text
stringlengths
56
1.16k
[2023-09-02 13:28:29,919::train::INFO] [train] Iter 10385 | loss 2.6114 | loss(rot) 2.1354 | loss(pos) 0.2606 | loss(seq) 0.2153 | grad 4.3533 | lr 0.0010 | time_forward 3.5090 | time_backward 4.9390
[2023-09-02 13:28:39,948::train::INFO] [train] Iter 10386 | loss 1.1253 | loss(rot) 0.3964 | loss(pos) 0.4015 | loss(seq) 0.3274 | grad 3.4418 | lr 0.0010 | time_forward 4.1620 | time_backward 5.8640
[2023-09-02 13:28:48,044::train::INFO] [train] Iter 10387 | loss 0.9505 | loss(rot) 0.2346 | loss(pos) 0.6760 | loss(seq) 0.0399 | grad 3.7391 | lr 0.0010 | time_forward 3.3790 | time_backward 4.7120
[2023-09-02 13:28:58,003::train::INFO] [train] Iter 10388 | loss 3.0154 | loss(rot) 0.0508 | loss(pos) 2.9628 | loss(seq) 0.0018 | grad 9.6920 | lr 0.0010 | time_forward 4.0930 | time_backward 5.8620
[2023-09-02 13:29:00,705::train::INFO] [train] Iter 10389 | loss 1.6524 | loss(rot) 0.4624 | loss(pos) 0.4830 | loss(seq) 0.7069 | grad 3.9815 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4290
[2023-09-02 13:29:02,942::train::INFO] [train] Iter 10390 | loss 0.8520 | loss(rot) 0.0670 | loss(pos) 0.7435 | loss(seq) 0.0415 | grad 3.2733 | lr 0.0010 | time_forward 1.0490 | time_backward 1.1850
[2023-09-02 13:29:12,941::train::INFO] [train] Iter 10391 | loss 0.5020 | loss(rot) 0.1911 | loss(pos) 0.2597 | loss(seq) 0.0512 | grad 2.8412 | lr 0.0010 | time_forward 4.0140 | time_backward 5.9820
[2023-09-02 13:29:20,929::train::INFO] [train] Iter 10392 | loss 2.5455 | loss(rot) 2.3519 | loss(pos) 0.1864 | loss(seq) 0.0071 | grad 5.1328 | lr 0.0010 | time_forward 3.3910 | time_backward 4.5790
[2023-09-02 13:29:23,629::train::INFO] [train] Iter 10393 | loss 1.3725 | loss(rot) 1.1723 | loss(pos) 0.1645 | loss(seq) 0.0357 | grad 5.2813 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4490
[2023-09-02 13:29:33,604::train::INFO] [train] Iter 10394 | loss 1.6507 | loss(rot) 0.9031 | loss(pos) 0.3639 | loss(seq) 0.3838 | grad 3.8445 | lr 0.0010 | time_forward 3.9800 | time_backward 5.9930
[2023-09-02 13:29:43,270::train::INFO] [train] Iter 10395 | loss 1.8881 | loss(rot) 1.0337 | loss(pos) 0.3368 | loss(seq) 0.5176 | grad 5.2685 | lr 0.0010 | time_forward 4.0110 | time_backward 5.6510
[2023-09-02 13:29:51,327::train::INFO] [train] Iter 10396 | loss 2.3520 | loss(rot) 1.9694 | loss(pos) 0.2019 | loss(seq) 0.1806 | grad 5.8719 | lr 0.0010 | time_forward 3.3610 | time_backward 4.6930
[2023-09-02 13:29:53,999::train::INFO] [train] Iter 10397 | loss 1.2330 | loss(rot) 0.3404 | loss(pos) 0.7811 | loss(seq) 0.1115 | grad 6.2695 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4220
[2023-09-02 13:29:56,246::train::INFO] [train] Iter 10398 | loss 0.9887 | loss(rot) 0.2936 | loss(pos) 0.3630 | loss(seq) 0.3322 | grad 3.9517 | lr 0.0010 | time_forward 1.0320 | time_backward 1.1850
[2023-09-02 13:30:02,662::train::INFO] [train] Iter 10399 | loss 2.3820 | loss(rot) 2.0057 | loss(pos) 0.1806 | loss(seq) 0.1957 | grad 6.5362 | lr 0.0010 | time_forward 2.7150 | time_backward 3.6980
[2023-09-02 13:30:10,706::train::INFO] [train] Iter 10400 | loss 1.1111 | loss(rot) 0.5006 | loss(pos) 0.3901 | loss(seq) 0.2204 | grad 5.2011 | lr 0.0010 | time_forward 3.3670 | time_backward 4.6730
[2023-09-02 13:30:19,404::train::INFO] [train] Iter 10401 | loss 1.5230 | loss(rot) 0.8413 | loss(pos) 0.2711 | loss(seq) 0.4105 | grad 6.1571 | lr 0.0010 | time_forward 3.6260 | time_backward 5.0680
[2023-09-02 13:30:27,188::train::INFO] [train] Iter 10402 | loss 1.4193 | loss(rot) 0.7998 | loss(pos) 0.1676 | loss(seq) 0.4519 | grad 5.7868 | lr 0.0010 | time_forward 3.2480 | time_backward 4.5320
[2023-09-02 13:30:29,887::train::INFO] [train] Iter 10403 | loss 1.8050 | loss(rot) 0.0563 | loss(pos) 1.7480 | loss(seq) 0.0007 | grad 7.4177 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4440
[2023-09-02 13:30:39,154::train::INFO] [train] Iter 10404 | loss 2.1682 | loss(rot) 1.8134 | loss(pos) 0.1581 | loss(seq) 0.1967 | grad 5.8489 | lr 0.0010 | time_forward 3.8190 | time_backward 5.4450
[2023-09-02 13:30:41,856::train::INFO] [train] Iter 10405 | loss 1.1244 | loss(rot) 0.3119 | loss(pos) 0.3128 | loss(seq) 0.4997 | grad 4.3184 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4400
[2023-09-02 13:30:50,217::train::INFO] [train] Iter 10406 | loss 1.9348 | loss(rot) 0.2106 | loss(pos) 1.4088 | loss(seq) 0.3154 | grad 8.4834 | lr 0.0010 | time_forward 3.4960 | time_backward 4.8630
[2023-09-02 13:30:59,271::train::INFO] [train] Iter 10407 | loss 0.4973 | loss(rot) 0.1381 | loss(pos) 0.3345 | loss(seq) 0.0247 | grad 3.7834 | lr 0.0010 | time_forward 3.8900 | time_backward 5.1590
[2023-09-02 13:31:07,857::train::INFO] [train] Iter 10408 | loss 0.8160 | loss(rot) 0.0198 | loss(pos) 0.4409 | loss(seq) 0.3553 | grad 4.2059 | lr 0.0010 | time_forward 3.6710 | time_backward 4.9110
[2023-09-02 13:31:10,521::train::INFO] [train] Iter 10409 | loss 0.9538 | loss(rot) 0.4496 | loss(pos) 0.1439 | loss(seq) 0.3604 | grad 4.0641 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4350
[2023-09-02 13:31:12,778::train::INFO] [train] Iter 10410 | loss 1.1312 | loss(rot) 0.3034 | loss(pos) 0.2690 | loss(seq) 0.5589 | grad 3.6536 | lr 0.0010 | time_forward 1.0610 | time_backward 1.1930
[2023-09-02 13:31:16,084::train::INFO] [train] Iter 10411 | loss 2.0890 | loss(rot) 1.2035 | loss(pos) 0.3189 | loss(seq) 0.5666 | grad 6.3980 | lr 0.0010 | time_forward 1.3950 | time_backward 1.9080
[2023-09-02 13:31:26,024::train::INFO] [train] Iter 10412 | loss 3.0375 | loss(rot) 0.0476 | loss(pos) 2.9877 | loss(seq) 0.0022 | grad 8.6791 | lr 0.0010 | time_forward 4.0530 | time_backward 5.8830
[2023-09-02 13:31:34,699::train::INFO] [train] Iter 10413 | loss 0.9351 | loss(rot) 0.2826 | loss(pos) 0.4155 | loss(seq) 0.2370 | grad 4.4857 | lr 0.0010 | time_forward 3.9820 | time_backward 4.6900
[2023-09-02 13:31:44,730::train::INFO] [train] Iter 10414 | loss 1.7800 | loss(rot) 0.5420 | loss(pos) 0.9191 | loss(seq) 0.3190 | grad 6.3837 | lr 0.0010 | time_forward 4.1520 | time_backward 5.8760
[2023-09-02 13:31:47,487::train::INFO] [train] Iter 10415 | loss 1.5282 | loss(rot) 1.1588 | loss(pos) 0.1000 | loss(seq) 0.2695 | grad 4.5034 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4710
[2023-09-02 13:31:57,722::train::INFO] [train] Iter 10416 | loss 1.5421 | loss(rot) 0.4617 | loss(pos) 0.5409 | loss(seq) 0.5395 | grad 5.1625 | lr 0.0010 | time_forward 4.0270 | time_backward 6.1810
[2023-09-02 13:32:06,271::train::INFO] [train] Iter 10417 | loss 2.4212 | loss(rot) 1.6118 | loss(pos) 0.3485 | loss(seq) 0.4610 | grad 4.0134 | lr 0.0010 | time_forward 3.5900 | time_backward 4.9550
[2023-09-02 13:32:14,725::train::INFO] [train] Iter 10418 | loss 1.9404 | loss(rot) 1.3298 | loss(pos) 0.3890 | loss(seq) 0.2216 | grad 6.8820 | lr 0.0010 | time_forward 3.5840 | time_backward 4.8670
[2023-09-02 13:32:23,871::train::INFO] [train] Iter 10419 | loss 1.6499 | loss(rot) 1.0176 | loss(pos) 0.2332 | loss(seq) 0.3991 | grad 3.8538 | lr 0.0010 | time_forward 3.8100 | time_backward 5.3320
[2023-09-02 13:32:33,851::train::INFO] [train] Iter 10420 | loss 2.4404 | loss(rot) 1.5218 | loss(pos) 0.5115 | loss(seq) 0.4071 | grad 3.6718 | lr 0.0010 | time_forward 3.9650 | time_backward 6.0120
[2023-09-02 13:32:40,922::train::INFO] [train] Iter 10421 | loss 1.3716 | loss(rot) 0.5745 | loss(pos) 0.2838 | loss(seq) 0.5133 | grad 3.4890 | lr 0.0010 | time_forward 2.9570 | time_backward 4.1100
[2023-09-02 13:32:43,162::train::INFO] [train] Iter 10422 | loss 0.9512 | loss(rot) 0.1132 | loss(pos) 0.8145 | loss(seq) 0.0235 | grad 4.3641 | lr 0.0010 | time_forward 1.0280 | time_backward 1.2090
[2023-09-02 13:32:45,793::train::INFO] [train] Iter 10423 | loss 1.1293 | loss(rot) 0.9535 | loss(pos) 0.1467 | loss(seq) 0.0291 | grad 4.4401 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4010
[2023-09-02 13:32:48,503::train::INFO] [train] Iter 10424 | loss 0.5603 | loss(rot) 0.1071 | loss(pos) 0.4063 | loss(seq) 0.0469 | grad 4.3829 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4340
[2023-09-02 13:32:51,399::train::INFO] [train] Iter 10425 | loss 1.6435 | loss(rot) 0.5341 | loss(pos) 0.8781 | loss(seq) 0.2313 | grad 4.1647 | lr 0.0010 | time_forward 1.3790 | time_backward 1.5140
[2023-09-02 13:32:54,119::train::INFO] [train] Iter 10426 | loss 1.9749 | loss(rot) 1.7937 | loss(pos) 0.1314 | loss(seq) 0.0498 | grad 3.6341 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4100
[2023-09-02 13:33:02,216::train::INFO] [train] Iter 10427 | loss 1.1794 | loss(rot) 0.4270 | loss(pos) 0.6757 | loss(seq) 0.0767 | grad 4.4226 | lr 0.0010 | time_forward 3.4580 | time_backward 4.6360
[2023-09-02 13:33:12,251::train::INFO] [train] Iter 10428 | loss 1.5930 | loss(rot) 0.0657 | loss(pos) 1.5177 | loss(seq) 0.0097 | grad 8.2213 | lr 0.0010 | time_forward 4.0390 | time_backward 5.9920
[2023-09-02 13:33:14,494::train::INFO] [train] Iter 10429 | loss 2.0243 | loss(rot) 1.3454 | loss(pos) 0.2295 | loss(seq) 0.4494 | grad 4.8491 | lr 0.0010 | time_forward 1.0400 | time_backward 1.1990
[2023-09-02 13:33:16,944::train::INFO] [train] Iter 10430 | loss 1.8233 | loss(rot) 1.3762 | loss(pos) 0.0766 | loss(seq) 0.3705 | grad 9.2077 | lr 0.0010 | time_forward 1.1620 | time_backward 1.2860
[2023-09-02 13:33:24,924::train::INFO] [train] Iter 10431 | loss 0.9625 | loss(rot) 0.0498 | loss(pos) 0.8961 | loss(seq) 0.0166 | grad 7.8516 | lr 0.0010 | time_forward 3.3420 | time_backward 4.6340
[2023-09-02 13:33:27,631::train::INFO] [train] Iter 10432 | loss 1.8154 | loss(rot) 1.3003 | loss(pos) 0.0537 | loss(seq) 0.4615 | grad 3.6179 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4510
[2023-09-02 13:33:36,616::train::INFO] [train] Iter 10433 | loss 1.8111 | loss(rot) 1.2907 | loss(pos) 0.0961 | loss(seq) 0.4242 | grad 4.0165 | lr 0.0010 | time_forward 3.7470 | time_backward 5.2350
[2023-09-02 13:33:45,686::train::INFO] [train] Iter 10434 | loss 1.6425 | loss(rot) 0.8781 | loss(pos) 0.2982 | loss(seq) 0.4662 | grad 4.6745 | lr 0.0010 | time_forward 3.8400 | time_backward 5.2260
[2023-09-02 13:33:53,555::train::INFO] [train] Iter 10435 | loss 3.0481 | loss(rot) 2.8308 | loss(pos) 0.1665 | loss(seq) 0.0507 | grad 4.8379 | lr 0.0010 | time_forward 3.3340 | time_backward 4.5320
[2023-09-02 13:34:03,423::train::INFO] [train] Iter 10436 | loss 1.5346 | loss(rot) 0.0306 | loss(pos) 1.4974 | loss(seq) 0.0065 | grad 8.2579 | lr 0.0010 | time_forward 4.0370 | time_backward 5.8280
[2023-09-02 13:34:06,119::train::INFO] [train] Iter 10437 | loss 1.7376 | loss(rot) 1.5399 | loss(pos) 0.1083 | loss(seq) 0.0893 | grad 4.6286 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4540
[2023-09-02 13:34:16,303::train::INFO] [train] Iter 10438 | loss 1.9545 | loss(rot) 1.9037 | loss(pos) 0.0461 | loss(seq) 0.0048 | grad 6.3333 | lr 0.0010 | time_forward 4.0600 | time_backward 6.1200
[2023-09-02 13:34:22,260::train::INFO] [train] Iter 10439 | loss 1.1862 | loss(rot) 0.3270 | loss(pos) 0.4059 | loss(seq) 0.4533 | grad 3.8447 | lr 0.0010 | time_forward 2.5610 | time_backward 3.3930
[2023-09-02 13:34:30,548::train::INFO] [train] Iter 10440 | loss 1.4187 | loss(rot) 1.3018 | loss(pos) 0.0287 | loss(seq) 0.0882 | grad 5.0641 | lr 0.0010 | time_forward 3.4840 | time_backward 4.8010
[2023-09-02 13:34:39,380::train::INFO] [train] Iter 10441 | loss 1.6840 | loss(rot) 1.5992 | loss(pos) 0.0787 | loss(seq) 0.0061 | grad 4.0815 | lr 0.0010 | time_forward 3.7230 | time_backward 5.1040
[2023-09-02 13:34:48,619::train::INFO] [train] Iter 10442 | loss 1.1914 | loss(rot) 0.4895 | loss(pos) 0.2234 | loss(seq) 0.4785 | grad 3.4759 | lr 0.0010 | time_forward 3.8650 | time_backward 5.3700
[2023-09-02 13:34:57,432::train::INFO] [train] Iter 10443 | loss 0.6034 | loss(rot) 0.0580 | loss(pos) 0.5324 | loss(seq) 0.0129 | grad 4.7907 | lr 0.0010 | time_forward 3.6730 | time_backward 5.1370
[2023-09-02 13:35:07,036::train::INFO] [train] Iter 10444 | loss 2.6721 | loss(rot) 2.3486 | loss(pos) 0.0999 | loss(seq) 0.2236 | grad 4.4694 | lr 0.0010 | time_forward 4.0270 | time_backward 5.5730
[2023-09-02 13:35:15,417::train::INFO] [train] Iter 10445 | loss 1.8597 | loss(rot) 1.4577 | loss(pos) 0.1575 | loss(seq) 0.2445 | grad 4.9891 | lr 0.0010 | time_forward 3.5300 | time_backward 4.8370
[2023-09-02 13:35:25,053::train::INFO] [train] Iter 10446 | loss 3.2751 | loss(rot) 2.3260 | loss(pos) 0.4786 | loss(seq) 0.4705 | grad 4.3550 | lr 0.0010 | time_forward 3.9920 | time_backward 5.6280
[2023-09-02 13:35:33,282::train::INFO] [train] Iter 10447 | loss 1.4948 | loss(rot) 0.5518 | loss(pos) 0.5521 | loss(seq) 0.3910 | grad 5.5352 | lr 0.0010 | time_forward 3.4340 | time_backward 4.7920
[2023-09-02 13:35:39,837::train::INFO] [train] Iter 10448 | loss 0.5991 | loss(rot) 0.0969 | loss(pos) 0.4860 | loss(seq) 0.0162 | grad 5.7233 | lr 0.0010 | time_forward 2.8370 | time_backward 3.7030
[2023-09-02 13:35:47,893::train::INFO] [train] Iter 10449 | loss 1.6361 | loss(rot) 1.5563 | loss(pos) 0.0795 | loss(seq) 0.0003 | grad 5.0389 | lr 0.0010 | time_forward 3.3500 | time_backward 4.7020
[2023-09-02 13:35:56,216::train::INFO] [train] Iter 10450 | loss 2.2883 | loss(rot) 1.7901 | loss(pos) 0.1922 | loss(seq) 0.3059 | grad 4.7873 | lr 0.0010 | time_forward 3.5900 | time_backward 4.7290
[2023-09-02 13:35:58,859::train::INFO] [train] Iter 10451 | loss 0.9346 | loss(rot) 0.1748 | loss(pos) 0.7160 | loss(seq) 0.0438 | grad 3.9360 | lr 0.0010 | time_forward 1.2420 | time_backward 1.3980
[2023-09-02 13:36:01,528::train::INFO] [train] Iter 10452 | loss 1.6297 | loss(rot) 0.1249 | loss(pos) 1.5023 | loss(seq) 0.0025 | grad 6.9789 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4160
[2023-09-02 13:36:11,209::train::INFO] [train] Iter 10453 | loss 2.3385 | loss(rot) 2.1846 | loss(pos) 0.1367 | loss(seq) 0.0173 | grad 4.9806 | lr 0.0010 | time_forward 3.9630 | time_backward 5.6820
[2023-09-02 13:36:13,872::train::INFO] [train] Iter 10454 | loss 3.0470 | loss(rot) 2.2202 | loss(pos) 0.3803 | loss(seq) 0.4466 | grad 8.5510 | lr 0.0010 | time_forward 1.2670 | time_backward 1.3930
[2023-09-02 13:36:22,976::train::INFO] [train] Iter 10455 | loss 1.2066 | loss(rot) 0.7420 | loss(pos) 0.0919 | loss(seq) 0.3727 | grad 3.7725 | lr 0.0010 | time_forward 3.7920 | time_backward 5.3080
[2023-09-02 13:36:25,645::train::INFO] [train] Iter 10456 | loss 0.9954 | loss(rot) 0.4250 | loss(pos) 0.3951 | loss(seq) 0.1754 | grad 4.1112 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4250
[2023-09-02 13:36:35,213::train::INFO] [train] Iter 10457 | loss 2.6975 | loss(rot) 2.3886 | loss(pos) 0.2370 | loss(seq) 0.0719 | grad 3.1021 | lr 0.0010 | time_forward 3.9550 | time_backward 5.6090
[2023-09-02 13:36:45,039::train::INFO] [train] Iter 10458 | loss 1.6810 | loss(rot) 1.5552 | loss(pos) 0.0846 | loss(seq) 0.0412 | grad 4.4986 | lr 0.0010 | time_forward 3.9910 | time_backward 5.8320
[2023-09-02 13:36:55,194::train::INFO] [train] Iter 10459 | loss 2.8010 | loss(rot) 2.4069 | loss(pos) 0.3038 | loss(seq) 0.0903 | grad 3.6620 | lr 0.0010 | time_forward 4.1230 | time_backward 6.0090
[2023-09-02 13:36:57,463::train::INFO] [train] Iter 10460 | loss 2.2451 | loss(rot) 2.0258 | loss(pos) 0.1851 | loss(seq) 0.0342 | grad 4.1345 | lr 0.0010 | time_forward 1.0640 | time_backward 1.2010
[2023-09-02 13:37:00,213::train::INFO] [train] Iter 10461 | loss 1.4433 | loss(rot) 1.3454 | loss(pos) 0.0966 | loss(seq) 0.0013 | grad 3.9035 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4710
[2023-09-02 13:37:02,933::train::INFO] [train] Iter 10462 | loss 2.4274 | loss(rot) 2.2648 | loss(pos) 0.1605 | loss(seq) 0.0022 | grad 3.3494 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4750
[2023-09-02 13:37:06,375::train::INFO] [train] Iter 10463 | loss 0.8876 | loss(rot) 0.0944 | loss(pos) 0.7582 | loss(seq) 0.0350 | grad 4.8820 | lr 0.0010 | time_forward 1.4680 | time_backward 1.9710
[2023-09-02 13:37:09,076::train::INFO] [train] Iter 10464 | loss 2.3070 | loss(rot) 2.0030 | loss(pos) 0.1421 | loss(seq) 0.1619 | grad 4.9722 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4680
[2023-09-02 13:37:11,830::train::INFO] [train] Iter 10465 | loss 2.0662 | loss(rot) 2.0034 | loss(pos) 0.0461 | loss(seq) 0.0167 | grad 5.1387 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4570
[2023-09-02 13:37:21,895::train::INFO] [train] Iter 10466 | loss 1.2825 | loss(rot) 0.1764 | loss(pos) 1.0737 | loss(seq) 0.0324 | grad 6.9385 | lr 0.0010 | time_forward 4.1130 | time_backward 5.9480
[2023-09-02 13:37:29,869::train::INFO] [train] Iter 10467 | loss 1.5578 | loss(rot) 0.8504 | loss(pos) 0.1742 | loss(seq) 0.5332 | grad 3.0838 | lr 0.0010 | time_forward 3.3940 | time_backward 4.5720
[2023-09-02 13:37:38,573::train::INFO] [train] Iter 10468 | loss 1.5860 | loss(rot) 1.4516 | loss(pos) 0.1295 | loss(seq) 0.0049 | grad 6.4172 | lr 0.0010 | time_forward 3.6540 | time_backward 5.0470
[2023-09-02 13:37:41,962::train::INFO] [train] Iter 10469 | loss 1.5284 | loss(rot) 0.6388 | loss(pos) 0.4354 | loss(seq) 0.4542 | grad 3.7367 | lr 0.0010 | time_forward 1.4590 | time_backward 1.9270
[2023-09-02 13:37:50,295::train::INFO] [train] Iter 10470 | loss 1.5505 | loss(rot) 1.3737 | loss(pos) 0.0350 | loss(seq) 0.1419 | grad 7.8397 | lr 0.0010 | time_forward 3.5110 | time_backward 4.8180
[2023-09-02 13:37:52,944::train::INFO] [train] Iter 10471 | loss 1.0114 | loss(rot) 0.0342 | loss(pos) 0.9667 | loss(seq) 0.0105 | grad 4.3614 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4090
[2023-09-02 13:38:02,347::train::INFO] [train] Iter 10472 | loss 2.1486 | loss(rot) 1.3639 | loss(pos) 0.1972 | loss(seq) 0.5874 | grad 3.9415 | lr 0.0010 | time_forward 3.9530 | time_backward 5.4230
[2023-09-02 13:38:07,956::train::INFO] [train] Iter 10473 | loss 2.6033 | loss(rot) 2.3790 | loss(pos) 0.1759 | loss(seq) 0.0484 | grad 5.1051 | lr 0.0010 | time_forward 2.3910 | time_backward 3.2140
[2023-09-02 13:38:16,703::train::INFO] [train] Iter 10474 | loss 2.1587 | loss(rot) 1.9948 | loss(pos) 0.1639 | loss(seq) 0.0000 | grad 4.1008 | lr 0.0010 | time_forward 3.6220 | time_backward 5.1220
[2023-09-02 13:38:19,444::train::INFO] [train] Iter 10475 | loss 3.2720 | loss(rot) 2.5620 | loss(pos) 0.2404 | loss(seq) 0.4696 | grad 6.3202 | lr 0.0010 | time_forward 1.2280 | time_backward 1.5090
[2023-09-02 13:38:29,406::train::INFO] [train] Iter 10476 | loss 1.6982 | loss(rot) 1.4358 | loss(pos) 0.1829 | loss(seq) 0.0795 | grad 4.5115 | lr 0.0010 | time_forward 4.1270 | time_backward 5.8320
[2023-09-02 13:38:37,535::train::INFO] [train] Iter 10477 | loss 1.6734 | loss(rot) 0.7297 | loss(pos) 0.5781 | loss(seq) 0.3657 | grad 4.4635 | lr 0.0010 | time_forward 3.2680 | time_backward 4.8570
[2023-09-02 13:38:39,739::train::INFO] [train] Iter 10478 | loss 0.9698 | loss(rot) 0.7539 | loss(pos) 0.2148 | loss(seq) 0.0012 | grad 5.3034 | lr 0.0010 | time_forward 1.0190 | time_backward 1.1820
[2023-09-02 13:38:45,766::train::INFO] [train] Iter 10479 | loss 1.9030 | loss(rot) 1.7770 | loss(pos) 0.1192 | loss(seq) 0.0068 | grad 6.0717 | lr 0.0010 | time_forward 2.5470 | time_backward 3.4760
[2023-09-02 13:38:48,991::train::INFO] [train] Iter 10480 | loss 1.7190 | loss(rot) 0.8562 | loss(pos) 0.4548 | loss(seq) 0.4079 | grad 2.8979 | lr 0.0010 | time_forward 1.4390 | time_backward 1.7820
[2023-09-02 13:38:59,135::train::INFO] [train] Iter 10481 | loss 0.8490 | loss(rot) 0.2001 | loss(pos) 0.3912 | loss(seq) 0.2576 | grad 3.9668 | lr 0.0010 | time_forward 4.1200 | time_backward 6.0070
[2023-09-02 13:39:02,658::train::INFO] [train] Iter 10482 | loss 1.0010 | loss(rot) 0.1114 | loss(pos) 0.8721 | loss(seq) 0.0175 | grad 5.7752 | lr 0.0010 | time_forward 1.4360 | time_backward 2.0820
[2023-09-02 13:39:11,776::train::INFO] [train] Iter 10483 | loss 1.9411 | loss(rot) 0.3835 | loss(pos) 1.3117 | loss(seq) 0.2459 | grad 6.0563 | lr 0.0010 | time_forward 3.8190 | time_backward 5.2950
[2023-09-02 13:39:20,895::train::INFO] [train] Iter 10484 | loss 1.3563 | loss(rot) 1.2194 | loss(pos) 0.0461 | loss(seq) 0.0908 | grad 4.9410 | lr 0.0010 | time_forward 3.8590 | time_backward 5.2570