text
stringlengths 56
1.16k
|
---|
[2023-09-02 13:39:30,702::train::INFO] [train] Iter 10485 | loss 1.0808 | loss(rot) 0.1047 | loss(pos) 0.9502 | loss(seq) 0.0258 | grad 5.6792 | lr 0.0010 | time_forward 4.1360 | time_backward 5.6670 |
[2023-09-02 13:39:33,375::train::INFO] [train] Iter 10486 | loss 1.2917 | loss(rot) 1.1872 | loss(pos) 0.0771 | loss(seq) 0.0273 | grad 4.5873 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4030 |
[2023-09-02 13:39:43,270::train::INFO] [train] Iter 10487 | loss 2.4953 | loss(rot) 2.3919 | loss(pos) 0.0677 | loss(seq) 0.0356 | grad 4.7078 | lr 0.0010 | time_forward 3.9500 | time_backward 5.9420 |
[2023-09-02 13:39:53,156::train::INFO] [train] Iter 10488 | loss 1.3329 | loss(rot) 0.2483 | loss(pos) 0.6622 | loss(seq) 0.4224 | grad 5.9714 | lr 0.0010 | time_forward 3.9560 | time_backward 5.9260 |
[2023-09-02 13:40:01,532::train::INFO] [train] Iter 10489 | loss 1.7391 | loss(rot) 0.2621 | loss(pos) 1.1555 | loss(seq) 0.3215 | grad 7.5077 | lr 0.0010 | time_forward 3.4770 | time_backward 4.8960 |
[2023-09-02 13:40:10,594::train::INFO] [train] Iter 10490 | loss 1.4913 | loss(rot) 1.2790 | loss(pos) 0.0991 | loss(seq) 0.1132 | grad 4.8885 | lr 0.0010 | time_forward 3.7950 | time_backward 5.2630 |
[2023-09-02 13:40:20,724::train::INFO] [train] Iter 10491 | loss 1.3070 | loss(rot) 0.5789 | loss(pos) 0.1962 | loss(seq) 0.5318 | grad 3.6614 | lr 0.0010 | time_forward 4.0150 | time_backward 6.1100 |
[2023-09-02 13:40:29,951::train::INFO] [train] Iter 10492 | loss 1.9871 | loss(rot) 1.4879 | loss(pos) 0.0640 | loss(seq) 0.4351 | grad 4.1816 | lr 0.0010 | time_forward 3.9910 | time_backward 5.2330 |
[2023-09-02 13:40:32,554::train::INFO] [train] Iter 10493 | loss 1.3116 | loss(rot) 0.0277 | loss(pos) 1.2834 | loss(seq) 0.0004 | grad 7.8225 | lr 0.0010 | time_forward 1.1940 | time_backward 1.4050 |
[2023-09-02 13:40:42,385::train::INFO] [train] Iter 10494 | loss 1.7947 | loss(rot) 1.0129 | loss(pos) 0.3182 | loss(seq) 0.4636 | grad 3.6899 | lr 0.0010 | time_forward 4.0130 | time_backward 5.8140 |
[2023-09-02 13:40:51,175::train::INFO] [train] Iter 10495 | loss 1.9332 | loss(rot) 1.6637 | loss(pos) 0.2635 | loss(seq) 0.0060 | grad 5.6664 | lr 0.0010 | time_forward 3.6570 | time_backward 5.1290 |
[2023-09-02 13:40:59,664::train::INFO] [train] Iter 10496 | loss 1.2856 | loss(rot) 0.8255 | loss(pos) 0.1306 | loss(seq) 0.3294 | grad 5.6128 | lr 0.0010 | time_forward 3.5110 | time_backward 4.9750 |
[2023-09-02 13:41:09,652::train::INFO] [train] Iter 10497 | loss 1.8680 | loss(rot) 0.0373 | loss(pos) 1.8288 | loss(seq) 0.0019 | grad 8.8989 | lr 0.0010 | time_forward 4.0420 | time_backward 5.9420 |
[2023-09-02 13:41:12,331::train::INFO] [train] Iter 10498 | loss 2.3438 | loss(rot) 2.0837 | loss(pos) 0.1840 | loss(seq) 0.0761 | grad 3.8543 | lr 0.0010 | time_forward 1.2210 | time_backward 1.4560 |
[2023-09-02 13:41:15,056::train::INFO] [train] Iter 10499 | loss 2.1037 | loss(rot) 1.9602 | loss(pos) 0.0938 | loss(seq) 0.0498 | grad 5.3665 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4400 |
[2023-09-02 13:41:18,405::train::INFO] [train] Iter 10500 | loss 0.7905 | loss(rot) 0.1371 | loss(pos) 0.4307 | loss(seq) 0.2228 | grad 4.0851 | lr 0.0010 | time_forward 1.4120 | time_backward 1.9340 |
[2023-09-02 13:41:27,034::train::INFO] [train] Iter 10501 | loss 1.1538 | loss(rot) 0.0710 | loss(pos) 0.7309 | loss(seq) 0.3519 | grad 4.0597 | lr 0.0010 | time_forward 3.5420 | time_backward 5.0830 |
[2023-09-02 13:41:37,076::train::INFO] [train] Iter 10502 | loss 1.1889 | loss(rot) 0.4523 | loss(pos) 0.3063 | loss(seq) 0.4303 | grad 3.9131 | lr 0.0010 | time_forward 3.9700 | time_backward 6.0690 |
[2023-09-02 13:41:46,236::train::INFO] [train] Iter 10503 | loss 2.0631 | loss(rot) 1.7536 | loss(pos) 0.1053 | loss(seq) 0.2042 | grad 3.9291 | lr 0.0010 | time_forward 3.7860 | time_backward 5.3720 |
[2023-09-02 13:41:48,889::train::INFO] [train] Iter 10504 | loss 1.6254 | loss(rot) 0.1971 | loss(pos) 1.3149 | loss(seq) 0.1134 | grad 8.6901 | lr 0.0010 | time_forward 1.2170 | time_backward 1.4320 |
[2023-09-02 13:41:51,309::train::INFO] [train] Iter 10505 | loss 1.4893 | loss(rot) 0.7004 | loss(pos) 0.2658 | loss(seq) 0.5231 | grad 4.2701 | lr 0.0010 | time_forward 1.1640 | time_backward 1.2530 |
[2023-09-02 13:41:59,964::train::INFO] [train] Iter 10506 | loss 1.4970 | loss(rot) 0.9579 | loss(pos) 0.1154 | loss(seq) 0.4238 | grad 4.4565 | lr 0.0010 | time_forward 3.7210 | time_backward 4.9320 |
[2023-09-02 13:42:02,650::train::INFO] [train] Iter 10507 | loss 0.9113 | loss(rot) 0.2933 | loss(pos) 0.2578 | loss(seq) 0.3603 | grad 2.8005 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4550 |
[2023-09-02 13:42:05,325::train::INFO] [train] Iter 10508 | loss 1.9475 | loss(rot) 1.1808 | loss(pos) 0.3066 | loss(seq) 0.4601 | grad 5.4679 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4340 |
[2023-09-02 13:42:15,358::train::INFO] [train] Iter 10509 | loss 2.0175 | loss(rot) 1.7643 | loss(pos) 0.2530 | loss(seq) 0.0001 | grad 3.9455 | lr 0.0010 | time_forward 4.0870 | time_backward 5.9420 |
[2023-09-02 13:42:17,981::train::INFO] [train] Iter 10510 | loss 0.6170 | loss(rot) 0.0835 | loss(pos) 0.2870 | loss(seq) 0.2464 | grad 2.4185 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3900 |
[2023-09-02 13:42:26,149::train::INFO] [train] Iter 10511 | loss 2.7621 | loss(rot) 2.2348 | loss(pos) 0.1395 | loss(seq) 0.3878 | grad 5.6094 | lr 0.0010 | time_forward 3.3920 | time_backward 4.7460 |
[2023-09-02 13:42:33,590::train::INFO] [train] Iter 10512 | loss 2.8378 | loss(rot) 2.1533 | loss(pos) 0.2368 | loss(seq) 0.4477 | grad 8.0668 | lr 0.0010 | time_forward 3.1180 | time_backward 4.3200 |
[2023-09-02 13:42:35,164::train::INFO] [train] Iter 10513 | loss 1.6174 | loss(rot) 0.4569 | loss(pos) 1.1223 | loss(seq) 0.0383 | grad 4.8538 | lr 0.0010 | time_forward 0.7330 | time_backward 0.8370 |
[2023-09-02 13:42:45,419::train::INFO] [train] Iter 10514 | loss 1.7436 | loss(rot) 1.5922 | loss(pos) 0.1417 | loss(seq) 0.0098 | grad 4.7354 | lr 0.0010 | time_forward 4.0530 | time_backward 6.1980 |
[2023-09-02 13:42:54,742::train::INFO] [train] Iter 10515 | loss 0.9108 | loss(rot) 0.4654 | loss(pos) 0.1706 | loss(seq) 0.2748 | grad 5.1824 | lr 0.0010 | time_forward 3.8530 | time_backward 5.4660 |
[2023-09-02 13:43:04,789::train::INFO] [train] Iter 10516 | loss 1.0100 | loss(rot) 0.3882 | loss(pos) 0.1543 | loss(seq) 0.4675 | grad 4.0612 | lr 0.0010 | time_forward 3.9960 | time_backward 6.0470 |
[2023-09-02 13:43:14,922::train::INFO] [train] Iter 10517 | loss 1.6288 | loss(rot) 0.1548 | loss(pos) 1.4540 | loss(seq) 0.0199 | grad 6.1183 | lr 0.0010 | time_forward 4.0800 | time_backward 6.0490 |
[2023-09-02 13:43:25,544::train::INFO] [train] Iter 10518 | loss 1.8928 | loss(rot) 1.0536 | loss(pos) 0.4119 | loss(seq) 0.4272 | grad 5.8922 | lr 0.0010 | time_forward 4.4320 | time_backward 6.1860 |
[2023-09-02 13:43:28,427::train::INFO] [train] Iter 10519 | loss 2.3832 | loss(rot) 0.5510 | loss(pos) 1.7923 | loss(seq) 0.0399 | grad 10.0134 | lr 0.0010 | time_forward 1.4240 | time_backward 1.4550 |
[2023-09-02 13:43:39,760::train::INFO] [train] Iter 10520 | loss 2.2461 | loss(rot) 1.2896 | loss(pos) 0.2626 | loss(seq) 0.6939 | grad 4.4875 | lr 0.0010 | time_forward 4.5960 | time_backward 6.7350 |
[2023-09-02 13:43:51,025::train::INFO] [train] Iter 10521 | loss 2.5312 | loss(rot) 1.5841 | loss(pos) 0.3467 | loss(seq) 0.6003 | grad 3.4626 | lr 0.0010 | time_forward 4.6560 | time_backward 6.6040 |
[2023-09-02 13:44:00,893::train::INFO] [train] Iter 10522 | loss 1.6903 | loss(rot) 1.4460 | loss(pos) 0.2373 | loss(seq) 0.0070 | grad 4.8235 | lr 0.0010 | time_forward 4.4380 | time_backward 5.4250 |
[2023-09-02 13:44:03,833::train::INFO] [train] Iter 10523 | loss 1.2968 | loss(rot) 0.5899 | loss(pos) 0.4842 | loss(seq) 0.2227 | grad 4.2598 | lr 0.0010 | time_forward 1.2980 | time_backward 1.6380 |
[2023-09-02 13:44:14,621::train::INFO] [train] Iter 10524 | loss 1.8523 | loss(rot) 1.7177 | loss(pos) 0.1344 | loss(seq) 0.0001 | grad 7.4270 | lr 0.0010 | time_forward 4.4250 | time_backward 6.3600 |
[2023-09-02 13:44:23,773::train::INFO] [train] Iter 10525 | loss 1.4170 | loss(rot) 0.4918 | loss(pos) 0.8604 | loss(seq) 0.0647 | grad 4.9556 | lr 0.0010 | time_forward 4.2050 | time_backward 4.9210 |
[2023-09-02 13:44:32,990::train::INFO] [train] Iter 10526 | loss 2.9624 | loss(rot) 0.0451 | loss(pos) 2.9121 | loss(seq) 0.0052 | grad 11.9767 | lr 0.0010 | time_forward 3.8670 | time_backward 5.3460 |
[2023-09-02 13:44:44,069::train::INFO] [train] Iter 10527 | loss 2.2286 | loss(rot) 0.0334 | loss(pos) 2.1905 | loss(seq) 0.0047 | grad 11.3081 | lr 0.0010 | time_forward 4.6570 | time_backward 6.4180 |
[2023-09-02 13:44:54,734::train::INFO] [train] Iter 10528 | loss 0.9828 | loss(rot) 0.1470 | loss(pos) 0.5245 | loss(seq) 0.3113 | grad 3.0013 | lr 0.0010 | time_forward 4.1760 | time_backward 6.4860 |
[2023-09-02 13:45:04,505::train::INFO] [train] Iter 10529 | loss 3.1935 | loss(rot) 2.7518 | loss(pos) 0.2068 | loss(seq) 0.2349 | grad 7.0241 | lr 0.0010 | time_forward 4.1830 | time_backward 5.5680 |
[2023-09-02 13:45:07,375::train::INFO] [train] Iter 10530 | loss 2.6180 | loss(rot) 1.4719 | loss(pos) 0.6018 | loss(seq) 0.5443 | grad 5.9093 | lr 0.0010 | time_forward 1.2690 | time_backward 1.5970 |
[2023-09-02 13:45:17,922::train::INFO] [train] Iter 10531 | loss 1.4498 | loss(rot) 1.2047 | loss(pos) 0.1133 | loss(seq) 0.1318 | grad 4.8132 | lr 0.0010 | time_forward 4.4000 | time_backward 6.1430 |
[2023-09-02 13:45:20,648::train::INFO] [train] Iter 10532 | loss 2.2041 | loss(rot) 1.4662 | loss(pos) 0.2137 | loss(seq) 0.5242 | grad 5.0084 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4450 |
[2023-09-02 13:45:23,500::train::INFO] [train] Iter 10533 | loss 2.0910 | loss(rot) 0.7537 | loss(pos) 1.0431 | loss(seq) 0.2942 | grad 4.7340 | lr 0.0010 | time_forward 1.2940 | time_backward 1.5540 |
[2023-09-02 13:45:31,552::train::INFO] [train] Iter 10534 | loss 2.6717 | loss(rot) 2.4147 | loss(pos) 0.2063 | loss(seq) 0.0507 | grad 5.9930 | lr 0.0010 | time_forward 3.4480 | time_backward 4.6010 |
[2023-09-02 13:45:38,694::train::INFO] [train] Iter 10535 | loss 2.3535 | loss(rot) 0.0094 | loss(pos) 2.3441 | loss(seq) 0.0000 | grad 14.0861 | lr 0.0010 | time_forward 2.9760 | time_backward 4.1630 |
[2023-09-02 13:45:47,269::train::INFO] [train] Iter 10536 | loss 1.7935 | loss(rot) 1.6259 | loss(pos) 0.1644 | loss(seq) 0.0032 | grad 9.0826 | lr 0.0010 | time_forward 3.6150 | time_backward 4.9560 |
[2023-09-02 13:45:56,537::train::INFO] [train] Iter 10537 | loss 2.3505 | loss(rot) 2.1796 | loss(pos) 0.1638 | loss(seq) 0.0071 | grad 8.9333 | lr 0.0010 | time_forward 3.8550 | time_backward 5.4090 |
[2023-09-02 13:45:59,219::train::INFO] [train] Iter 10538 | loss 2.4715 | loss(rot) 1.9245 | loss(pos) 0.2351 | loss(seq) 0.3119 | grad 5.0615 | lr 0.0010 | time_forward 1.2930 | time_backward 1.3850 |
[2023-09-02 13:46:02,260::train::INFO] [train] Iter 10539 | loss 1.4978 | loss(rot) 0.5654 | loss(pos) 0.5594 | loss(seq) 0.3729 | grad 4.8646 | lr 0.0010 | time_forward 1.3090 | time_backward 1.7280 |
[2023-09-02 13:46:10,747::train::INFO] [train] Iter 10540 | loss 1.5170 | loss(rot) 0.9692 | loss(pos) 0.2066 | loss(seq) 0.3413 | grad 4.9471 | lr 0.0010 | time_forward 3.5550 | time_backward 4.9280 |
[2023-09-02 13:46:19,505::train::INFO] [train] Iter 10541 | loss 2.2823 | loss(rot) 0.0249 | loss(pos) 2.2556 | loss(seq) 0.0018 | grad 11.5119 | lr 0.0010 | time_forward 3.6000 | time_backward 5.1550 |
[2023-09-02 13:46:30,487::train::INFO] [train] Iter 10542 | loss 1.3100 | loss(rot) 0.2891 | loss(pos) 0.4951 | loss(seq) 0.5258 | grad 3.7672 | lr 0.0010 | time_forward 4.4650 | time_backward 6.5130 |
[2023-09-02 13:46:33,306::train::INFO] [train] Iter 10543 | loss 2.4213 | loss(rot) 1.7774 | loss(pos) 0.2309 | loss(seq) 0.4129 | grad 3.7594 | lr 0.0010 | time_forward 1.3510 | time_backward 1.4640 |
[2023-09-02 13:46:43,272::train::INFO] [train] Iter 10544 | loss 1.7024 | loss(rot) 1.1185 | loss(pos) 0.0929 | loss(seq) 0.4910 | grad 4.8789 | lr 0.0010 | time_forward 4.1300 | time_backward 5.8320 |
[2023-09-02 13:46:53,036::train::INFO] [train] Iter 10545 | loss 2.3821 | loss(rot) 2.2569 | loss(pos) 0.1240 | loss(seq) 0.0012 | grad 7.2980 | lr 0.0010 | time_forward 4.1260 | time_backward 5.6350 |
[2023-09-02 13:46:55,748::train::INFO] [train] Iter 10546 | loss 2.6191 | loss(rot) 2.1542 | loss(pos) 0.2441 | loss(seq) 0.2208 | grad 7.7542 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4280 |
[2023-09-02 13:47:04,817::train::INFO] [train] Iter 10547 | loss 1.7178 | loss(rot) 1.5524 | loss(pos) 0.1642 | loss(seq) 0.0012 | grad 4.7284 | lr 0.0010 | time_forward 3.8520 | time_backward 5.2140 |
[2023-09-02 13:47:13,721::train::INFO] [train] Iter 10548 | loss 2.6358 | loss(rot) 2.3803 | loss(pos) 0.2467 | loss(seq) 0.0088 | grad 3.3596 | lr 0.0010 | time_forward 3.6940 | time_backward 5.2060 |
[2023-09-02 13:47:24,477::train::INFO] [train] Iter 10549 | loss 2.0116 | loss(rot) 0.8230 | loss(pos) 0.6536 | loss(seq) 0.5349 | grad 5.7570 | lr 0.0010 | time_forward 4.2290 | time_backward 6.5240 |
[2023-09-02 13:47:33,778::train::INFO] [train] Iter 10550 | loss 3.0002 | loss(rot) 2.6317 | loss(pos) 0.2907 | loss(seq) 0.0778 | grad 6.2579 | lr 0.0010 | time_forward 3.9490 | time_backward 5.3480 |
[2023-09-02 13:47:46,066::train::INFO] [train] Iter 10551 | loss 1.8231 | loss(rot) 0.0400 | loss(pos) 1.7762 | loss(seq) 0.0070 | grad 6.2855 | lr 0.0010 | time_forward 6.0030 | time_backward 6.2820 |
[2023-09-02 13:47:56,811::train::INFO] [train] Iter 10552 | loss 1.4558 | loss(rot) 1.1410 | loss(pos) 0.3128 | loss(seq) 0.0019 | grad 5.1143 | lr 0.0010 | time_forward 4.3940 | time_backward 6.3290 |
[2023-09-02 13:48:07,129::train::INFO] [train] Iter 10553 | loss 2.2844 | loss(rot) 1.8067 | loss(pos) 0.3239 | loss(seq) 0.1538 | grad 4.9074 | lr 0.0010 | time_forward 4.0430 | time_backward 6.2720 |
[2023-09-02 13:48:15,744::train::INFO] [train] Iter 10554 | loss 0.6380 | loss(rot) 0.1078 | loss(pos) 0.5026 | loss(seq) 0.0276 | grad 2.8829 | lr 0.0010 | time_forward 3.4870 | time_backward 5.1250 |
[2023-09-02 13:48:25,589::train::INFO] [train] Iter 10555 | loss 2.5798 | loss(rot) 0.0545 | loss(pos) 2.5233 | loss(seq) 0.0020 | grad 6.7448 | lr 0.0010 | time_forward 4.1120 | time_backward 5.7290 |
[2023-09-02 13:48:35,998::train::INFO] [train] Iter 10556 | loss 1.5571 | loss(rot) 0.4903 | loss(pos) 0.4673 | loss(seq) 0.5995 | grad 3.8853 | lr 0.0010 | time_forward 4.2190 | time_backward 6.1860 |
[2023-09-02 13:48:46,655::train::INFO] [train] Iter 10557 | loss 2.0364 | loss(rot) 1.0889 | loss(pos) 0.3061 | loss(seq) 0.6415 | grad 4.6700 | lr 0.0010 | time_forward 4.3480 | time_backward 6.3050 |
[2023-09-02 13:48:49,395::train::INFO] [train] Iter 10558 | loss 1.8240 | loss(rot) 1.7184 | loss(pos) 0.1008 | loss(seq) 0.0047 | grad 7.5513 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4710 |
[2023-09-02 13:48:51,700::train::INFO] [train] Iter 10559 | loss 2.3564 | loss(rot) 2.1950 | loss(pos) 0.1603 | loss(seq) 0.0012 | grad 4.4768 | lr 0.0010 | time_forward 1.0940 | time_backward 1.2070 |
[2023-09-02 13:49:01,207::train::INFO] [train] Iter 10560 | loss 1.9790 | loss(rot) 1.2516 | loss(pos) 0.1756 | loss(seq) 0.5517 | grad 3.2357 | lr 0.0010 | time_forward 3.9250 | time_backward 5.5590 |
[2023-09-02 13:49:03,958::train::INFO] [train] Iter 10561 | loss 2.1621 | loss(rot) 2.0567 | loss(pos) 0.1052 | loss(seq) 0.0001 | grad 7.7395 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4620 |
[2023-09-02 13:49:13,893::train::INFO] [train] Iter 10562 | loss 0.7302 | loss(rot) 0.2546 | loss(pos) 0.3716 | loss(seq) 0.1040 | grad 3.8204 | lr 0.0010 | time_forward 4.1940 | time_backward 5.6990 |
[2023-09-02 13:49:25,192::train::INFO] [train] Iter 10563 | loss 1.5859 | loss(rot) 0.1071 | loss(pos) 1.4707 | loss(seq) 0.0081 | grad 4.8972 | lr 0.0010 | time_forward 4.1440 | time_backward 7.1510 |
[2023-09-02 13:49:35,984::train::INFO] [train] Iter 10564 | loss 1.2124 | loss(rot) 1.0512 | loss(pos) 0.1606 | loss(seq) 0.0007 | grad 4.6832 | lr 0.0010 | time_forward 4.3520 | time_backward 6.4360 |
[2023-09-02 13:49:44,622::train::INFO] [train] Iter 10565 | loss 1.6125 | loss(rot) 0.9465 | loss(pos) 0.1750 | loss(seq) 0.4909 | grad 4.2549 | lr 0.0010 | time_forward 3.6350 | time_backward 5.0000 |
[2023-09-02 13:49:52,461::train::INFO] [train] Iter 10566 | loss 1.1851 | loss(rot) 1.0117 | loss(pos) 0.1733 | loss(seq) 0.0001 | grad 4.7833 | lr 0.0010 | time_forward 3.2580 | time_backward 4.5770 |
[2023-09-02 13:50:02,200::train::INFO] [train] Iter 10567 | loss 1.5716 | loss(rot) 1.2983 | loss(pos) 0.1992 | loss(seq) 0.0740 | grad 6.0032 | lr 0.0010 | time_forward 4.1400 | time_backward 5.5940 |
[2023-09-02 13:50:11,056::train::INFO] [train] Iter 10568 | loss 2.2501 | loss(rot) 1.4794 | loss(pos) 0.2835 | loss(seq) 0.4872 | grad 5.4465 | lr 0.0010 | time_forward 3.7520 | time_backward 5.1000 |
[2023-09-02 13:50:21,437::train::INFO] [train] Iter 10569 | loss 2.0626 | loss(rot) 1.8476 | loss(pos) 0.1779 | loss(seq) 0.0372 | grad 4.3933 | lr 0.0010 | time_forward 4.2360 | time_backward 6.1420 |
[2023-09-02 13:50:24,410::train::INFO] [train] Iter 10570 | loss 1.7352 | loss(rot) 0.9011 | loss(pos) 0.2774 | loss(seq) 0.5566 | grad 3.3589 | lr 0.0010 | time_forward 1.4270 | time_backward 1.5240 |
[2023-09-02 13:50:27,846::train::INFO] [train] Iter 10571 | loss 0.9497 | loss(rot) 0.0499 | loss(pos) 0.8894 | loss(seq) 0.0103 | grad 5.9004 | lr 0.0010 | time_forward 1.4840 | time_backward 1.9480 |
[2023-09-02 13:50:36,842::train::INFO] [train] Iter 10572 | loss 2.5335 | loss(rot) 2.3710 | loss(pos) 0.1527 | loss(seq) 0.0097 | grad 5.6070 | lr 0.0010 | time_forward 3.9560 | time_backward 5.0220 |
[2023-09-02 13:50:46,285::train::INFO] [train] Iter 10573 | loss 1.3485 | loss(rot) 0.9377 | loss(pos) 0.1239 | loss(seq) 0.2869 | grad 5.6370 | lr 0.0010 | time_forward 3.8660 | time_backward 5.5680 |
[2023-09-02 13:50:49,267::train::INFO] [train] Iter 10574 | loss 0.8504 | loss(rot) 0.1543 | loss(pos) 0.6700 | loss(seq) 0.0261 | grad 3.1295 | lr 0.0010 | time_forward 1.2870 | time_backward 1.6910 |
[2023-09-02 13:50:57,598::train::INFO] [train] Iter 10575 | loss 2.1190 | loss(rot) 1.3845 | loss(pos) 0.2722 | loss(seq) 0.4624 | grad 4.5544 | lr 0.0010 | time_forward 3.5120 | time_backward 4.8160 |
[2023-09-02 13:51:07,332::train::INFO] [train] Iter 10576 | loss 1.7075 | loss(rot) 0.9265 | loss(pos) 0.2798 | loss(seq) 0.5012 | grad 5.3225 | lr 0.0010 | time_forward 3.9640 | time_backward 5.7670 |
[2023-09-02 13:51:16,427::train::INFO] [train] Iter 10577 | loss 2.8809 | loss(rot) 2.4709 | loss(pos) 0.1847 | loss(seq) 0.2252 | grad 4.7222 | lr 0.0010 | time_forward 3.7170 | time_backward 5.3740 |
[2023-09-02 13:51:19,139::train::INFO] [train] Iter 10578 | loss 1.8831 | loss(rot) 1.0615 | loss(pos) 0.4622 | loss(seq) 0.3594 | grad 5.0737 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4510 |
[2023-09-02 13:51:21,462::train::INFO] [train] Iter 10579 | loss 2.1665 | loss(rot) 1.9885 | loss(pos) 0.1777 | loss(seq) 0.0003 | grad 4.0047 | lr 0.0010 | time_forward 1.0970 | time_backward 1.2190 |
[2023-09-02 13:51:24,129::train::INFO] [train] Iter 10580 | loss 2.2048 | loss(rot) 1.8089 | loss(pos) 0.1265 | loss(seq) 0.2693 | grad 4.4885 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4250 |
[2023-09-02 13:51:26,450::train::INFO] [train] Iter 10581 | loss 0.9574 | loss(rot) 0.5048 | loss(pos) 0.3510 | loss(seq) 0.1016 | grad 3.4578 | lr 0.0010 | time_forward 1.0920 | time_backward 1.2230 |
[2023-09-02 13:51:34,058::train::INFO] [train] Iter 10582 | loss 2.2394 | loss(rot) 2.0234 | loss(pos) 0.1016 | loss(seq) 0.1145 | grad 5.0816 | lr 0.0010 | time_forward 3.2780 | time_backward 4.3230 |
[2023-09-02 13:51:44,713::train::INFO] [train] Iter 10583 | loss 2.5456 | loss(rot) 1.4989 | loss(pos) 0.3314 | loss(seq) 0.7152 | grad 4.3968 | lr 0.0010 | time_forward 4.3310 | time_backward 6.3210 |
[2023-09-02 13:51:47,489::train::INFO] [train] Iter 10584 | loss 1.5273 | loss(rot) 1.1467 | loss(pos) 0.0832 | loss(seq) 0.2974 | grad 4.4505 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4580 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.