text
stringlengths 56
1.16k
|
---|
[2023-09-02 14:30:09,014::train::INFO] [train] Iter 10885 | loss 1.8334 | loss(rot) 1.2846 | loss(pos) 0.1852 | loss(seq) 0.3637 | grad 4.8263 | lr 0.0010 | time_forward 3.0250 | time_backward 4.2920 |
[2023-09-02 14:30:11,796::train::INFO] [train] Iter 10886 | loss 1.8354 | loss(rot) 1.3506 | loss(pos) 0.1040 | loss(seq) 0.3808 | grad 3.9461 | lr 0.0010 | time_forward 1.2760 | time_backward 1.5030 |
[2023-09-02 14:30:23,160::train::INFO] [train] Iter 10887 | loss 1.9052 | loss(rot) 1.6085 | loss(pos) 0.1016 | loss(seq) 0.1951 | grad 4.5280 | lr 0.0010 | time_forward 4.1090 | time_backward 7.2260 |
[2023-09-02 14:30:32,585::train::INFO] [train] Iter 10888 | loss 1.1149 | loss(rot) 0.4211 | loss(pos) 0.2165 | loss(seq) 0.4773 | grad 4.3521 | lr 0.0010 | time_forward 3.9660 | time_backward 5.4550 |
[2023-09-02 14:30:40,408::train::INFO] [train] Iter 10889 | loss 1.2145 | loss(rot) 0.5945 | loss(pos) 0.1569 | loss(seq) 0.4631 | grad 4.0334 | lr 0.0010 | time_forward 3.2800 | time_backward 4.5390 |
[2023-09-02 14:30:50,461::train::INFO] [train] Iter 10890 | loss 1.5165 | loss(rot) 0.7533 | loss(pos) 0.2448 | loss(seq) 0.5184 | grad 3.2670 | lr 0.0010 | time_forward 4.1090 | time_backward 5.9400 |
[2023-09-02 14:30:52,664::train::INFO] [train] Iter 10891 | loss 0.9356 | loss(rot) 0.1132 | loss(pos) 0.6271 | loss(seq) 0.1953 | grad 4.2503 | lr 0.0010 | time_forward 1.0440 | time_backward 1.1550 |
[2023-09-02 14:31:01,332::train::INFO] [train] Iter 10892 | loss 1.5923 | loss(rot) 0.4331 | loss(pos) 0.9423 | loss(seq) 0.2169 | grad 11.1215 | lr 0.0010 | time_forward 3.6990 | time_backward 4.9650 |
[2023-09-02 14:31:03,639::train::INFO] [train] Iter 10893 | loss 1.7158 | loss(rot) 1.4549 | loss(pos) 0.2578 | loss(seq) 0.0031 | grad 7.9265 | lr 0.0010 | time_forward 1.0940 | time_backward 1.2080 |
[2023-09-02 14:31:14,790::train::INFO] [train] Iter 10894 | loss 2.4049 | loss(rot) 2.2713 | loss(pos) 0.1026 | loss(seq) 0.0309 | grad 3.2545 | lr 0.0010 | time_forward 4.5550 | time_backward 6.5700 |
[2023-09-02 14:31:20,676::train::INFO] [train] Iter 10895 | loss 1.5567 | loss(rot) 1.3272 | loss(pos) 0.2196 | loss(seq) 0.0099 | grad 7.7069 | lr 0.0010 | time_forward 2.5040 | time_backward 3.3800 |
[2023-09-02 14:31:23,081::train::INFO] [train] Iter 10896 | loss 1.3910 | loss(rot) 0.5454 | loss(pos) 0.2727 | loss(seq) 0.5730 | grad 5.9114 | lr 0.0010 | time_forward 1.1500 | time_backward 1.2510 |
[2023-09-02 14:31:33,330::train::INFO] [train] Iter 10897 | loss 0.8317 | loss(rot) 0.0567 | loss(pos) 0.7643 | loss(seq) 0.0107 | grad 5.7320 | lr 0.0010 | time_forward 3.6440 | time_backward 6.5770 |
[2023-09-02 14:31:53,069::train::INFO] [train] Iter 10898 | loss 1.8547 | loss(rot) 1.6222 | loss(pos) 0.1474 | loss(seq) 0.0851 | grad 4.2400 | lr 0.0010 | time_forward 5.9810 | time_backward 8.3940 |
[2023-09-02 14:31:56,406::train::INFO] [train] Iter 10899 | loss 2.5232 | loss(rot) 2.4037 | loss(pos) 0.1183 | loss(seq) 0.0013 | grad 4.2634 | lr 0.0010 | time_forward 1.4560 | time_backward 1.8770 |
[2023-09-02 14:32:06,554::train::INFO] [train] Iter 10900 | loss 3.5726 | loss(rot) 0.0407 | loss(pos) 3.5319 | loss(seq) 0.0000 | grad 9.3971 | lr 0.0010 | time_forward 4.0680 | time_backward 6.0760 |
[2023-09-02 14:32:16,915::train::INFO] [train] Iter 10901 | loss 2.0507 | loss(rot) 0.6534 | loss(pos) 0.4850 | loss(seq) 0.9123 | grad 6.9528 | lr 0.0010 | time_forward 4.1610 | time_backward 6.1950 |
[2023-09-02 14:32:24,702::train::INFO] [train] Iter 10902 | loss 2.8259 | loss(rot) 2.3234 | loss(pos) 0.1159 | loss(seq) 0.3867 | grad 7.1750 | lr 0.0010 | time_forward 3.3740 | time_backward 4.4100 |
[2023-09-02 14:32:27,349::train::INFO] [train] Iter 10903 | loss 1.4434 | loss(rot) 1.0480 | loss(pos) 0.2178 | loss(seq) 0.1776 | grad 7.3678 | lr 0.0010 | time_forward 1.2560 | time_backward 1.3870 |
[2023-09-02 14:32:37,722::train::INFO] [train] Iter 10904 | loss 1.9365 | loss(rot) 1.0557 | loss(pos) 0.4710 | loss(seq) 0.4097 | grad 4.1770 | lr 0.0010 | time_forward 4.1330 | time_backward 6.2360 |
[2023-09-02 14:32:50,494::train::INFO] [train] Iter 10905 | loss 1.9288 | loss(rot) 1.5288 | loss(pos) 0.1324 | loss(seq) 0.2675 | grad 4.6398 | lr 0.0010 | time_forward 5.5440 | time_backward 7.2250 |
[2023-09-02 14:32:58,788::train::INFO] [train] Iter 10906 | loss 1.3637 | loss(rot) 0.1795 | loss(pos) 0.7615 | loss(seq) 0.4226 | grad 7.8328 | lr 0.0010 | time_forward 3.4050 | time_backward 4.8850 |
[2023-09-02 14:33:01,260::train::INFO] [train] Iter 10907 | loss 2.6771 | loss(rot) 2.4555 | loss(pos) 0.2092 | loss(seq) 0.0124 | grad 6.5829 | lr 0.0010 | time_forward 1.1670 | time_backward 1.3030 |
[2023-09-02 14:33:11,704::train::INFO] [train] Iter 10908 | loss 2.0686 | loss(rot) 1.2317 | loss(pos) 0.4005 | loss(seq) 0.4364 | grad 4.8926 | lr 0.0010 | time_forward 4.3030 | time_backward 6.1170 |
[2023-09-02 14:33:19,865::train::INFO] [train] Iter 10909 | loss 3.5204 | loss(rot) 0.0570 | loss(pos) 3.4634 | loss(seq) 0.0000 | grad 8.7699 | lr 0.0010 | time_forward 3.4630 | time_backward 4.6940 |
[2023-09-02 14:33:28,450::train::INFO] [train] Iter 10910 | loss 1.9081 | loss(rot) 1.0778 | loss(pos) 0.3393 | loss(seq) 0.4910 | grad 4.1501 | lr 0.0010 | time_forward 3.5680 | time_backward 5.0130 |
[2023-09-02 14:33:43,552::train::INFO] [train] Iter 10911 | loss 2.3942 | loss(rot) 2.0803 | loss(pos) 0.0724 | loss(seq) 0.2415 | grad 4.1310 | lr 0.0010 | time_forward 10.1740 | time_backward 4.9250 |
[2023-09-02 14:33:54,443::train::INFO] [train] Iter 10912 | loss 1.7609 | loss(rot) 1.3715 | loss(pos) 0.1212 | loss(seq) 0.2682 | grad 4.6243 | lr 0.0010 | time_forward 4.5570 | time_backward 6.3300 |
[2023-09-02 14:33:59,347::train::INFO] [train] Iter 10913 | loss 2.0588 | loss(rot) 1.3905 | loss(pos) 0.3316 | loss(seq) 0.3367 | grad 3.2742 | lr 0.0010 | time_forward 3.4760 | time_backward 1.4250 |
[2023-09-02 14:34:22,982::train::INFO] [train] Iter 10914 | loss 2.1233 | loss(rot) 1.7915 | loss(pos) 0.1688 | loss(seq) 0.1630 | grad 4.0223 | lr 0.0010 | time_forward 12.3610 | time_backward 11.2480 |
[2023-09-02 14:34:25,819::train::INFO] [train] Iter 10915 | loss 3.4069 | loss(rot) 0.0094 | loss(pos) 3.3970 | loss(seq) 0.0005 | grad 9.6341 | lr 0.0010 | time_forward 1.3070 | time_backward 1.5250 |
[2023-09-02 14:34:36,069::train::INFO] [train] Iter 10916 | loss 1.3021 | loss(rot) 0.5489 | loss(pos) 0.4393 | loss(seq) 0.3138 | grad 3.9490 | lr 0.0010 | time_forward 4.0610 | time_backward 6.1850 |
[2023-09-02 14:34:38,778::train::INFO] [train] Iter 10917 | loss 1.1933 | loss(rot) 0.0776 | loss(pos) 1.1077 | loss(seq) 0.0080 | grad 5.8903 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4440 |
[2023-09-02 14:34:45,980::train::INFO] [train] Iter 10918 | loss 1.7512 | loss(rot) 0.9262 | loss(pos) 0.1778 | loss(seq) 0.6472 | grad 5.9951 | lr 0.0010 | time_forward 3.0580 | time_backward 4.1260 |
[2023-09-02 14:34:48,175::train::INFO] [train] Iter 10919 | loss 1.7419 | loss(rot) 0.6910 | loss(pos) 0.4612 | loss(seq) 0.5897 | grad 4.2226 | lr 0.0010 | time_forward 1.0180 | time_backward 1.1730 |
[2023-09-02 14:34:59,187::train::INFO] [train] Iter 10920 | loss 1.8007 | loss(rot) 0.8597 | loss(pos) 0.3963 | loss(seq) 0.5446 | grad 3.4949 | lr 0.0010 | time_forward 4.4280 | time_backward 6.5810 |
[2023-09-02 14:35:07,965::train::INFO] [train] Iter 10921 | loss 2.0576 | loss(rot) 1.7896 | loss(pos) 0.2680 | loss(seq) 0.0000 | grad 10.5382 | lr 0.0010 | time_forward 3.6830 | time_backward 5.0920 |
[2023-09-02 14:35:16,362::train::INFO] [train] Iter 10922 | loss 2.0685 | loss(rot) 1.3408 | loss(pos) 0.3596 | loss(seq) 0.3681 | grad 3.9705 | lr 0.0010 | time_forward 3.4230 | time_backward 4.8660 |
[2023-09-02 14:35:26,465::train::INFO] [train] Iter 10923 | loss 1.6770 | loss(rot) 1.0056 | loss(pos) 0.1826 | loss(seq) 0.4888 | grad 4.6360 | lr 0.0010 | time_forward 4.0090 | time_backward 6.0910 |
[2023-09-02 14:35:34,156::train::INFO] [train] Iter 10924 | loss 0.9509 | loss(rot) 0.1309 | loss(pos) 0.8024 | loss(seq) 0.0176 | grad 6.0562 | lr 0.0010 | time_forward 3.2920 | time_backward 4.3960 |
[2023-09-02 14:35:44,482::train::INFO] [train] Iter 10925 | loss 2.0237 | loss(rot) 1.2923 | loss(pos) 0.2582 | loss(seq) 0.4732 | grad 4.0439 | lr 0.0010 | time_forward 4.2970 | time_backward 6.0250 |
[2023-09-02 14:35:54,878::train::INFO] [train] Iter 10926 | loss 2.1090 | loss(rot) 0.0165 | loss(pos) 2.0891 | loss(seq) 0.0034 | grad 6.6712 | lr 0.0010 | time_forward 4.3660 | time_backward 6.0280 |
[2023-09-02 14:35:57,583::train::INFO] [train] Iter 10927 | loss 2.3347 | loss(rot) 1.9306 | loss(pos) 0.3640 | loss(seq) 0.0400 | grad 6.2532 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4500 |
[2023-09-02 14:36:07,148::train::INFO] [train] Iter 10928 | loss 1.3235 | loss(rot) 1.0062 | loss(pos) 0.2044 | loss(seq) 0.1129 | grad 6.5744 | lr 0.0010 | time_forward 3.9710 | time_backward 5.5900 |
[2023-09-02 14:36:10,748::train::INFO] [train] Iter 10929 | loss 1.5423 | loss(rot) 1.3861 | loss(pos) 0.1378 | loss(seq) 0.0184 | grad 5.8357 | lr 0.0010 | time_forward 1.4440 | time_backward 2.1530 |
[2023-09-02 14:36:19,824::train::INFO] [train] Iter 10930 | loss 2.2342 | loss(rot) 0.9506 | loss(pos) 0.6332 | loss(seq) 0.6503 | grad 5.5856 | lr 0.0010 | time_forward 3.6760 | time_backward 5.3960 |
[2023-09-02 14:36:28,297::train::INFO] [train] Iter 10931 | loss 1.8397 | loss(rot) 1.3291 | loss(pos) 0.2881 | loss(seq) 0.2225 | grad 5.3159 | lr 0.0010 | time_forward 3.5680 | time_backward 4.9010 |
[2023-09-02 14:36:37,448::train::INFO] [train] Iter 10932 | loss 1.0138 | loss(rot) 0.3117 | loss(pos) 0.3708 | loss(seq) 0.3313 | grad 4.0532 | lr 0.0010 | time_forward 3.8440 | time_backward 5.3040 |
[2023-09-02 14:36:48,357::train::INFO] [train] Iter 10933 | loss 3.8211 | loss(rot) 0.0063 | loss(pos) 3.8148 | loss(seq) 0.0000 | grad 11.5599 | lr 0.0010 | time_forward 4.2930 | time_backward 6.6120 |
[2023-09-02 14:36:55,693::train::INFO] [train] Iter 10934 | loss 2.6096 | loss(rot) 2.2900 | loss(pos) 0.1468 | loss(seq) 0.1728 | grad 4.7751 | lr 0.0010 | time_forward 3.0900 | time_backward 4.2430 |
[2023-09-02 14:37:05,245::train::INFO] [train] Iter 10935 | loss 1.8082 | loss(rot) 1.5978 | loss(pos) 0.2061 | loss(seq) 0.0043 | grad 5.9646 | lr 0.0010 | time_forward 3.9950 | time_backward 5.5540 |
[2023-09-02 14:37:07,690::train::INFO] [train] Iter 10936 | loss 1.7827 | loss(rot) 1.6789 | loss(pos) 0.0922 | loss(seq) 0.0116 | grad 4.2129 | lr 0.0010 | time_forward 1.1230 | time_backward 1.3190 |
[2023-09-02 14:37:10,538::train::INFO] [train] Iter 10937 | loss 1.2519 | loss(rot) 0.5866 | loss(pos) 0.3750 | loss(seq) 0.2903 | grad 3.7171 | lr 0.0010 | time_forward 1.3200 | time_backward 1.5250 |
[2023-09-02 14:37:20,188::train::INFO] [train] Iter 10938 | loss 1.3858 | loss(rot) 0.3968 | loss(pos) 0.9825 | loss(seq) 0.0065 | grad 3.5387 | lr 0.0010 | time_forward 4.1490 | time_backward 5.4970 |
[2023-09-02 14:37:22,863::train::INFO] [train] Iter 10939 | loss 1.2033 | loss(rot) 0.7930 | loss(pos) 0.1038 | loss(seq) 0.3065 | grad 4.5439 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4170 |
[2023-09-02 14:37:31,993::train::INFO] [train] Iter 10940 | loss 2.1924 | loss(rot) 1.2152 | loss(pos) 0.3992 | loss(seq) 0.5780 | grad 5.3467 | lr 0.0010 | time_forward 3.7300 | time_backward 5.3970 |
[2023-09-02 14:37:42,629::train::INFO] [train] Iter 10941 | loss 1.6055 | loss(rot) 0.5556 | loss(pos) 0.5371 | loss(seq) 0.5128 | grad 4.3378 | lr 0.0010 | time_forward 4.1380 | time_backward 6.4940 |
[2023-09-02 14:37:52,640::train::INFO] [train] Iter 10942 | loss 1.5951 | loss(rot) 1.2878 | loss(pos) 0.1470 | loss(seq) 0.1603 | grad 6.6224 | lr 0.0010 | time_forward 4.1160 | time_backward 5.8910 |
[2023-09-02 14:37:55,427::train::INFO] [train] Iter 10943 | loss 2.2282 | loss(rot) 1.4556 | loss(pos) 0.3626 | loss(seq) 0.4100 | grad 6.7356 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4660 |
[2023-09-02 14:38:05,325::train::INFO] [train] Iter 10944 | loss 1.3175 | loss(rot) 0.4054 | loss(pos) 0.4313 | loss(seq) 0.4808 | grad 4.1339 | lr 0.0010 | time_forward 4.2110 | time_backward 5.6840 |
[2023-09-02 14:38:14,697::train::INFO] [train] Iter 10945 | loss 0.5243 | loss(rot) 0.4276 | loss(pos) 0.0878 | loss(seq) 0.0089 | grad 5.3253 | lr 0.0010 | time_forward 3.9290 | time_backward 5.4390 |
[2023-09-02 14:38:25,328::train::INFO] [train] Iter 10946 | loss 1.6218 | loss(rot) 0.7173 | loss(pos) 0.3020 | loss(seq) 0.6025 | grad 3.2504 | lr 0.0010 | time_forward 4.2090 | time_backward 6.4180 |
[2023-09-02 14:38:33,325::train::INFO] [train] Iter 10947 | loss 1.3753 | loss(rot) 0.5942 | loss(pos) 0.1908 | loss(seq) 0.5904 | grad 4.0218 | lr 0.0010 | time_forward 3.2650 | time_backward 4.7140 |
[2023-09-02 14:38:41,511::train::INFO] [train] Iter 10948 | loss 1.4405 | loss(rot) 1.2065 | loss(pos) 0.1692 | loss(seq) 0.0649 | grad 6.9675 | lr 0.0010 | time_forward 3.4460 | time_backward 4.7370 |
[2023-09-02 14:38:44,239::train::INFO] [train] Iter 10949 | loss 1.1208 | loss(rot) 0.3649 | loss(pos) 0.3123 | loss(seq) 0.4436 | grad 4.7379 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4580 |
[2023-09-02 14:38:47,100::train::INFO] [train] Iter 10950 | loss 1.4686 | loss(rot) 1.3501 | loss(pos) 0.0880 | loss(seq) 0.0305 | grad 6.8952 | lr 0.0010 | time_forward 1.3830 | time_backward 1.4750 |
[2023-09-02 14:38:57,328::train::INFO] [train] Iter 10951 | loss 1.7804 | loss(rot) 1.6318 | loss(pos) 0.1195 | loss(seq) 0.0290 | grad 7.3228 | lr 0.0010 | time_forward 4.1760 | time_backward 6.0480 |
[2023-09-02 14:39:06,703::train::INFO] [train] Iter 10952 | loss 1.7863 | loss(rot) 0.7793 | loss(pos) 0.5228 | loss(seq) 0.4842 | grad 7.8484 | lr 0.0010 | time_forward 3.9550 | time_backward 5.4170 |
[2023-09-02 14:39:09,146::train::INFO] [train] Iter 10953 | loss 0.9754 | loss(rot) 0.4405 | loss(pos) 0.0812 | loss(seq) 0.4537 | grad 3.1840 | lr 0.0010 | time_forward 1.1590 | time_backward 1.2800 |
[2023-09-02 14:39:11,952::train::INFO] [train] Iter 10954 | loss 1.9212 | loss(rot) 1.2691 | loss(pos) 0.1661 | loss(seq) 0.4859 | grad 6.1146 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4940 |
[2023-09-02 14:39:14,780::train::INFO] [train] Iter 10955 | loss 1.2746 | loss(rot) 0.0762 | loss(pos) 1.1850 | loss(seq) 0.0134 | grad 8.1166 | lr 0.0010 | time_forward 1.3010 | time_backward 1.5230 |
[2023-09-02 14:39:17,671::train::INFO] [train] Iter 10956 | loss 1.4508 | loss(rot) 0.8542 | loss(pos) 0.1313 | loss(seq) 0.4654 | grad 3.9476 | lr 0.0010 | time_forward 1.3960 | time_backward 1.4910 |
[2023-09-02 14:39:28,319::train::INFO] [train] Iter 10957 | loss 2.0850 | loss(rot) 1.8877 | loss(pos) 0.1013 | loss(seq) 0.0960 | grad 5.5121 | lr 0.0010 | time_forward 4.3540 | time_backward 6.2900 |
[2023-09-02 14:39:31,074::train::INFO] [train] Iter 10958 | loss 2.0118 | loss(rot) 0.9634 | loss(pos) 0.3096 | loss(seq) 0.7388 | grad 5.6226 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4760 |
[2023-09-02 14:39:39,726::train::INFO] [train] Iter 10959 | loss 1.6164 | loss(rot) 0.0555 | loss(pos) 1.5511 | loss(seq) 0.0098 | grad 6.1453 | lr 0.0010 | time_forward 3.7660 | time_backward 4.8820 |
[2023-09-02 14:39:42,394::train::INFO] [train] Iter 10960 | loss 0.8819 | loss(rot) 0.1831 | loss(pos) 0.4522 | loss(seq) 0.2466 | grad 4.5718 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4090 |
[2023-09-02 14:39:52,880::train::INFO] [train] Iter 10961 | loss 2.0230 | loss(rot) 1.7221 | loss(pos) 0.3002 | loss(seq) 0.0006 | grad 5.0676 | lr 0.0010 | time_forward 4.1570 | time_backward 6.3250 |
[2023-09-02 14:39:56,304::train::INFO] [train] Iter 10962 | loss 2.2342 | loss(rot) 1.2635 | loss(pos) 0.4500 | loss(seq) 0.5207 | grad 5.7177 | lr 0.0010 | time_forward 1.4540 | time_backward 1.9660 |
[2023-09-02 14:40:05,460::train::INFO] [train] Iter 10963 | loss 0.4646 | loss(rot) 0.0711 | loss(pos) 0.3783 | loss(seq) 0.0152 | grad 3.4517 | lr 0.0010 | time_forward 3.7280 | time_backward 5.4250 |
[2023-09-02 14:40:15,362::train::INFO] [train] Iter 10964 | loss 1.5662 | loss(rot) 1.0137 | loss(pos) 0.2361 | loss(seq) 0.3164 | grad 7.5694 | lr 0.0010 | time_forward 4.1660 | time_backward 5.7330 |
[2023-09-02 14:40:18,038::train::INFO] [train] Iter 10965 | loss 2.3463 | loss(rot) 1.3940 | loss(pos) 0.4732 | loss(seq) 0.4791 | grad 5.0543 | lr 0.0010 | time_forward 1.2010 | time_backward 1.4720 |
[2023-09-02 14:40:26,818::train::INFO] [train] Iter 10966 | loss 1.4600 | loss(rot) 1.2834 | loss(pos) 0.1344 | loss(seq) 0.0422 | grad 4.3490 | lr 0.0010 | time_forward 3.6960 | time_backward 5.0810 |
[2023-09-02 14:40:29,703::train::INFO] [train] Iter 10967 | loss 2.0795 | loss(rot) 1.4321 | loss(pos) 0.2771 | loss(seq) 0.3703 | grad 7.3885 | lr 0.0010 | time_forward 1.3760 | time_backward 1.5050 |
[2023-09-02 14:40:32,477::train::INFO] [train] Iter 10968 | loss 1.7374 | loss(rot) 0.7693 | loss(pos) 0.5832 | loss(seq) 0.3849 | grad 5.3811 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4690 |
[2023-09-02 14:40:41,265::train::INFO] [train] Iter 10969 | loss 1.1214 | loss(rot) 0.8954 | loss(pos) 0.1468 | loss(seq) 0.0792 | grad 5.8188 | lr 0.0010 | time_forward 3.7190 | time_backward 5.0650 |
[2023-09-02 14:40:51,538::train::INFO] [train] Iter 10970 | loss 1.6788 | loss(rot) 0.6029 | loss(pos) 0.5743 | loss(seq) 0.5015 | grad 3.5772 | lr 0.0010 | time_forward 4.2020 | time_backward 6.0670 |
[2023-09-02 14:41:01,385::train::INFO] [train] Iter 10971 | loss 1.9316 | loss(rot) 1.7069 | loss(pos) 0.0729 | loss(seq) 0.1518 | grad 5.4321 | lr 0.0010 | time_forward 4.1840 | time_backward 5.6590 |
[2023-09-02 14:41:04,122::train::INFO] [train] Iter 10972 | loss 1.1064 | loss(rot) 0.9851 | loss(pos) 0.0857 | loss(seq) 0.0355 | grad 6.0868 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4570 |
[2023-09-02 14:41:12,783::train::INFO] [train] Iter 10973 | loss 2.9039 | loss(rot) 0.5758 | loss(pos) 2.3258 | loss(seq) 0.0023 | grad 7.7702 | lr 0.0010 | time_forward 3.6390 | time_backward 5.0190 |
[2023-09-02 14:41:21,878::train::INFO] [train] Iter 10974 | loss 0.7644 | loss(rot) 0.1058 | loss(pos) 0.6081 | loss(seq) 0.0505 | grad 3.8477 | lr 0.0010 | time_forward 3.6550 | time_backward 5.4360 |
[2023-09-02 14:41:30,768::train::INFO] [train] Iter 10975 | loss 1.0162 | loss(rot) 0.1762 | loss(pos) 0.7627 | loss(seq) 0.0773 | grad 3.0029 | lr 0.0010 | time_forward 3.6930 | time_backward 5.1950 |
[2023-09-02 14:41:34,243::train::INFO] [train] Iter 10976 | loss 3.0397 | loss(rot) 1.7514 | loss(pos) 0.7427 | loss(seq) 0.5457 | grad 5.3541 | lr 0.0010 | time_forward 1.4270 | time_backward 2.0440 |
[2023-09-02 14:41:42,986::train::INFO] [train] Iter 10977 | loss 1.0222 | loss(rot) 0.1034 | loss(pos) 0.9060 | loss(seq) 0.0129 | grad 4.8280 | lr 0.0010 | time_forward 3.6200 | time_backward 5.0140 |
[2023-09-02 14:41:52,688::train::INFO] [train] Iter 10978 | loss 1.3445 | loss(rot) 0.7544 | loss(pos) 0.1681 | loss(seq) 0.4220 | grad 3.7732 | lr 0.0010 | time_forward 4.0080 | time_backward 5.6900 |
[2023-09-02 14:41:55,551::train::INFO] [train] Iter 10979 | loss 1.0586 | loss(rot) 0.2155 | loss(pos) 0.7979 | loss(seq) 0.0452 | grad 4.1424 | lr 0.0010 | time_forward 1.3380 | time_backward 1.5210 |
[2023-09-02 14:42:04,565::train::INFO] [train] Iter 10980 | loss 1.7065 | loss(rot) 1.4186 | loss(pos) 0.2872 | loss(seq) 0.0007 | grad 5.5946 | lr 0.0010 | time_forward 3.6770 | time_backward 5.3350 |
[2023-09-02 14:42:14,625::train::INFO] [train] Iter 10981 | loss 2.2682 | loss(rot) 1.4594 | loss(pos) 0.2708 | loss(seq) 0.5379 | grad 4.7758 | lr 0.0010 | time_forward 4.2070 | time_backward 5.8490 |
[2023-09-02 14:42:17,434::train::INFO] [train] Iter 10982 | loss 1.8028 | loss(rot) 1.5675 | loss(pos) 0.2290 | loss(seq) 0.0064 | grad 4.2701 | lr 0.0010 | time_forward 1.2430 | time_backward 1.5460 |
[2023-09-02 14:42:28,057::train::INFO] [train] Iter 10983 | loss 2.0837 | loss(rot) 1.7775 | loss(pos) 0.2962 | loss(seq) 0.0099 | grad 3.9927 | lr 0.0010 | time_forward 4.1820 | time_backward 6.3470 |
[2023-09-02 14:42:32,798::train::INFO] [train] Iter 10984 | loss 2.5691 | loss(rot) 2.3072 | loss(pos) 0.0716 | loss(seq) 0.1903 | grad 4.0133 | lr 0.0010 | time_forward 2.0890 | time_backward 2.6480 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.