text
stringlengths 56
1.16k
|
---|
[2023-09-02 14:42:43,083::train::INFO] [train] Iter 10985 | loss 0.6123 | loss(rot) 0.1259 | loss(pos) 0.4602 | loss(seq) 0.0263 | grad 3.0532 | lr 0.0010 | time_forward 4.1610 | time_backward 6.0790 |
[2023-09-02 14:42:52,752::train::INFO] [train] Iter 10986 | loss 0.6277 | loss(rot) 0.2075 | loss(pos) 0.3653 | loss(seq) 0.0550 | grad 3.5294 | lr 0.0010 | time_forward 4.0950 | time_backward 5.5710 |
[2023-09-02 14:43:01,781::train::INFO] [train] Iter 10987 | loss 0.8201 | loss(rot) 0.2885 | loss(pos) 0.1319 | loss(seq) 0.3997 | grad 2.6293 | lr 0.0010 | time_forward 3.9000 | time_backward 5.1240 |
[2023-09-02 14:43:10,153::train::INFO] [train] Iter 10988 | loss 1.5498 | loss(rot) 0.9621 | loss(pos) 0.3061 | loss(seq) 0.2816 | grad 5.4044 | lr 0.0010 | time_forward 3.4250 | time_backward 4.9420 |
[2023-09-02 14:43:12,941::train::INFO] [train] Iter 10989 | loss 1.8267 | loss(rot) 1.4270 | loss(pos) 0.0922 | loss(seq) 0.3075 | grad 4.8519 | lr 0.0010 | time_forward 1.3150 | time_backward 1.4690 |
[2023-09-02 14:43:23,403::train::INFO] [train] Iter 10990 | loss 2.5275 | loss(rot) 2.3628 | loss(pos) 0.1602 | loss(seq) 0.0046 | grad 5.9278 | lr 0.0010 | time_forward 4.4230 | time_backward 6.0350 |
[2023-09-02 14:43:33,026::train::INFO] [train] Iter 10991 | loss 1.6134 | loss(rot) 1.4933 | loss(pos) 0.1198 | loss(seq) 0.0003 | grad 6.0489 | lr 0.0010 | time_forward 4.0330 | time_backward 5.5620 |
[2023-09-02 14:43:35,763::train::INFO] [train] Iter 10992 | loss 1.4563 | loss(rot) 0.7539 | loss(pos) 0.5137 | loss(seq) 0.1887 | grad 3.8495 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4920 |
[2023-09-02 14:43:46,221::train::INFO] [train] Iter 10993 | loss 1.1018 | loss(rot) 0.3033 | loss(pos) 0.3501 | loss(seq) 0.4484 | grad 3.4580 | lr 0.0010 | time_forward 4.2380 | time_backward 6.1850 |
[2023-09-02 14:43:56,962::train::INFO] [train] Iter 10994 | loss 1.0606 | loss(rot) 0.0333 | loss(pos) 1.0208 | loss(seq) 0.0065 | grad 4.3196 | lr 0.0010 | time_forward 4.6570 | time_backward 6.0570 |
[2023-09-02 14:44:05,839::train::INFO] [train] Iter 10995 | loss 1.0365 | loss(rot) 0.6076 | loss(pos) 0.2517 | loss(seq) 0.1773 | grad 4.3132 | lr 0.0010 | time_forward 3.7370 | time_backward 5.1360 |
[2023-09-02 14:44:16,853::train::INFO] [train] Iter 10996 | loss 1.2436 | loss(rot) 0.6299 | loss(pos) 0.3962 | loss(seq) 0.2175 | grad 3.1875 | lr 0.0010 | time_forward 4.4220 | time_backward 6.5880 |
[2023-09-02 14:44:26,999::train::INFO] [train] Iter 10997 | loss 2.0482 | loss(rot) 1.6012 | loss(pos) 0.1397 | loss(seq) 0.3073 | grad 4.0753 | lr 0.0010 | time_forward 4.0630 | time_backward 6.0800 |
[2023-09-02 14:44:33,891::train::INFO] [train] Iter 10998 | loss 1.3879 | loss(rot) 0.9167 | loss(pos) 0.0701 | loss(seq) 0.4011 | grad 3.3778 | lr 0.0010 | time_forward 2.9510 | time_backward 3.9370 |
[2023-09-02 14:44:37,692::train::INFO] [train] Iter 10999 | loss 1.0043 | loss(rot) 0.0554 | loss(pos) 0.9311 | loss(seq) 0.0178 | grad 3.6715 | lr 0.0010 | time_forward 1.5500 | time_backward 2.2480 |
[2023-09-02 14:44:40,980::train::INFO] [train] Iter 11000 | loss 1.7066 | loss(rot) 0.5190 | loss(pos) 0.9599 | loss(seq) 0.2276 | grad 4.5504 | lr 0.0010 | time_forward 1.4070 | time_backward 1.8780 |
[2023-09-02 14:45:17,623::train::INFO] [val] Iter 11000 | loss 1.7374 | loss(rot) 1.0961 | loss(pos) 0.3760 | loss(seq) 0.2653 |
[2023-09-02 14:45:27,187::train::INFO] [train] Iter 11001 | loss 1.9513 | loss(rot) 1.6287 | loss(pos) 0.1351 | loss(seq) 0.1875 | grad 6.0542 | lr 0.0010 | time_forward 3.9320 | time_backward 5.3380 |
[2023-09-02 14:45:34,870::train::INFO] [train] Iter 11002 | loss 1.9439 | loss(rot) 1.4966 | loss(pos) 0.4354 | loss(seq) 0.0119 | grad 8.1688 | lr 0.0010 | time_forward 3.3000 | time_backward 4.3800 |
[2023-09-02 14:45:43,402::train::INFO] [train] Iter 11003 | loss 2.0494 | loss(rot) 1.8330 | loss(pos) 0.0769 | loss(seq) 0.1395 | grad 3.7795 | lr 0.0010 | time_forward 3.5900 | time_backward 4.9380 |
[2023-09-02 14:45:52,397::train::INFO] [train] Iter 11004 | loss 1.7766 | loss(rot) 1.6421 | loss(pos) 0.0725 | loss(seq) 0.0621 | grad 8.2798 | lr 0.0010 | time_forward 3.8550 | time_backward 5.1370 |
[2023-09-02 14:46:00,011::train::INFO] [train] Iter 11005 | loss 2.3751 | loss(rot) 0.0655 | loss(pos) 2.3091 | loss(seq) 0.0005 | grad 7.6147 | lr 0.0010 | time_forward 3.2050 | time_backward 4.4040 |
[2023-09-02 14:46:02,677::train::INFO] [train] Iter 11006 | loss 1.5527 | loss(rot) 1.0429 | loss(pos) 0.1112 | loss(seq) 0.3986 | grad 3.3811 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4320 |
[2023-09-02 14:46:12,441::train::INFO] [train] Iter 11007 | loss 1.6891 | loss(rot) 1.5369 | loss(pos) 0.1249 | loss(seq) 0.0274 | grad 9.2713 | lr 0.0010 | time_forward 3.9930 | time_backward 5.7680 |
[2023-09-02 14:46:21,975::train::INFO] [train] Iter 11008 | loss 1.3507 | loss(rot) 0.7895 | loss(pos) 0.1480 | loss(seq) 0.4132 | grad 3.8177 | lr 0.0010 | time_forward 3.9210 | time_backward 5.6090 |
[2023-09-02 14:46:30,585::train::INFO] [train] Iter 11009 | loss 1.1343 | loss(rot) 0.3839 | loss(pos) 0.3227 | loss(seq) 0.4277 | grad 4.0017 | lr 0.0010 | time_forward 3.5550 | time_backward 5.0520 |
[2023-09-02 14:46:40,716::train::INFO] [train] Iter 11010 | loss 1.6496 | loss(rot) 1.4737 | loss(pos) 0.1759 | loss(seq) 0.0000 | grad 4.0377 | lr 0.0010 | time_forward 4.0860 | time_backward 6.0410 |
[2023-09-02 14:46:49,630::train::INFO] [train] Iter 11011 | loss 1.7247 | loss(rot) 1.5690 | loss(pos) 0.1537 | loss(seq) 0.0020 | grad 7.0544 | lr 0.0010 | time_forward 3.5680 | time_backward 5.3310 |
[2023-09-02 14:46:58,003::train::INFO] [train] Iter 11012 | loss 2.5302 | loss(rot) 1.4118 | loss(pos) 0.5886 | loss(seq) 0.5297 | grad 4.9917 | lr 0.0010 | time_forward 3.4190 | time_backward 4.9510 |
[2023-09-02 14:47:05,970::train::INFO] [train] Iter 11013 | loss 1.3133 | loss(rot) 1.2012 | loss(pos) 0.0734 | loss(seq) 0.0387 | grad 4.4885 | lr 0.0010 | time_forward 3.2880 | time_backward 4.6750 |
[2023-09-02 14:47:15,256::train::INFO] [train] Iter 11014 | loss 1.2937 | loss(rot) 0.4916 | loss(pos) 0.7281 | loss(seq) 0.0740 | grad 5.8056 | lr 0.0010 | time_forward 3.8220 | time_backward 5.4610 |
[2023-09-02 14:47:25,592::train::INFO] [train] Iter 11015 | loss 1.4011 | loss(rot) 0.0215 | loss(pos) 1.3758 | loss(seq) 0.0038 | grad 5.8751 | lr 0.0010 | time_forward 4.1600 | time_backward 6.1730 |
[2023-09-02 14:47:28,401::train::INFO] [train] Iter 11016 | loss 0.7592 | loss(rot) 0.3328 | loss(pos) 0.2529 | loss(seq) 0.1735 | grad 3.0961 | lr 0.0010 | time_forward 1.2910 | time_backward 1.5140 |
[2023-09-02 14:47:37,645::train::INFO] [train] Iter 11017 | loss 1.6052 | loss(rot) 1.1256 | loss(pos) 0.2657 | loss(seq) 0.2140 | grad 6.6282 | lr 0.0010 | time_forward 3.7180 | time_backward 5.5220 |
[2023-09-02 14:47:48,049::train::INFO] [train] Iter 11018 | loss 1.3775 | loss(rot) 0.1340 | loss(pos) 1.1769 | loss(seq) 0.0667 | grad 5.0928 | lr 0.0010 | time_forward 4.1060 | time_backward 6.2950 |
[2023-09-02 14:47:57,421::train::INFO] [train] Iter 11019 | loss 0.9126 | loss(rot) 0.2067 | loss(pos) 0.6921 | loss(seq) 0.0138 | grad 5.6076 | lr 0.0010 | time_forward 3.9260 | time_backward 5.4420 |
[2023-09-02 14:48:07,988::train::INFO] [train] Iter 11020 | loss 1.6565 | loss(rot) 0.7151 | loss(pos) 0.2745 | loss(seq) 0.6669 | grad 3.0942 | lr 0.0010 | time_forward 4.3260 | time_backward 6.2370 |
[2023-09-02 14:48:17,663::train::INFO] [train] Iter 11021 | loss 1.4777 | loss(rot) 0.4279 | loss(pos) 1.0361 | loss(seq) 0.0137 | grad 9.3634 | lr 0.0010 | time_forward 4.1670 | time_backward 5.5030 |
[2023-09-02 14:48:28,021::train::INFO] [train] Iter 11022 | loss 2.1798 | loss(rot) 0.8327 | loss(pos) 0.9013 | loss(seq) 0.4457 | grad 5.4400 | lr 0.0010 | time_forward 4.3500 | time_backward 6.0050 |
[2023-09-02 14:48:37,406::train::INFO] [train] Iter 11023 | loss 1.6395 | loss(rot) 1.3579 | loss(pos) 0.1607 | loss(seq) 0.1209 | grad 5.7444 | lr 0.0010 | time_forward 3.9220 | time_backward 5.4590 |
[2023-09-02 14:48:45,874::train::INFO] [train] Iter 11024 | loss 2.1188 | loss(rot) 1.6951 | loss(pos) 0.1438 | loss(seq) 0.2799 | grad 5.1012 | lr 0.0010 | time_forward 3.4980 | time_backward 4.9670 |
[2023-09-02 14:48:54,553::train::INFO] [train] Iter 11025 | loss 2.6882 | loss(rot) 1.3925 | loss(pos) 0.6734 | loss(seq) 0.6222 | grad 4.3706 | lr 0.0010 | time_forward 3.6810 | time_backward 4.9930 |
[2023-09-02 14:48:57,401::train::INFO] [train] Iter 11026 | loss 2.5770 | loss(rot) 2.2133 | loss(pos) 0.2754 | loss(seq) 0.0882 | grad 6.1127 | lr 0.0010 | time_forward 1.3180 | time_backward 1.5270 |
[2023-09-02 14:49:02,580::train::INFO] [train] Iter 11027 | loss 1.5294 | loss(rot) 0.9841 | loss(pos) 0.1555 | loss(seq) 0.3899 | grad 5.6917 | lr 0.0010 | time_forward 2.3130 | time_backward 2.8630 |
[2023-09-02 14:49:11,694::train::INFO] [train] Iter 11028 | loss 1.3855 | loss(rot) 0.7968 | loss(pos) 0.1668 | loss(seq) 0.4219 | grad 4.4342 | lr 0.0010 | time_forward 3.7530 | time_backward 5.3570 |
[2023-09-02 14:49:21,985::train::INFO] [train] Iter 11029 | loss 1.7054 | loss(rot) 1.6432 | loss(pos) 0.0550 | loss(seq) 0.0071 | grad 5.2475 | lr 0.0010 | time_forward 4.1900 | time_backward 6.0990 |
[2023-09-02 14:49:32,442::train::INFO] [train] Iter 11030 | loss 1.6555 | loss(rot) 1.4656 | loss(pos) 0.1837 | loss(seq) 0.0062 | grad 5.4321 | lr 0.0010 | time_forward 4.1130 | time_backward 6.3410 |
[2023-09-02 14:49:42,519::train::INFO] [train] Iter 11031 | loss 2.3945 | loss(rot) 2.2487 | loss(pos) 0.1329 | loss(seq) 0.0129 | grad 5.0658 | lr 0.0010 | time_forward 4.1950 | time_backward 5.8780 |
[2023-09-02 14:49:51,339::train::INFO] [train] Iter 11032 | loss 1.7219 | loss(rot) 1.2064 | loss(pos) 0.1803 | loss(seq) 0.3351 | grad 5.2204 | lr 0.0010 | time_forward 3.7430 | time_backward 4.9250 |
[2023-09-02 14:49:58,994::train::INFO] [train] Iter 11033 | loss 1.3532 | loss(rot) 0.7948 | loss(pos) 0.0844 | loss(seq) 0.4740 | grad 5.6947 | lr 0.0010 | time_forward 3.2180 | time_backward 4.4320 |
[2023-09-02 14:50:06,981::train::INFO] [train] Iter 11034 | loss 1.9526 | loss(rot) 0.8702 | loss(pos) 0.4819 | loss(seq) 0.6005 | grad 6.3822 | lr 0.0010 | time_forward 3.3280 | time_backward 4.6560 |
[2023-09-02 14:50:15,823::train::INFO] [train] Iter 11035 | loss 1.2216 | loss(rot) 0.8012 | loss(pos) 0.2747 | loss(seq) 0.1456 | grad 3.2530 | lr 0.0010 | time_forward 3.7350 | time_backward 5.1040 |
[2023-09-02 14:50:25,411::train::INFO] [train] Iter 11036 | loss 1.2162 | loss(rot) 0.2502 | loss(pos) 0.6516 | loss(seq) 0.3144 | grad 4.6477 | lr 0.0010 | time_forward 4.0130 | time_backward 5.5710 |
[2023-09-02 14:50:34,570::train::INFO] [train] Iter 11037 | loss 1.5470 | loss(rot) 0.9462 | loss(pos) 0.1088 | loss(seq) 0.4920 | grad 4.7320 | lr 0.0010 | time_forward 3.8170 | time_backward 5.3380 |
[2023-09-02 14:50:41,774::train::INFO] [train] Iter 11038 | loss 1.5889 | loss(rot) 1.3324 | loss(pos) 0.2564 | loss(seq) 0.0001 | grad 9.8666 | lr 0.0010 | time_forward 2.9310 | time_backward 4.2690 |
[2023-09-02 14:50:50,938::train::INFO] [train] Iter 11039 | loss 1.7176 | loss(rot) 1.6708 | loss(pos) 0.0406 | loss(seq) 0.0061 | grad 5.1153 | lr 0.0010 | time_forward 3.8880 | time_backward 5.2730 |
[2023-09-02 14:51:00,006::train::INFO] [train] Iter 11040 | loss 1.8289 | loss(rot) 1.0121 | loss(pos) 0.2729 | loss(seq) 0.5438 | grad 4.7002 | lr 0.0010 | time_forward 3.8460 | time_backward 5.2180 |
[2023-09-02 14:51:10,175::train::INFO] [train] Iter 11041 | loss 0.9488 | loss(rot) 0.4295 | loss(pos) 0.2284 | loss(seq) 0.2909 | grad 3.0958 | lr 0.0010 | time_forward 4.1870 | time_backward 5.7810 |
[2023-09-02 14:51:21,011::train::INFO] [train] Iter 11042 | loss 1.9215 | loss(rot) 0.0275 | loss(pos) 1.8921 | loss(seq) 0.0019 | grad 7.0490 | lr 0.0010 | time_forward 4.3550 | time_backward 6.4770 |
[2023-09-02 14:51:23,472::train::INFO] [train] Iter 11043 | loss 1.3225 | loss(rot) 0.4760 | loss(pos) 0.3738 | loss(seq) 0.4727 | grad 4.4094 | lr 0.0010 | time_forward 1.1580 | time_backward 1.2990 |
[2023-09-02 14:51:33,315::train::INFO] [train] Iter 11044 | loss 2.1101 | loss(rot) 1.7553 | loss(pos) 0.2276 | loss(seq) 0.1272 | grad 5.9690 | lr 0.0010 | time_forward 4.0290 | time_backward 5.7880 |
[2023-09-02 14:51:36,158::train::INFO] [train] Iter 11045 | loss 1.5687 | loss(rot) 0.7646 | loss(pos) 0.2582 | loss(seq) 0.5459 | grad 4.1542 | lr 0.0010 | time_forward 1.2630 | time_backward 1.5770 |
[2023-09-02 14:51:46,475::train::INFO] [train] Iter 11046 | loss 1.7155 | loss(rot) 0.7720 | loss(pos) 0.5793 | loss(seq) 0.3642 | grad 4.7953 | lr 0.0010 | time_forward 4.4020 | time_backward 5.8110 |
[2023-09-02 14:51:48,724::train::INFO] [train] Iter 11047 | loss 3.1926 | loss(rot) 2.7198 | loss(pos) 0.4727 | loss(seq) 0.0000 | grad 4.6009 | lr 0.0010 | time_forward 1.0360 | time_backward 1.2060 |
[2023-09-02 14:51:59,189::train::INFO] [train] Iter 11048 | loss 1.6148 | loss(rot) 1.0543 | loss(pos) 0.1606 | loss(seq) 0.3999 | grad 3.8900 | lr 0.0010 | time_forward 4.2060 | time_backward 6.2540 |
[2023-09-02 14:52:08,096::train::INFO] [train] Iter 11049 | loss 1.2093 | loss(rot) 1.1063 | loss(pos) 0.0932 | loss(seq) 0.0097 | grad 4.7205 | lr 0.0010 | time_forward 3.7860 | time_backward 5.1040 |
[2023-09-02 14:52:10,819::train::INFO] [train] Iter 11050 | loss 3.4085 | loss(rot) 2.9103 | loss(pos) 0.4982 | loss(seq) 0.0000 | grad 7.8540 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4690 |
[2023-09-02 14:52:19,900::train::INFO] [train] Iter 11051 | loss 1.1410 | loss(rot) 0.4640 | loss(pos) 0.2636 | loss(seq) 0.4134 | grad 5.9092 | lr 0.0010 | time_forward 3.8050 | time_backward 5.2720 |
[2023-09-02 14:52:28,932::train::INFO] [train] Iter 11052 | loss 2.3595 | loss(rot) 1.2328 | loss(pos) 0.5367 | loss(seq) 0.5900 | grad 3.0221 | lr 0.0010 | time_forward 3.6870 | time_backward 5.3410 |
[2023-09-02 14:52:37,597::train::INFO] [train] Iter 11053 | loss 1.4550 | loss(rot) 1.3230 | loss(pos) 0.1274 | loss(seq) 0.0045 | grad 4.6111 | lr 0.0010 | time_forward 3.5340 | time_backward 5.1280 |
[2023-09-02 14:52:48,590::train::INFO] [train] Iter 11054 | loss 1.9310 | loss(rot) 1.8075 | loss(pos) 0.1223 | loss(seq) 0.0013 | grad 5.5414 | lr 0.0010 | time_forward 4.4320 | time_backward 6.5580 |
[2023-09-02 14:52:51,107::train::INFO] [train] Iter 11055 | loss 2.0116 | loss(rot) 0.7131 | loss(pos) 0.8451 | loss(seq) 0.4535 | grad 8.8769 | lr 0.0010 | time_forward 1.1700 | time_backward 1.3090 |
[2023-09-02 14:52:54,793::train::INFO] [train] Iter 11056 | loss 1.2746 | loss(rot) 0.3958 | loss(pos) 0.6257 | loss(seq) 0.2530 | grad 5.2504 | lr 0.0010 | time_forward 1.5070 | time_backward 2.1750 |
[2023-09-02 14:53:02,659::train::INFO] [train] Iter 11057 | loss 1.7537 | loss(rot) 1.1054 | loss(pos) 0.0651 | loss(seq) 0.5833 | grad 5.6556 | lr 0.0010 | time_forward 3.3780 | time_backward 4.4710 |
[2023-09-02 14:53:10,491::train::INFO] [train] Iter 11058 | loss 1.0952 | loss(rot) 0.4264 | loss(pos) 0.2519 | loss(seq) 0.4170 | grad 3.6919 | lr 0.0010 | time_forward 3.2650 | time_backward 4.5640 |
[2023-09-02 14:53:13,086::train::INFO] [train] Iter 11059 | loss 1.3486 | loss(rot) 0.5011 | loss(pos) 0.7248 | loss(seq) 0.1227 | grad 5.8756 | lr 0.0010 | time_forward 1.1490 | time_backward 1.3430 |
[2023-09-02 14:53:21,710::train::INFO] [train] Iter 11060 | loss 2.1592 | loss(rot) 1.8189 | loss(pos) 0.1513 | loss(seq) 0.1891 | grad 3.9087 | lr 0.0010 | time_forward 3.6190 | time_backward 4.9760 |
[2023-09-02 14:53:24,507::train::INFO] [train] Iter 11061 | loss 1.5692 | loss(rot) 1.0289 | loss(pos) 0.2488 | loss(seq) 0.2915 | grad 4.3240 | lr 0.0010 | time_forward 1.2930 | time_backward 1.5000 |
[2023-09-02 14:53:33,464::train::INFO] [train] Iter 11062 | loss 1.0946 | loss(rot) 0.9516 | loss(pos) 0.1105 | loss(seq) 0.0325 | grad 4.5079 | lr 0.0010 | time_forward 3.8130 | time_backward 5.1380 |
[2023-09-02 14:53:42,443::train::INFO] [train] Iter 11063 | loss 1.1323 | loss(rot) 0.9224 | loss(pos) 0.0848 | loss(seq) 0.1251 | grad 3.5346 | lr 0.0010 | time_forward 3.8990 | time_backward 5.0750 |
[2023-09-02 14:53:44,543::train::INFO] [train] Iter 11064 | loss 1.8988 | loss(rot) 0.9983 | loss(pos) 0.2190 | loss(seq) 0.6815 | grad 4.6561 | lr 0.0010 | time_forward 0.9880 | time_backward 1.1080 |
[2023-09-02 14:53:54,634::train::INFO] [train] Iter 11065 | loss 1.1723 | loss(rot) 0.2975 | loss(pos) 0.8566 | loss(seq) 0.0182 | grad 3.3238 | lr 0.0010 | time_forward 4.2960 | time_backward 5.7920 |
[2023-09-02 14:53:56,925::train::INFO] [train] Iter 11066 | loss 1.1894 | loss(rot) 0.0520 | loss(pos) 1.1276 | loss(seq) 0.0098 | grad 3.8174 | lr 0.0010 | time_forward 1.0610 | time_backward 1.2250 |
[2023-09-02 14:54:07,881::train::INFO] [train] Iter 11067 | loss 2.5057 | loss(rot) 2.3293 | loss(pos) 0.1765 | loss(seq) 0.0000 | grad 3.5880 | lr 0.0010 | time_forward 4.7160 | time_backward 6.2150 |
[2023-09-02 14:54:17,360::train::INFO] [train] Iter 11068 | loss 2.2850 | loss(rot) 2.0658 | loss(pos) 0.1261 | loss(seq) 0.0931 | grad 5.0154 | lr 0.0010 | time_forward 3.8250 | time_backward 5.6510 |
[2023-09-02 14:54:26,671::train::INFO] [train] Iter 11069 | loss 1.4719 | loss(rot) 0.4012 | loss(pos) 0.8350 | loss(seq) 0.2357 | grad 4.1446 | lr 0.0010 | time_forward 4.1520 | time_backward 5.1560 |
[2023-09-02 14:54:38,556::train::INFO] [train] Iter 11070 | loss 1.2139 | loss(rot) 0.2565 | loss(pos) 0.8874 | loss(seq) 0.0699 | grad 4.5313 | lr 0.0010 | time_forward 5.4900 | time_backward 6.3900 |
[2023-09-02 14:54:53,446::train::INFO] [train] Iter 11071 | loss 1.6952 | loss(rot) 0.3763 | loss(pos) 1.2992 | loss(seq) 0.0197 | grad 5.6230 | lr 0.0010 | time_forward 7.3730 | time_backward 7.5140 |
[2023-09-02 14:54:56,143::train::INFO] [train] Iter 11072 | loss 1.0977 | loss(rot) 0.7255 | loss(pos) 0.2611 | loss(seq) 0.1110 | grad 9.4305 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4530 |
[2023-09-02 14:55:04,234::train::INFO] [train] Iter 11073 | loss 2.1362 | loss(rot) 1.1018 | loss(pos) 0.3297 | loss(seq) 0.7047 | grad 4.9670 | lr 0.0010 | time_forward 3.4670 | time_backward 4.6200 |
[2023-09-02 14:55:12,202::train::INFO] [train] Iter 11074 | loss 1.5478 | loss(rot) 1.4760 | loss(pos) 0.0604 | loss(seq) 0.0114 | grad 4.2122 | lr 0.0010 | time_forward 3.4030 | time_backward 4.5610 |
[2023-09-02 14:55:24,446::train::INFO] [train] Iter 11075 | loss 2.8669 | loss(rot) 2.4181 | loss(pos) 0.1598 | loss(seq) 0.2890 | grad 3.8191 | lr 0.0010 | time_forward 6.5070 | time_backward 5.7320 |
[2023-09-02 14:55:33,301::train::INFO] [train] Iter 11076 | loss 1.5399 | loss(rot) 0.8327 | loss(pos) 0.1453 | loss(seq) 0.5620 | grad 3.3565 | lr 0.0010 | time_forward 3.5670 | time_backward 5.2840 |
[2023-09-02 14:55:36,223::train::INFO] [train] Iter 11077 | loss 1.2849 | loss(rot) 0.5759 | loss(pos) 0.2105 | loss(seq) 0.4986 | grad 5.0109 | lr 0.0010 | time_forward 1.1800 | time_backward 1.7380 |
[2023-09-02 14:55:42,657::train::INFO] [train] Iter 11078 | loss 2.6076 | loss(rot) 1.9004 | loss(pos) 0.1469 | loss(seq) 0.5602 | grad 5.7468 | lr 0.0010 | time_forward 2.8820 | time_backward 3.5480 |
[2023-09-02 14:55:48,468::train::INFO] [train] Iter 11079 | loss 0.7681 | loss(rot) 0.3392 | loss(pos) 0.1918 | loss(seq) 0.2371 | grad 3.5437 | lr 0.0010 | time_forward 2.3190 | time_backward 3.4900 |
[2023-09-02 14:56:03,152::train::INFO] [train] Iter 11080 | loss 2.2375 | loss(rot) 1.6090 | loss(pos) 0.2875 | loss(seq) 0.3410 | grad 6.4763 | lr 0.0010 | time_forward 7.6090 | time_backward 7.0720 |
[2023-09-02 14:56:10,662::train::INFO] [train] Iter 11081 | loss 1.3578 | loss(rot) 0.5738 | loss(pos) 0.2185 | loss(seq) 0.5654 | grad 4.5465 | lr 0.0010 | time_forward 3.1370 | time_backward 4.3700 |
[2023-09-02 14:56:12,813::train::INFO] [train] Iter 11082 | loss 0.6206 | loss(rot) 0.0934 | loss(pos) 0.5100 | loss(seq) 0.0172 | grad 4.4258 | lr 0.0010 | time_forward 1.0000 | time_backward 1.1480 |
[2023-09-02 14:56:19,597::train::INFO] [train] Iter 11083 | loss 2.7733 | loss(rot) 0.4660 | loss(pos) 2.3028 | loss(seq) 0.0044 | grad 8.5026 | lr 0.0010 | time_forward 2.8690 | time_backward 3.8900 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.