forward 1.0320 | time_backward 1.2270 |
[2023-09-02 15:17:27,137::train::INFO] [train] Iter 11272 | loss 0.5650 | loss(rot) 0.0986 | loss(pos) 0.4402 | loss(seq) 0.0262 | grad 4.9723 | lr 0.0010 | time_forward 3.1130 | time_backward 4.4960 |
[2023-09-02 15:17:35,029::train::INFO] [train] Iter 11273 | loss 2.4625 | loss(rot) 1.3521 | loss(pos) 0.5478 | loss(seq) 0.5626 | grad 3.5160 | lr 0.0010 | time_forward 3.2090 | time_backward 4.6800 |
[2023-09-02 15:17:44,111::train::INFO] [train] Iter 11274 | loss 0.8586 | loss(rot) 0.0392 | loss(pos) 0.8093 | loss(seq) 0.0100 | grad 4.1290 | lr 0.0010 | time_forward 3.8470 | time_backward 5.2300 |
[2023-09-02 15:17:46,916::train::INFO] [train] Iter 11275 | loss 1.6839 | loss(rot) 1.3155 | loss(pos) 0.2371 | loss(seq) 0.1312 | grad 6.0285 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4870 |
[2023-09-02 15:17:54,390::train::INFO] [train] Iter 11276 | loss 1.5345 | loss(rot) 1.2985 | loss(pos) 0.1184 | loss(seq) 0.1176 | grad 5.4061 | lr 0.0010 | time_forward 3.0260 | time_backward 4.4440 |
[2023-09-02 15:18:02,414::train::INFO] [train] Iter 11277 | loss 2.5739 | loss(rot) 2.2856 | loss(pos) 0.1456 | loss(seq) 0.1427 | grad 4.7223 | lr 0.0010 | time_forward 3.4310 | time_backward 4.5910 |
[2023-09-02 15:18:11,493::train::INFO] [train] Iter 11278 | loss 0.6600 | loss(rot) 0.1497 | loss(pos) 0.4790 | loss(seq) 0.0313 | grad 5.1642 | lr 0.0010 | time_forward 3.9020 | time_backward 5.1740 |
[2023-09-02 15:18:18,868::train::INFO] [train] Iter 11279 | loss 0.6635 | loss(rot) 0.1163 | loss(pos) 0.3732 | loss(seq) 0.1740 | grad 4.4049 | lr 0.0010 | time_forward 2.8840 | time_backward 4.4880 |
[2023-09-02 15:18:28,596::train::INFO] [train] Iter 11280 | loss 2.0059 | loss(rot) 1.2467 | loss(pos) 0.2981 | loss(seq) 0.4610 | grad 4.0742 | lr 0.0010 | time_forward 3.7050 | time_backward 5.9820 |
[2023-09-02 15:18:36,372::train::INFO] [train] Iter 11281 | loss 1.2669 | loss(rot) 0.8422 | loss(pos) 0.2178 | loss(seq) 0.2068 | grad 4.0094 | lr 0.0010 | time_forward 3.3930 | time_backward 4.3800 |
[2023-09-02 15:18:44,346::train::INFO] [train] Iter 11282 | loss 1.5102 | loss(rot) 0.5475 | loss(pos) 0.5809 | loss(seq) 0.3818 | grad 6.0649 | lr 0.0010 | time_forward 3.3230 | time_backward 4.6470 |
[2023-09-02 15:18:53,808::train::INFO] [train] Iter 11283 | loss 2.4363 | loss(rot) 1.8578 | loss(pos) 0.2310 | loss(seq) 0.3475 | grad 4.5653 | lr 0.0010 | time_forward 3.7150 | time_backward 5.7430 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.