text
stringlengths 56
1.16k
|
---|
[2023-09-02 13:51:56,410::train::INFO] [train] Iter 10585 | loss 0.8283 | loss(rot) 0.1277 | loss(pos) 0.5390 | loss(seq) 0.1616 | grad 3.7468 | lr 0.0010 | time_forward 3.7710 | time_backward 5.1470 |
[2023-09-02 13:51:59,242::train::INFO] [train] Iter 10586 | loss 1.1831 | loss(rot) 0.3319 | loss(pos) 0.8123 | loss(seq) 0.0388 | grad 4.8331 | lr 0.0010 | time_forward 1.2490 | time_backward 1.5800 |
[2023-09-02 13:52:09,077::train::INFO] [train] Iter 10587 | loss 2.6243 | loss(rot) 1.9618 | loss(pos) 0.2970 | loss(seq) 0.3656 | grad 4.3021 | lr 0.0010 | time_forward 4.2150 | time_backward 5.6150 |
[2023-09-02 13:52:17,754::train::INFO] [train] Iter 10588 | loss 2.3086 | loss(rot) 2.2287 | loss(pos) 0.0697 | loss(seq) 0.0101 | grad 5.6493 | lr 0.0010 | time_forward 3.5680 | time_backward 5.1040 |
[2023-09-02 13:52:27,475::train::INFO] [train] Iter 10589 | loss 1.1243 | loss(rot) 0.8333 | loss(pos) 0.2692 | loss(seq) 0.0218 | grad 5.2985 | lr 0.0010 | time_forward 4.1340 | time_backward 5.5830 |
[2023-09-02 13:52:36,738::train::INFO] [train] Iter 10590 | loss 2.0037 | loss(rot) 1.3862 | loss(pos) 0.1953 | loss(seq) 0.4222 | grad 6.1267 | lr 0.0010 | time_forward 3.8350 | time_backward 5.4240 |
[2023-09-02 13:52:45,558::train::INFO] [train] Iter 10591 | loss 1.8543 | loss(rot) 1.3019 | loss(pos) 0.2027 | loss(seq) 0.3498 | grad 7.6656 | lr 0.0010 | time_forward 3.7250 | time_backward 5.0920 |
[2023-09-02 13:52:54,668::train::INFO] [train] Iter 10592 | loss 1.1863 | loss(rot) 0.3281 | loss(pos) 0.3941 | loss(seq) 0.4641 | grad 4.7424 | lr 0.0010 | time_forward 3.7380 | time_backward 5.3680 |
[2023-09-02 13:53:04,178::train::INFO] [train] Iter 10593 | loss 2.0550 | loss(rot) 1.8953 | loss(pos) 0.1509 | loss(seq) 0.0088 | grad 5.1567 | lr 0.0010 | time_forward 3.5850 | time_backward 5.9210 |
[2023-09-02 13:53:14,958::train::INFO] [train] Iter 10594 | loss 1.7379 | loss(rot) 1.5252 | loss(pos) 0.2108 | loss(seq) 0.0019 | grad 4.3740 | lr 0.0010 | time_forward 4.0900 | time_backward 6.6860 |
[2023-09-02 13:53:27,067::train::INFO] [train] Iter 10595 | loss 1.8570 | loss(rot) 1.1072 | loss(pos) 0.3334 | loss(seq) 0.4164 | grad 4.2009 | lr 0.0010 | time_forward 5.7390 | time_backward 6.3660 |
[2023-09-02 13:53:30,075::train::INFO] [train] Iter 10596 | loss 2.1449 | loss(rot) 0.0090 | loss(pos) 2.1353 | loss(seq) 0.0007 | grad 6.3589 | lr 0.0010 | time_forward 1.4520 | time_backward 1.5530 |
[2023-09-02 13:53:39,107::train::INFO] [train] Iter 10597 | loss 2.4027 | loss(rot) 0.0171 | loss(pos) 2.3850 | loss(seq) 0.0006 | grad 4.0277 | lr 0.0010 | time_forward 3.8270 | time_backward 5.2010 |
[2023-09-02 13:53:47,165::train::INFO] [train] Iter 10598 | loss 1.4344 | loss(rot) 0.6850 | loss(pos) 0.2350 | loss(seq) 0.5144 | grad 4.0432 | lr 0.0010 | time_forward 3.2880 | time_backward 4.7670 |
[2023-09-02 13:53:57,946::train::INFO] [train] Iter 10599 | loss 1.8005 | loss(rot) 1.6504 | loss(pos) 0.0902 | loss(seq) 0.0600 | grad 5.3054 | lr 0.0010 | time_forward 4.1660 | time_backward 6.6110 |
[2023-09-02 13:54:08,030::train::INFO] [train] Iter 10600 | loss 2.0362 | loss(rot) 1.8596 | loss(pos) 0.1645 | loss(seq) 0.0121 | grad 3.8650 | lr 0.0010 | time_forward 4.2800 | time_backward 5.8000 |
[2023-09-02 13:54:19,158::train::INFO] [train] Iter 10601 | loss 1.1352 | loss(rot) 0.2916 | loss(pos) 0.5741 | loss(seq) 0.2695 | grad 3.7879 | lr 0.0010 | time_forward 4.2680 | time_backward 6.8570 |
[2023-09-02 13:54:21,960::train::INFO] [train] Iter 10602 | loss 1.4895 | loss(rot) 0.9578 | loss(pos) 0.0980 | loss(seq) 0.4338 | grad 4.9669 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4930 |
[2023-09-02 13:54:31,470::train::INFO] [train] Iter 10603 | loss 0.9563 | loss(rot) 0.3301 | loss(pos) 0.2275 | loss(seq) 0.3987 | grad 3.2316 | lr 0.0010 | time_forward 4.1030 | time_backward 5.3840 |
[2023-09-02 13:54:42,821::train::INFO] [train] Iter 10604 | loss 1.2409 | loss(rot) 1.0709 | loss(pos) 0.1043 | loss(seq) 0.0657 | grad 4.7039 | lr 0.0010 | time_forward 4.3160 | time_backward 7.0310 |
[2023-09-02 13:54:45,118::train::INFO] [train] Iter 10605 | loss 2.2384 | loss(rot) 1.6846 | loss(pos) 0.1997 | loss(seq) 0.3541 | grad 3.7760 | lr 0.0010 | time_forward 1.1120 | time_backward 1.1810 |
[2023-09-02 13:54:54,213::train::INFO] [train] Iter 10606 | loss 2.1016 | loss(rot) 1.9506 | loss(pos) 0.1510 | loss(seq) 0.0000 | grad 3.4643 | lr 0.0010 | time_forward 3.9320 | time_backward 5.1590 |
[2023-09-02 13:55:02,993::train::INFO] [train] Iter 10607 | loss 1.5856 | loss(rot) 1.1749 | loss(pos) 0.0942 | loss(seq) 0.3164 | grad 4.3586 | lr 0.0010 | time_forward 3.6750 | time_backward 5.1020 |
[2023-09-02 13:55:06,483::train::INFO] [train] Iter 10608 | loss 1.2471 | loss(rot) 0.1537 | loss(pos) 0.5449 | loss(seq) 0.5485 | grad 2.5169 | lr 0.0010 | time_forward 1.4160 | time_backward 2.0700 |
[2023-09-02 13:55:09,204::train::INFO] [train] Iter 10609 | loss 1.4481 | loss(rot) 1.2636 | loss(pos) 0.1845 | loss(seq) 0.0000 | grad 6.3683 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4600 |
[2023-09-02 13:55:20,857::train::INFO] [train] Iter 10610 | loss 1.3333 | loss(rot) 0.4858 | loss(pos) 0.4344 | loss(seq) 0.4131 | grad 3.4099 | lr 0.0010 | time_forward 5.2060 | time_backward 6.4430 |
[2023-09-02 13:55:23,180::train::INFO] [train] Iter 10611 | loss 2.0746 | loss(rot) 1.8045 | loss(pos) 0.0607 | loss(seq) 0.2094 | grad 4.0420 | lr 0.0010 | time_forward 1.1010 | time_backward 1.2180 |
[2023-09-02 13:55:32,068::train::INFO] [train] Iter 10612 | loss 2.6625 | loss(rot) 2.4748 | loss(pos) 0.1641 | loss(seq) 0.0236 | grad 3.6418 | lr 0.0010 | time_forward 3.6610 | time_backward 5.2230 |
[2023-09-02 13:55:41,201::train::INFO] [train] Iter 10613 | loss 0.9617 | loss(rot) 0.3103 | loss(pos) 0.1940 | loss(seq) 0.4574 | grad 2.5246 | lr 0.0010 | time_forward 3.9170 | time_backward 5.2130 |
[2023-09-02 13:55:43,985::train::INFO] [train] Iter 10614 | loss 1.1110 | loss(rot) 0.9863 | loss(pos) 0.1005 | loss(seq) 0.0243 | grad 6.0599 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4790 |
[2023-09-02 13:55:53,755::train::INFO] [train] Iter 10615 | loss 3.9924 | loss(rot) 0.0917 | loss(pos) 3.9007 | loss(seq) 0.0000 | grad 8.4518 | lr 0.0010 | time_forward 3.9940 | time_backward 5.7730 |
[2023-09-02 13:56:04,269::train::INFO] [train] Iter 10616 | loss 0.9078 | loss(rot) 0.1884 | loss(pos) 0.3361 | loss(seq) 0.3834 | grad 3.5831 | lr 0.0010 | time_forward 4.2750 | time_backward 6.2350 |
[2023-09-02 13:56:13,542::train::INFO] [train] Iter 10617 | loss 1.0392 | loss(rot) 0.2218 | loss(pos) 0.7038 | loss(seq) 0.1136 | grad 5.1114 | lr 0.0010 | time_forward 3.9230 | time_backward 5.3460 |
[2023-09-02 13:56:22,882::train::INFO] [train] Iter 10618 | loss 2.7616 | loss(rot) 2.3082 | loss(pos) 0.2742 | loss(seq) 0.1792 | grad 6.3340 | lr 0.0010 | time_forward 3.6390 | time_backward 5.6980 |
[2023-09-02 13:56:25,335::train::INFO] [train] Iter 10619 | loss 1.9857 | loss(rot) 1.4059 | loss(pos) 0.2003 | loss(seq) 0.3795 | grad 4.8805 | lr 0.0010 | time_forward 1.2260 | time_backward 1.2220 |
[2023-09-02 13:56:28,680::train::INFO] [train] Iter 10620 | loss 0.9961 | loss(rot) 0.2431 | loss(pos) 0.5885 | loss(seq) 0.1644 | grad 3.7900 | lr 0.0010 | time_forward 1.3970 | time_backward 1.9270 |
[2023-09-02 13:56:39,678::train::INFO] [train] Iter 10621 | loss 0.9008 | loss(rot) 0.4177 | loss(pos) 0.4167 | loss(seq) 0.0664 | grad 3.7009 | lr 0.0010 | time_forward 4.8600 | time_backward 6.1340 |
[2023-09-02 13:56:50,433::train::INFO] [train] Iter 10622 | loss 2.1535 | loss(rot) 1.6626 | loss(pos) 0.1701 | loss(seq) 0.3208 | grad 3.3215 | lr 0.0010 | time_forward 4.3220 | time_backward 6.4290 |
[2023-09-02 13:56:56,501::train::INFO] [train] Iter 10623 | loss 1.1879 | loss(rot) 0.4571 | loss(pos) 0.3495 | loss(seq) 0.3814 | grad 2.9408 | lr 0.0010 | time_forward 2.6230 | time_backward 3.4430 |
[2023-09-02 13:57:06,799::train::INFO] [train] Iter 10624 | loss 2.2883 | loss(rot) 1.9287 | loss(pos) 0.0718 | loss(seq) 0.2878 | grad 3.7379 | lr 0.0010 | time_forward 4.0910 | time_backward 6.2040 |
[2023-09-02 13:57:17,605::train::INFO] [train] Iter 10625 | loss 1.0797 | loss(rot) 0.2030 | loss(pos) 0.6552 | loss(seq) 0.2215 | grad 4.0245 | lr 0.0010 | time_forward 4.3660 | time_backward 6.4370 |
[2023-09-02 13:57:25,278::train::INFO] [train] Iter 10626 | loss 1.4267 | loss(rot) 0.7055 | loss(pos) 0.2502 | loss(seq) 0.4710 | grad 5.5578 | lr 0.0010 | time_forward 3.2230 | time_backward 4.4470 |
[2023-09-02 13:57:28,139::train::INFO] [train] Iter 10627 | loss 1.5251 | loss(rot) 0.8376 | loss(pos) 0.1698 | loss(seq) 0.5177 | grad 4.1308 | lr 0.0010 | time_forward 1.2640 | time_backward 1.5930 |
[2023-09-02 13:57:30,467::train::INFO] [train] Iter 10628 | loss 1.0196 | loss(rot) 0.1592 | loss(pos) 0.6284 | loss(seq) 0.2320 | grad 3.4793 | lr 0.0010 | time_forward 1.0810 | time_backward 1.2440 |
[2023-09-02 13:57:33,300::train::INFO] [train] Iter 10629 | loss 1.2476 | loss(rot) 0.6379 | loss(pos) 0.1504 | loss(seq) 0.4594 | grad 6.4515 | lr 0.0010 | time_forward 1.3490 | time_backward 1.4800 |
[2023-09-02 13:57:42,631::train::INFO] [train] Iter 10630 | loss 1.5353 | loss(rot) 0.0964 | loss(pos) 1.4234 | loss(seq) 0.0155 | grad 6.3036 | lr 0.0010 | time_forward 4.2140 | time_backward 5.1130 |
[2023-09-02 13:57:51,086::train::INFO] [train] Iter 10631 | loss 0.7201 | loss(rot) 0.2391 | loss(pos) 0.3556 | loss(seq) 0.1254 | grad 3.4868 | lr 0.0010 | time_forward 3.5570 | time_backward 4.8940 |
[2023-09-02 13:58:00,261::train::INFO] [train] Iter 10632 | loss 1.7713 | loss(rot) 1.0672 | loss(pos) 0.1408 | loss(seq) 0.5633 | grad 4.7690 | lr 0.0010 | time_forward 3.9010 | time_backward 5.2710 |
[2023-09-02 13:58:11,127::train::INFO] [train] Iter 10633 | loss 1.6463 | loss(rot) 1.2911 | loss(pos) 0.1754 | loss(seq) 0.1797 | grad 3.6701 | lr 0.0010 | time_forward 4.2310 | time_backward 6.6310 |
[2023-09-02 13:58:14,861::train::INFO] [train] Iter 10634 | loss 0.9000 | loss(rot) 0.3007 | loss(pos) 0.3490 | loss(seq) 0.2504 | grad 2.4441 | lr 0.0010 | time_forward 1.5000 | time_backward 2.2300 |
[2023-09-02 13:58:24,176::train::INFO] [train] Iter 10635 | loss 0.7372 | loss(rot) 0.2866 | loss(pos) 0.3830 | loss(seq) 0.0676 | grad 3.2674 | lr 0.0010 | time_forward 3.9330 | time_backward 5.3780 |
[2023-09-02 13:58:26,878::train::INFO] [train] Iter 10636 | loss 1.6901 | loss(rot) 0.9834 | loss(pos) 0.1981 | loss(seq) 0.5087 | grad 4.6847 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4450 |
[2023-09-02 13:58:29,748::train::INFO] [train] Iter 10637 | loss 2.3921 | loss(rot) 1.7087 | loss(pos) 0.2792 | loss(seq) 0.4041 | grad 4.6801 | lr 0.0010 | time_forward 1.3970 | time_backward 1.4700 |
[2023-09-02 13:58:36,843::train::INFO] [train] Iter 10638 | loss 2.1614 | loss(rot) 1.7666 | loss(pos) 0.1408 | loss(seq) 0.2540 | grad 5.6986 | lr 0.0010 | time_forward 3.0780 | time_backward 4.0130 |
[2023-09-02 13:58:48,143::train::INFO] [train] Iter 10639 | loss 2.6106 | loss(rot) 2.3723 | loss(pos) 0.2091 | loss(seq) 0.0292 | grad 4.0162 | lr 0.0010 | time_forward 4.5860 | time_backward 6.7100 |
[2023-09-02 13:58:57,090::train::INFO] [train] Iter 10640 | loss 1.0172 | loss(rot) 0.4594 | loss(pos) 0.2829 | loss(seq) 0.2750 | grad 5.3901 | lr 0.0010 | time_forward 3.7610 | time_backward 5.1830 |
[2023-09-02 13:59:07,257::train::INFO] [train] Iter 10641 | loss 1.9574 | loss(rot) 1.8077 | loss(pos) 0.0698 | loss(seq) 0.0799 | grad 4.2255 | lr 0.0010 | time_forward 4.0950 | time_backward 6.0690 |
[2023-09-02 13:59:15,900::train::INFO] [train] Iter 10642 | loss 1.3595 | loss(rot) 0.8992 | loss(pos) 0.0195 | loss(seq) 0.4408 | grad 5.5022 | lr 0.0010 | time_forward 3.5770 | time_backward 5.0630 |
[2023-09-02 13:59:24,927::train::INFO] [train] Iter 10643 | loss 0.7854 | loss(rot) 0.1526 | loss(pos) 0.6194 | loss(seq) 0.0135 | grad 3.3960 | lr 0.0010 | time_forward 3.6430 | time_backward 5.3810 |
[2023-09-02 13:59:33,967::train::INFO] [train] Iter 10644 | loss 2.0346 | loss(rot) 1.4761 | loss(pos) 0.1475 | loss(seq) 0.4110 | grad 5.3959 | lr 0.0010 | time_forward 3.8280 | time_backward 5.2070 |
[2023-09-02 13:59:36,689::train::INFO] [train] Iter 10645 | loss 1.7280 | loss(rot) 1.0106 | loss(pos) 0.2853 | loss(seq) 0.4321 | grad 4.8903 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4630 |
[2023-09-02 13:59:43,106::train::INFO] [train] Iter 10646 | loss 2.1670 | loss(rot) 2.0629 | loss(pos) 0.0948 | loss(seq) 0.0093 | grad 4.6898 | lr 0.0010 | time_forward 2.6510 | time_backward 3.7310 |
[2023-09-02 13:59:45,546::train::INFO] [train] Iter 10647 | loss 0.7858 | loss(rot) 0.3063 | loss(pos) 0.1495 | loss(seq) 0.3301 | grad 3.6164 | lr 0.0010 | time_forward 1.1630 | time_backward 1.2720 |
[2023-09-02 13:59:55,892::train::INFO] [train] Iter 10648 | loss 1.7401 | loss(rot) 0.4946 | loss(pos) 0.9182 | loss(seq) 0.3273 | grad 4.6088 | lr 0.0010 | time_forward 4.2450 | time_backward 6.0800 |
[2023-09-02 14:00:04,879::train::INFO] [train] Iter 10649 | loss 0.8605 | loss(rot) 0.2967 | loss(pos) 0.3724 | loss(seq) 0.1914 | grad 3.9083 | lr 0.0010 | time_forward 3.7850 | time_backward 5.1980 |
[2023-09-02 14:00:07,696::train::INFO] [train] Iter 10650 | loss 0.6247 | loss(rot) 0.1889 | loss(pos) 0.3905 | loss(seq) 0.0453 | grad 4.1483 | lr 0.0010 | time_forward 1.3040 | time_backward 1.5090 |
[2023-09-02 14:00:17,508::train::INFO] [train] Iter 10651 | loss 2.6444 | loss(rot) 2.2920 | loss(pos) 0.3521 | loss(seq) 0.0003 | grad 5.3539 | lr 0.0010 | time_forward 4.2820 | time_backward 5.5270 |
[2023-09-02 14:00:24,952::train::INFO] [train] Iter 10652 | loss 2.8033 | loss(rot) 0.0172 | loss(pos) 2.7857 | loss(seq) 0.0005 | grad 5.5855 | lr 0.0010 | time_forward 3.1770 | time_backward 4.2640 |
[2023-09-02 14:00:35,492::train::INFO] [train] Iter 10653 | loss 1.4723 | loss(rot) 0.3848 | loss(pos) 0.8257 | loss(seq) 0.2619 | grad 3.6215 | lr 0.0010 | time_forward 4.2030 | time_backward 6.3330 |
[2023-09-02 14:00:38,414::train::INFO] [train] Iter 10654 | loss 1.1049 | loss(rot) 0.7694 | loss(pos) 0.0527 | loss(seq) 0.2828 | grad 4.2360 | lr 0.0010 | time_forward 1.4340 | time_backward 1.4850 |
[2023-09-02 14:00:45,990::train::INFO] [train] Iter 10655 | loss 1.7507 | loss(rot) 1.1372 | loss(pos) 0.0942 | loss(seq) 0.5192 | grad 5.4201 | lr 0.0010 | time_forward 3.1610 | time_backward 4.4120 |
[2023-09-02 14:00:54,181::train::INFO] [train] Iter 10656 | loss 1.3265 | loss(rot) 0.6515 | loss(pos) 0.1702 | loss(seq) 0.5048 | grad 4.7482 | lr 0.0010 | time_forward 3.3580 | time_backward 4.8300 |
[2023-09-02 14:00:57,495::train::INFO] [train] Iter 10657 | loss 2.8696 | loss(rot) 2.1759 | loss(pos) 0.2735 | loss(seq) 0.4202 | grad 3.4324 | lr 0.0010 | time_forward 1.4670 | time_backward 1.8440 |
[2023-09-02 14:01:05,866::train::INFO] [train] Iter 10658 | loss 2.2393 | loss(rot) 2.0428 | loss(pos) 0.1919 | loss(seq) 0.0046 | grad 3.8890 | lr 0.0010 | time_forward 3.3160 | time_backward 5.0510 |
[2023-09-02 14:01:08,097::train::INFO] [train] Iter 10659 | loss 0.4553 | loss(rot) 0.0944 | loss(pos) 0.3234 | loss(seq) 0.0375 | grad 2.8574 | lr 0.0010 | time_forward 1.0440 | time_backward 1.1800 |
[2023-09-02 14:01:16,358::train::INFO] [train] Iter 10660 | loss 2.1890 | loss(rot) 1.9171 | loss(pos) 0.2719 | loss(seq) 0.0000 | grad 5.8901 | lr 0.0010 | time_forward 3.4640 | time_backward 4.7940 |
[2023-09-02 14:01:27,214::train::INFO] [train] Iter 10661 | loss 1.0629 | loss(rot) 0.0445 | loss(pos) 1.0128 | loss(seq) 0.0056 | grad 3.4570 | lr 0.0010 | time_forward 4.5050 | time_backward 6.3460 |
[2023-09-02 14:01:35,992::train::INFO] [train] Iter 10662 | loss 2.2401 | loss(rot) 1.8963 | loss(pos) 0.1195 | loss(seq) 0.2243 | grad 6.0987 | lr 0.0010 | time_forward 3.6950 | time_backward 5.0800 |
[2023-09-02 14:01:38,250::train::INFO] [train] Iter 10663 | loss 0.9340 | loss(rot) 0.3746 | loss(pos) 0.2324 | loss(seq) 0.3269 | grad 3.4770 | lr 0.0010 | time_forward 1.0520 | time_backward 1.2030 |
[2023-09-02 14:01:46,906::train::INFO] [train] Iter 10664 | loss 1.8344 | loss(rot) 1.6487 | loss(pos) 0.1856 | loss(seq) 0.0001 | grad 4.9413 | lr 0.0010 | time_forward 3.5750 | time_backward 5.0780 |
[2023-09-02 14:01:49,685::train::INFO] [train] Iter 10665 | loss 1.0662 | loss(rot) 0.3980 | loss(pos) 0.2489 | loss(seq) 0.4194 | grad 4.4132 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4310 |
[2023-09-02 14:02:00,087::train::INFO] [train] Iter 10666 | loss 2.4989 | loss(rot) 1.9992 | loss(pos) 0.2137 | loss(seq) 0.2860 | grad 3.4291 | lr 0.0010 | time_forward 4.4120 | time_backward 5.9860 |
[2023-09-02 14:02:08,777::train::INFO] [train] Iter 10667 | loss 0.9046 | loss(rot) 0.5747 | loss(pos) 0.2536 | loss(seq) 0.0763 | grad 5.8398 | lr 0.0010 | time_forward 3.6480 | time_backward 5.0380 |
[2023-09-02 14:02:17,527::train::INFO] [train] Iter 10668 | loss 1.6112 | loss(rot) 1.4768 | loss(pos) 0.1049 | loss(seq) 0.0295 | grad 7.6459 | lr 0.0010 | time_forward 3.6500 | time_backward 5.0970 |
[2023-09-02 14:02:20,251::train::INFO] [train] Iter 10669 | loss 0.9227 | loss(rot) 0.1928 | loss(pos) 0.2449 | loss(seq) 0.4849 | grad 3.1991 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4640 |
[2023-09-02 14:02:29,080::train::INFO] [train] Iter 10670 | loss 1.9609 | loss(rot) 0.6995 | loss(pos) 0.8979 | loss(seq) 0.3635 | grad 4.5601 | lr 0.0010 | time_forward 3.6880 | time_backward 5.1240 |
[2023-09-02 14:02:39,547::train::INFO] [train] Iter 10671 | loss 1.7522 | loss(rot) 1.4565 | loss(pos) 0.1236 | loss(seq) 0.1721 | grad 4.1941 | lr 0.0010 | time_forward 5.1310 | time_backward 5.3320 |
[2023-09-02 14:02:42,433::train::INFO] [train] Iter 10672 | loss 1.0118 | loss(rot) 0.2067 | loss(pos) 0.5584 | loss(seq) 0.2467 | grad 2.9022 | lr 0.0010 | time_forward 1.3960 | time_backward 1.4870 |
[2023-09-02 14:02:45,205::train::INFO] [train] Iter 10673 | loss 1.8332 | loss(rot) 1.2877 | loss(pos) 0.2129 | loss(seq) 0.3326 | grad 5.6445 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4620 |
[2023-09-02 14:02:54,820::train::INFO] [train] Iter 10674 | loss 1.3228 | loss(rot) 0.5996 | loss(pos) 0.1593 | loss(seq) 0.5640 | grad 5.2613 | lr 0.0010 | time_forward 3.9470 | time_backward 5.6650 |
[2023-09-02 14:03:06,252::train::INFO] [train] Iter 10675 | loss 1.4790 | loss(rot) 1.2896 | loss(pos) 0.1874 | loss(seq) 0.0021 | grad 3.6068 | lr 0.0010 | time_forward 5.2560 | time_backward 6.1720 |
[2023-09-02 14:03:16,799::train::INFO] [train] Iter 10676 | loss 1.5318 | loss(rot) 0.2836 | loss(pos) 0.7747 | loss(seq) 0.4735 | grad 4.4265 | lr 0.0010 | time_forward 4.4220 | time_backward 6.1210 |
[2023-09-02 14:03:19,484::train::INFO] [train] Iter 10677 | loss 1.9401 | loss(rot) 1.7944 | loss(pos) 0.0462 | loss(seq) 0.0996 | grad 4.7942 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4390 |
[2023-09-02 14:03:27,166::train::INFO] [train] Iter 10678 | loss 0.8371 | loss(rot) 0.3686 | loss(pos) 0.4093 | loss(seq) 0.0592 | grad 4.7093 | lr 0.0010 | time_forward 3.0790 | time_backward 4.5990 |
[2023-09-02 14:03:35,782::train::INFO] [train] Iter 10679 | loss 1.8641 | loss(rot) 1.6475 | loss(pos) 0.2018 | loss(seq) 0.0147 | grad 10.0215 | lr 0.0010 | time_forward 3.6540 | time_backward 4.9590 |
[2023-09-02 14:03:42,899::train::INFO] [train] Iter 10680 | loss 2.4259 | loss(rot) 2.2635 | loss(pos) 0.1004 | loss(seq) 0.0620 | grad 6.5792 | lr 0.0010 | time_forward 3.0270 | time_backward 4.0860 |
[2023-09-02 14:03:45,696::train::INFO] [train] Iter 10681 | loss 1.3704 | loss(rot) 0.5928 | loss(pos) 0.2642 | loss(seq) 0.5134 | grad 4.6707 | lr 0.0010 | time_forward 1.2590 | time_backward 1.5340 |
[2023-09-02 14:03:56,484::train::INFO] [train] Iter 10682 | loss 1.7634 | loss(rot) 0.5288 | loss(pos) 0.5129 | loss(seq) 0.7217 | grad 4.4799 | lr 0.0010 | time_forward 4.4050 | time_backward 6.3790 |
[2023-09-02 14:03:59,251::train::INFO] [train] Iter 10683 | loss 2.3717 | loss(rot) 1.5709 | loss(pos) 0.4183 | loss(seq) 0.3825 | grad 6.8515 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4700 |
[2023-09-02 14:04:08,079::train::INFO] [train] Iter 10684 | loss 0.9418 | loss(rot) 0.4820 | loss(pos) 0.3936 | loss(seq) 0.0662 | grad 5.4111 | lr 0.0010 | time_forward 3.7180 | time_backward 5.1070 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.