text
stringlengths
56
1.16k
[2023-09-02 14:16:49,340::train::INFO] [train] Iter 10785 | loss 1.9099 | loss(rot) 1.2068 | loss(pos) 0.2662 | loss(seq) 0.4369 | grad 3.8647 | lr 0.0010 | time_forward 1.3180 | time_backward 1.5400
[2023-09-02 14:16:55,964::train::INFO] [train] Iter 10786 | loss 0.7126 | loss(rot) 0.2240 | loss(pos) 0.2451 | loss(seq) 0.2435 | grad 2.7551 | lr 0.0010 | time_forward 2.8260 | time_backward 3.7950
[2023-09-02 14:16:58,385::train::INFO] [train] Iter 10787 | loss 1.6954 | loss(rot) 0.7555 | loss(pos) 0.3896 | loss(seq) 0.5504 | grad 4.5622 | lr 0.0010 | time_forward 1.0670 | time_backward 1.3500
[2023-09-02 14:17:08,208::train::INFO] [train] Iter 10788 | loss 1.2662 | loss(rot) 0.2042 | loss(pos) 0.9107 | loss(seq) 0.1513 | grad 5.0685 | lr 0.0010 | time_forward 4.3170 | time_backward 5.5030
[2023-09-02 14:17:19,714::train::INFO] [train] Iter 10789 | loss 1.1427 | loss(rot) 0.1071 | loss(pos) 1.0271 | loss(seq) 0.0085 | grad 6.5737 | lr 0.0010 | time_forward 4.0720 | time_backward 7.4310
[2023-09-02 14:17:30,194::train::INFO] [train] Iter 10790 | loss 1.8544 | loss(rot) 0.0498 | loss(pos) 1.8001 | loss(seq) 0.0044 | grad 6.9213 | lr 0.0010 | time_forward 4.3830 | time_backward 6.0930
[2023-09-02 14:17:40,559::train::INFO] [train] Iter 10791 | loss 1.7654 | loss(rot) 1.6241 | loss(pos) 0.1379 | loss(seq) 0.0034 | grad 5.7564 | lr 0.0010 | time_forward 4.1930 | time_backward 6.1680
[2023-09-02 14:17:52,455::train::INFO] [train] Iter 10792 | loss 1.9837 | loss(rot) 1.3103 | loss(pos) 0.1876 | loss(seq) 0.4858 | grad 3.1229 | lr 0.0010 | time_forward 5.1390 | time_backward 6.7530
[2023-09-02 14:18:02,849::train::INFO] [train] Iter 10793 | loss 1.7114 | loss(rot) 1.2126 | loss(pos) 0.1475 | loss(seq) 0.3512 | grad 3.5043 | lr 0.0010 | time_forward 4.2530 | time_backward 6.1380
[2023-09-02 14:18:12,419::train::INFO] [train] Iter 10794 | loss 1.9209 | loss(rot) 0.8515 | loss(pos) 0.5631 | loss(seq) 0.5063 | grad 5.4041 | lr 0.0010 | time_forward 3.9790 | time_backward 5.5870
[2023-09-02 14:18:21,602::train::INFO] [train] Iter 10795 | loss 1.7333 | loss(rot) 1.4987 | loss(pos) 0.2342 | loss(seq) 0.0003 | grad 4.5069 | lr 0.0010 | time_forward 3.9330 | time_backward 5.2460
[2023-09-02 14:18:32,550::train::INFO] [train] Iter 10796 | loss 1.8044 | loss(rot) 1.6250 | loss(pos) 0.1794 | loss(seq) 0.0000 | grad 4.4433 | lr 0.0010 | time_forward 4.3740 | time_backward 6.5700
[2023-09-02 14:18:41,354::train::INFO] [train] Iter 10797 | loss 1.2850 | loss(rot) 0.3989 | loss(pos) 0.6848 | loss(seq) 0.2013 | grad 3.9735 | lr 0.0010 | time_forward 3.6680 | time_backward 5.1270
[2023-09-02 14:18:52,822::train::INFO] [train] Iter 10798 | loss 2.3579 | loss(rot) 0.0943 | loss(pos) 2.2594 | loss(seq) 0.0042 | grad 5.3867 | lr 0.0010 | time_forward 4.8560 | time_backward 6.6090
[2023-09-02 14:18:55,693::train::INFO] [train] Iter 10799 | loss 1.7769 | loss(rot) 1.5564 | loss(pos) 0.1827 | loss(seq) 0.0378 | grad 5.4765 | lr 0.0010 | time_forward 1.3970 | time_backward 1.4700
[2023-09-02 14:19:04,675::train::INFO] [train] Iter 10800 | loss 0.9696 | loss(rot) 0.3788 | loss(pos) 0.2046 | loss(seq) 0.3863 | grad 4.4121 | lr 0.0010 | time_forward 3.6940 | time_backward 5.2490
[2023-09-02 14:19:14,911::train::INFO] [train] Iter 10801 | loss 1.3606 | loss(rot) 0.8214 | loss(pos) 0.4603 | loss(seq) 0.0789 | grad 8.4897 | lr 0.0010 | time_forward 4.1190 | time_backward 6.1130
[2023-09-02 14:19:17,494::train::INFO] [train] Iter 10802 | loss 2.6840 | loss(rot) 2.3151 | loss(pos) 0.1932 | loss(seq) 0.1758 | grad 6.3117 | lr 0.0010 | time_forward 1.2690 | time_backward 1.3100
[2023-09-02 14:19:27,156::train::INFO] [train] Iter 10803 | loss 0.5368 | loss(rot) 0.0731 | loss(pos) 0.4380 | loss(seq) 0.0258 | grad 3.6829 | lr 0.0010 | time_forward 4.0360 | time_backward 5.6220
[2023-09-02 14:19:29,854::train::INFO] [train] Iter 10804 | loss 1.8690 | loss(rot) 1.7334 | loss(pos) 0.1352 | loss(seq) 0.0003 | grad 4.2651 | lr 0.0010 | time_forward 1.3520 | time_backward 1.3440
[2023-09-02 14:19:40,681::train::INFO] [train] Iter 10805 | loss 0.9622 | loss(rot) 0.3937 | loss(pos) 0.2930 | loss(seq) 0.2755 | grad 4.4337 | lr 0.0010 | time_forward 4.6720 | time_backward 6.1510
[2023-09-02 14:19:49,493::train::INFO] [train] Iter 10806 | loss 1.3115 | loss(rot) 0.6731 | loss(pos) 0.0896 | loss(seq) 0.5488 | grad 4.5537 | lr 0.0010 | time_forward 3.7790 | time_backward 5.0300
[2023-09-02 14:20:04,128::train::INFO] [train] Iter 10807 | loss 1.4521 | loss(rot) 0.0747 | loss(pos) 1.3662 | loss(seq) 0.0112 | grad 8.0845 | lr 0.0010 | time_forward 8.2330 | time_backward 6.3980
[2023-09-02 14:20:16,209::train::INFO] [train] Iter 10808 | loss 1.5652 | loss(rot) 1.3505 | loss(pos) 0.1530 | loss(seq) 0.0618 | grad 4.6516 | lr 0.0010 | time_forward 6.4620 | time_backward 5.6160
[2023-09-02 14:20:28,035::train::INFO] [train] Iter 10809 | loss 1.5179 | loss(rot) 0.2308 | loss(pos) 1.2360 | loss(seq) 0.0512 | grad 5.6418 | lr 0.0010 | time_forward 6.2530 | time_backward 5.5690
[2023-09-02 14:20:36,969::train::INFO] [train] Iter 10810 | loss 0.8028 | loss(rot) 0.2462 | loss(pos) 0.4747 | loss(seq) 0.0818 | grad 5.1237 | lr 0.0010 | time_forward 3.7300 | time_backward 5.2000
[2023-09-02 14:20:46,125::train::INFO] [train] Iter 10811 | loss 1.3542 | loss(rot) 0.0629 | loss(pos) 1.2717 | loss(seq) 0.0195 | grad 5.7366 | lr 0.0010 | time_forward 3.9220 | time_backward 5.2300
[2023-09-02 14:20:54,841::train::INFO] [train] Iter 10812 | loss 1.5343 | loss(rot) 1.3135 | loss(pos) 0.1363 | loss(seq) 0.0845 | grad 4.0894 | lr 0.0010 | time_forward 3.6390 | time_backward 5.0740
[2023-09-02 14:21:04,970::train::INFO] [train] Iter 10813 | loss 2.2996 | loss(rot) 2.1648 | loss(pos) 0.1128 | loss(seq) 0.0220 | grad 8.2109 | lr 0.0010 | time_forward 4.1350 | time_backward 5.9900
[2023-09-02 14:21:15,286::train::INFO] [train] Iter 10814 | loss 1.7093 | loss(rot) 0.0281 | loss(pos) 1.6783 | loss(seq) 0.0030 | grad 5.8011 | lr 0.0010 | time_forward 4.1900 | time_backward 6.1220
[2023-09-02 14:21:25,452::train::INFO] [train] Iter 10815 | loss 1.4521 | loss(rot) 0.4234 | loss(pos) 0.4830 | loss(seq) 0.5457 | grad 4.8765 | lr 0.0010 | time_forward 4.2070 | time_backward 5.9400
[2023-09-02 14:21:34,206::train::INFO] [train] Iter 10816 | loss 1.7286 | loss(rot) 1.1737 | loss(pos) 0.1601 | loss(seq) 0.3948 | grad 5.6559 | lr 0.0010 | time_forward 3.6020 | time_backward 5.1470
[2023-09-02 14:21:44,486::train::INFO] [train] Iter 10817 | loss 1.7174 | loss(rot) 0.7863 | loss(pos) 0.4465 | loss(seq) 0.4846 | grad 3.5922 | lr 0.0010 | time_forward 4.0410 | time_backward 6.2350
[2023-09-02 14:21:53,690::train::INFO] [train] Iter 10818 | loss 2.0536 | loss(rot) 1.3986 | loss(pos) 0.1188 | loss(seq) 0.5362 | grad 5.8814 | lr 0.0010 | time_forward 3.9480 | time_backward 5.2530
[2023-09-02 14:21:56,592::train::INFO] [train] Iter 10819 | loss 0.7677 | loss(rot) 0.6717 | loss(pos) 0.0949 | loss(seq) 0.0012 | grad 4.3947 | lr 0.0010 | time_forward 1.4090 | time_backward 1.4890
[2023-09-02 14:21:59,636::train::INFO] [train] Iter 10820 | loss 1.8733 | loss(rot) 1.1994 | loss(pos) 0.1780 | loss(seq) 0.4959 | grad 3.4085 | lr 0.0010 | time_forward 1.5110 | time_backward 1.5290
[2023-09-02 14:22:02,503::train::INFO] [train] Iter 10821 | loss 1.5867 | loss(rot) 0.5465 | loss(pos) 0.4812 | loss(seq) 0.5590 | grad 4.9900 | lr 0.0010 | time_forward 1.2980 | time_backward 1.5660
[2023-09-02 14:22:11,255::train::INFO] [train] Iter 10822 | loss 1.4489 | loss(rot) 0.8074 | loss(pos) 0.2287 | loss(seq) 0.4128 | grad 5.4412 | lr 0.0010 | time_forward 3.7150 | time_backward 5.0340
[2023-09-02 14:22:21,688::train::INFO] [train] Iter 10823 | loss 1.2051 | loss(rot) 0.5421 | loss(pos) 0.5097 | loss(seq) 0.1533 | grad 5.0679 | lr 0.0010 | time_forward 4.1650 | time_backward 6.2650
[2023-09-02 14:22:24,160::train::INFO] [train] Iter 10824 | loss 1.3479 | loss(rot) 0.2970 | loss(pos) 0.6159 | loss(seq) 0.4351 | grad 3.6313 | lr 0.0010 | time_forward 1.2430 | time_backward 1.2260
[2023-09-02 14:22:34,521::train::INFO] [train] Iter 10825 | loss 3.7431 | loss(rot) 0.0491 | loss(pos) 3.6939 | loss(seq) 0.0000 | grad 6.4473 | lr 0.0010 | time_forward 4.3550 | time_backward 6.0020
[2023-09-02 14:22:43,225::train::INFO] [train] Iter 10826 | loss 1.6970 | loss(rot) 1.0015 | loss(pos) 0.3647 | loss(seq) 0.3307 | grad 5.3293 | lr 0.0010 | time_forward 3.7020 | time_backward 4.9990
[2023-09-02 14:22:52,428::train::INFO] [train] Iter 10827 | loss 1.0068 | loss(rot) 0.2654 | loss(pos) 0.2143 | loss(seq) 0.5272 | grad 4.5460 | lr 0.0010 | time_forward 3.7870 | time_backward 5.4120
[2023-09-02 14:23:01,711::train::INFO] [train] Iter 10828 | loss 1.7084 | loss(rot) 1.4218 | loss(pos) 0.1643 | loss(seq) 0.1224 | grad 7.4814 | lr 0.0010 | time_forward 3.8760 | time_backward 5.4040
[2023-09-02 14:23:04,466::train::INFO] [train] Iter 10829 | loss 1.3044 | loss(rot) 0.7421 | loss(pos) 0.1816 | loss(seq) 0.3807 | grad 4.8505 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4950
[2023-09-02 14:23:13,547::train::INFO] [train] Iter 10830 | loss 1.9686 | loss(rot) 0.3164 | loss(pos) 1.6507 | loss(seq) 0.0015 | grad 6.5320 | lr 0.0010 | time_forward 3.8080 | time_backward 5.2710
[2023-09-02 14:23:18,729::train::INFO] [train] Iter 10831 | loss 1.6520 | loss(rot) 0.9289 | loss(pos) 0.2091 | loss(seq) 0.5139 | grad 4.5376 | lr 0.0010 | time_forward 2.3060 | time_backward 2.8720
[2023-09-02 14:23:29,638::train::INFO] [train] Iter 10832 | loss 2.5267 | loss(rot) 2.3788 | loss(pos) 0.0925 | loss(seq) 0.0554 | grad 5.8456 | lr 0.0010 | time_forward 3.8190 | time_backward 7.0420
[2023-09-02 14:23:41,653::train::INFO] [train] Iter 10833 | loss 1.0313 | loss(rot) 0.3628 | loss(pos) 0.4720 | loss(seq) 0.1964 | grad 3.7395 | lr 0.0010 | time_forward 4.0150 | time_backward 7.9970
[2023-09-02 14:23:51,501::train::INFO] [train] Iter 10834 | loss 0.8883 | loss(rot) 0.3264 | loss(pos) 0.1901 | loss(seq) 0.3718 | grad 3.6391 | lr 0.0010 | time_forward 4.1470 | time_backward 5.6980
[2023-09-02 14:23:54,463::train::INFO] [train] Iter 10835 | loss 1.3222 | loss(rot) 0.7920 | loss(pos) 0.1609 | loss(seq) 0.3693 | grad 5.7820 | lr 0.0010 | time_forward 1.4120 | time_backward 1.5460
[2023-09-02 14:24:09,106::train::INFO] [train] Iter 10836 | loss 2.4911 | loss(rot) 0.0565 | loss(pos) 2.4318 | loss(seq) 0.0028 | grad 4.9496 | lr 0.0010 | time_forward 8.4640 | time_backward 6.1760
[2023-09-02 14:24:16,999::train::INFO] [train] Iter 10837 | loss 1.4114 | loss(rot) 0.5229 | loss(pos) 0.4098 | loss(seq) 0.4788 | grad 4.5408 | lr 0.0010 | time_forward 3.2430 | time_backward 4.6450
[2023-09-02 14:24:19,800::train::INFO] [train] Iter 10838 | loss 2.8006 | loss(rot) 2.5419 | loss(pos) 0.2587 | loss(seq) 0.0000 | grad 4.5637 | lr 0.0010 | time_forward 1.2770 | time_backward 1.5200
[2023-09-02 14:24:30,022::train::INFO] [train] Iter 10839 | loss 1.2630 | loss(rot) 0.2959 | loss(pos) 0.1993 | loss(seq) 0.7678 | grad 2.5586 | lr 0.0010 | time_forward 4.2210 | time_backward 5.9940
[2023-09-02 14:24:40,212::train::INFO] [train] Iter 10840 | loss 2.0693 | loss(rot) 1.6770 | loss(pos) 0.2917 | loss(seq) 0.1006 | grad 6.4233 | lr 0.0010 | time_forward 4.1730 | time_backward 6.0140
[2023-09-02 14:24:43,079::train::INFO] [train] Iter 10841 | loss 1.0619 | loss(rot) 0.2055 | loss(pos) 0.4537 | loss(seq) 0.4027 | grad 2.8226 | lr 0.0010 | time_forward 1.3140 | time_backward 1.5490
[2023-09-02 14:24:50,844::train::INFO] [train] Iter 10842 | loss 2.5570 | loss(rot) 2.0491 | loss(pos) 0.2567 | loss(seq) 0.2512 | grad 6.3744 | lr 0.0010 | time_forward 3.2400 | time_backward 4.5220
[2023-09-02 14:24:53,549::train::INFO] [train] Iter 10843 | loss 2.0445 | loss(rot) 0.8706 | loss(pos) 0.5660 | loss(seq) 0.6078 | grad 4.3098 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4360
[2023-09-02 14:25:02,404::train::INFO] [train] Iter 10844 | loss 0.5741 | loss(rot) 0.1476 | loss(pos) 0.3966 | loss(seq) 0.0298 | grad 4.0569 | lr 0.0010 | time_forward 3.7820 | time_backward 5.0690
[2023-09-02 14:25:07,355::train::INFO] [train] Iter 10845 | loss 2.7781 | loss(rot) 2.5556 | loss(pos) 0.1187 | loss(seq) 0.1038 | grad 5.0359 | lr 0.0010 | time_forward 2.1680 | time_backward 2.7790
[2023-09-02 14:25:15,884::train::INFO] [train] Iter 10846 | loss 1.7107 | loss(rot) 1.1780 | loss(pos) 0.2841 | loss(seq) 0.2486 | grad 5.9220 | lr 0.0010 | time_forward 3.5240 | time_backward 4.9580
[2023-09-02 14:25:24,597::train::INFO] [train] Iter 10847 | loss 2.2087 | loss(rot) 1.4574 | loss(pos) 0.4260 | loss(seq) 0.3253 | grad 5.4169 | lr 0.0010 | time_forward 3.6300 | time_backward 5.0800
[2023-09-02 14:25:33,166::train::INFO] [train] Iter 10848 | loss 1.5713 | loss(rot) 0.0676 | loss(pos) 1.3380 | loss(seq) 0.1656 | grad 3.7220 | lr 0.0010 | time_forward 3.5900 | time_backward 4.9750
[2023-09-02 14:25:35,966::train::INFO] [train] Iter 10849 | loss 1.6056 | loss(rot) 1.4986 | loss(pos) 0.1067 | loss(seq) 0.0003 | grad 4.0637 | lr 0.0010 | time_forward 1.2830 | time_backward 1.5140
[2023-09-02 14:25:38,372::train::INFO] [train] Iter 10850 | loss 2.0919 | loss(rot) 1.6451 | loss(pos) 0.2359 | loss(seq) 0.2109 | grad 3.7152 | lr 0.0010 | time_forward 1.1700 | time_backward 1.2320
[2023-09-02 14:25:47,053::train::INFO] [train] Iter 10851 | loss 1.0725 | loss(rot) 0.7805 | loss(pos) 0.2914 | loss(seq) 0.0006 | grad 7.5155 | lr 0.0010 | time_forward 3.5280 | time_backward 5.1510
[2023-09-02 14:25:57,256::train::INFO] [train] Iter 10852 | loss 1.0005 | loss(rot) 0.0952 | loss(pos) 0.8777 | loss(seq) 0.0276 | grad 5.2892 | lr 0.0010 | time_forward 4.2490 | time_backward 5.9500
[2023-09-02 14:26:08,659::train::INFO] [train] Iter 10853 | loss 2.1199 | loss(rot) 1.5504 | loss(pos) 0.1956 | loss(seq) 0.3738 | grad 4.1516 | lr 0.0010 | time_forward 5.0970 | time_backward 6.3040
[2023-09-02 14:26:17,723::train::INFO] [train] Iter 10854 | loss 1.5563 | loss(rot) 1.2201 | loss(pos) 0.3144 | loss(seq) 0.0218 | grad 7.4062 | lr 0.0010 | time_forward 3.8580 | time_backward 5.2000
[2023-09-02 14:26:26,821::train::INFO] [train] Iter 10855 | loss 1.2876 | loss(rot) 1.0855 | loss(pos) 0.1949 | loss(seq) 0.0072 | grad 10.1651 | lr 0.0010 | time_forward 3.7140 | time_backward 5.3800
[2023-09-02 14:26:29,558::train::INFO] [train] Iter 10856 | loss 1.6092 | loss(rot) 0.8271 | loss(pos) 0.4051 | loss(seq) 0.3769 | grad 2.3956 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4500
[2023-09-02 14:26:38,127::train::INFO] [train] Iter 10857 | loss 0.9971 | loss(rot) 0.4848 | loss(pos) 0.1145 | loss(seq) 0.3978 | grad 4.2966 | lr 0.0010 | time_forward 3.7960 | time_backward 4.7690
[2023-09-02 14:26:46,294::train::INFO] [train] Iter 10858 | loss 1.4214 | loss(rot) 1.2550 | loss(pos) 0.0325 | loss(seq) 0.1339 | grad 4.2159 | lr 0.0010 | time_forward 3.4130 | time_backward 4.7480
[2023-09-02 14:26:56,922::train::INFO] [train] Iter 10859 | loss 2.1822 | loss(rot) 1.9911 | loss(pos) 0.1904 | loss(seq) 0.0007 | grad 3.5398 | lr 0.0010 | time_forward 4.4860 | time_backward 6.1380
[2023-09-02 14:27:07,380::train::INFO] [train] Iter 10860 | loss 2.3655 | loss(rot) 0.0266 | loss(pos) 2.3343 | loss(seq) 0.0046 | grad 8.4998 | lr 0.0010 | time_forward 4.1430 | time_backward 6.3110
[2023-09-02 14:27:16,380::train::INFO] [train] Iter 10861 | loss 1.3392 | loss(rot) 0.6111 | loss(pos) 0.2054 | loss(seq) 0.5227 | grad 5.5327 | lr 0.0010 | time_forward 3.7450 | time_backward 5.2520
[2023-09-02 14:27:27,464::train::INFO] [train] Iter 10862 | loss 0.9521 | loss(rot) 0.0495 | loss(pos) 0.8934 | loss(seq) 0.0092 | grad 4.5479 | lr 0.0010 | time_forward 4.7760 | time_backward 6.3040
[2023-09-02 14:27:30,286::train::INFO] [train] Iter 10863 | loss 1.5359 | loss(rot) 1.3273 | loss(pos) 0.1577 | loss(seq) 0.0509 | grad 4.2356 | lr 0.0010 | time_forward 1.2800 | time_backward 1.5390
[2023-09-02 14:27:32,597::train::INFO] [train] Iter 10864 | loss 0.8489 | loss(rot) 0.4050 | loss(pos) 0.1766 | loss(seq) 0.2674 | grad 3.3929 | lr 0.0010 | time_forward 1.0640 | time_backward 1.2430
[2023-09-02 14:27:41,106::train::INFO] [train] Iter 10865 | loss 2.4444 | loss(rot) 0.0184 | loss(pos) 2.4260 | loss(seq) 0.0000 | grad 8.7451 | lr 0.0010 | time_forward 3.5130 | time_backward 4.9930
[2023-09-02 14:27:48,279::train::INFO] [train] Iter 10866 | loss 2.4009 | loss(rot) 1.9019 | loss(pos) 0.1302 | loss(seq) 0.3689 | grad 3.6869 | lr 0.0010 | time_forward 3.0600 | time_backward 4.1090
[2023-09-02 14:27:50,676::train::INFO] [train] Iter 10867 | loss 0.9483 | loss(rot) 0.2147 | loss(pos) 0.4558 | loss(seq) 0.2778 | grad 3.2286 | lr 0.0010 | time_forward 1.0970 | time_backward 1.2960
[2023-09-02 14:27:53,551::train::INFO] [train] Iter 10868 | loss 1.3960 | loss(rot) 1.2032 | loss(pos) 0.1883 | loss(seq) 0.0045 | grad 5.1430 | lr 0.0010 | time_forward 1.2930 | time_backward 1.5800
[2023-09-02 14:28:04,095::train::INFO] [train] Iter 10869 | loss 1.7734 | loss(rot) 1.1999 | loss(pos) 0.1407 | loss(seq) 0.4328 | grad 4.2374 | lr 0.0010 | time_forward 4.1320 | time_backward 6.4080
[2023-09-02 14:28:06,846::train::INFO] [train] Iter 10870 | loss 1.4411 | loss(rot) 0.5132 | loss(pos) 0.2534 | loss(seq) 0.6746 | grad 3.2742 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4860
[2023-09-02 14:28:15,565::train::INFO] [train] Iter 10871 | loss 1.3720 | loss(rot) 0.7985 | loss(pos) 0.2601 | loss(seq) 0.3134 | grad 5.1364 | lr 0.0010 | time_forward 3.6950 | time_backward 5.0210
[2023-09-02 14:28:24,503::train::INFO] [train] Iter 10872 | loss 2.3759 | loss(rot) 1.5388 | loss(pos) 0.1792 | loss(seq) 0.6578 | grad 5.4076 | lr 0.0010 | time_forward 3.7230 | time_backward 5.2120
[2023-09-02 14:28:34,953::train::INFO] [train] Iter 10873 | loss 2.0489 | loss(rot) 1.4775 | loss(pos) 0.2218 | loss(seq) 0.3495 | grad 4.4706 | lr 0.0010 | time_forward 4.3050 | time_backward 6.1400
[2023-09-02 14:28:43,939::train::INFO] [train] Iter 10874 | loss 1.4418 | loss(rot) 0.4633 | loss(pos) 0.7245 | loss(seq) 0.2540 | grad 5.3114 | lr 0.0010 | time_forward 3.6940 | time_backward 5.2880
[2023-09-02 14:28:52,686::train::INFO] [train] Iter 10875 | loss 1.0617 | loss(rot) 0.4002 | loss(pos) 0.1480 | loss(seq) 0.5135 | grad 4.7499 | lr 0.0010 | time_forward 3.6200 | time_backward 5.1230
[2023-09-02 14:28:55,372::train::INFO] [train] Iter 10876 | loss 2.0380 | loss(rot) 1.5153 | loss(pos) 0.1227 | loss(seq) 0.4000 | grad 5.2960 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4440
[2023-09-02 14:29:05,462::train::INFO] [train] Iter 10877 | loss 2.6610 | loss(rot) 2.5299 | loss(pos) 0.1185 | loss(seq) 0.0126 | grad 3.3105 | lr 0.0010 | time_forward 4.2670 | time_backward 5.8210
[2023-09-02 14:29:08,226::train::INFO] [train] Iter 10878 | loss 1.2206 | loss(rot) 0.3147 | loss(pos) 0.3995 | loss(seq) 0.5064 | grad 4.6139 | lr 0.0010 | time_forward 1.2530 | time_backward 1.5070
[2023-09-02 14:29:20,664::train::INFO] [train] Iter 10879 | loss 1.2159 | loss(rot) 0.2426 | loss(pos) 0.5911 | loss(seq) 0.3822 | grad 5.4643 | lr 0.0010 | time_forward 5.6000 | time_backward 6.8350
[2023-09-02 14:29:30,938::train::INFO] [train] Iter 10880 | loss 2.1138 | loss(rot) 1.4117 | loss(pos) 0.3080 | loss(seq) 0.3941 | grad 4.2717 | lr 0.0010 | time_forward 4.2540 | time_backward 6.0160
[2023-09-02 14:29:33,621::train::INFO] [train] Iter 10881 | loss 1.3752 | loss(rot) 1.2037 | loss(pos) 0.1060 | loss(seq) 0.0655 | grad 4.7733 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4240
[2023-09-02 14:29:43,532::train::INFO] [train] Iter 10882 | loss 1.3291 | loss(rot) 0.3666 | loss(pos) 0.6914 | loss(seq) 0.2712 | grad 5.9053 | lr 0.0010 | time_forward 4.0060 | time_backward 5.2470
[2023-09-02 14:29:54,051::train::INFO] [train] Iter 10883 | loss 1.4383 | loss(rot) 0.7422 | loss(pos) 0.2154 | loss(seq) 0.4807 | grad 3.2301 | lr 0.0010 | time_forward 4.1650 | time_backward 6.3500
[2023-09-02 14:30:01,693::train::INFO] [train] Iter 10884 | loss 1.2037 | loss(rot) 0.3976 | loss(pos) 0.3442 | loss(seq) 0.4619 | grad 3.7641 | lr 0.0010 | time_forward 3.2150 | time_backward 4.4240