text
stringlengths
56
1.16k
[2023-09-02 13:16:38,410::train::INFO] [train] Iter 10285 | loss 1.7090 | loss(rot) 1.6464 | loss(pos) 0.0622 | loss(seq) 0.0004 | grad 4.2312 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4740
[2023-09-02 13:16:47,041::train::INFO] [train] Iter 10286 | loss 0.7384 | loss(rot) 0.0813 | loss(pos) 0.6427 | loss(seq) 0.0143 | grad 5.0985 | lr 0.0010 | time_forward 3.7420 | time_backward 4.8840
[2023-09-02 13:16:56,352::train::INFO] [train] Iter 10287 | loss 2.4249 | loss(rot) 2.1129 | loss(pos) 0.1334 | loss(seq) 0.1786 | grad 3.4730 | lr 0.0010 | time_forward 3.9250 | time_backward 5.3820
[2023-09-02 13:17:06,493::train::INFO] [train] Iter 10288 | loss 2.1974 | loss(rot) 1.6549 | loss(pos) 0.1139 | loss(seq) 0.4286 | grad 4.6118 | lr 0.0010 | time_forward 4.0850 | time_backward 6.0530
[2023-09-02 13:17:09,196::train::INFO] [train] Iter 10289 | loss 1.4114 | loss(rot) 0.5096 | loss(pos) 0.5250 | loss(seq) 0.3767 | grad 3.7935 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4180
[2023-09-02 13:17:11,899::train::INFO] [train] Iter 10290 | loss 1.3282 | loss(rot) 0.7061 | loss(pos) 0.1873 | loss(seq) 0.4349 | grad 4.6706 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4110
[2023-09-02 13:17:20,998::train::INFO] [train] Iter 10291 | loss 1.2745 | loss(rot) 0.2974 | loss(pos) 0.5985 | loss(seq) 0.3786 | grad 4.7616 | lr 0.0010 | time_forward 3.9050 | time_backward 5.1900
[2023-09-02 13:17:29,885::train::INFO] [train] Iter 10292 | loss 1.1662 | loss(rot) 0.1241 | loss(pos) 1.0311 | loss(seq) 0.0110 | grad 6.3687 | lr 0.0010 | time_forward 3.7500 | time_backward 5.1340
[2023-09-02 13:17:39,807::train::INFO] [train] Iter 10293 | loss 2.3072 | loss(rot) 2.0646 | loss(pos) 0.0811 | loss(seq) 0.1616 | grad 3.8105 | lr 0.0010 | time_forward 4.1320 | time_backward 5.7870
[2023-09-02 13:17:42,531::train::INFO] [train] Iter 10294 | loss 1.8646 | loss(rot) 1.1704 | loss(pos) 0.2438 | loss(seq) 0.4504 | grad 11.3970 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4480
[2023-09-02 13:17:51,415::train::INFO] [train] Iter 10295 | loss 1.5291 | loss(rot) 1.3755 | loss(pos) 0.1513 | loss(seq) 0.0022 | grad 5.5059 | lr 0.0010 | time_forward 3.6850 | time_backward 5.1950
[2023-09-02 13:17:54,136::train::INFO] [train] Iter 10296 | loss 2.6059 | loss(rot) 2.4338 | loss(pos) 0.1708 | loss(seq) 0.0012 | grad 3.8075 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4600
[2023-09-02 13:18:04,176::train::INFO] [train] Iter 10297 | loss 0.9255 | loss(rot) 0.1185 | loss(pos) 0.5990 | loss(seq) 0.2080 | grad 3.4550 | lr 0.0010 | time_forward 4.0920 | time_backward 5.9440
[2023-09-02 13:18:14,400::train::INFO] [train] Iter 10298 | loss 1.3036 | loss(rot) 0.3603 | loss(pos) 0.8184 | loss(seq) 0.1248 | grad 3.1549 | lr 0.0010 | time_forward 4.2890 | time_backward 5.9310
[2023-09-02 13:18:20,226::train::INFO] [train] Iter 10299 | loss 1.0885 | loss(rot) 0.2811 | loss(pos) 0.5507 | loss(seq) 0.2566 | grad 5.6917 | lr 0.0010 | time_forward 2.4370 | time_backward 3.3850
[2023-09-02 13:18:22,732::train::INFO] [train] Iter 10300 | loss 2.2596 | loss(rot) 1.9710 | loss(pos) 0.2886 | loss(seq) 0.0000 | grad 5.1531 | lr 0.0010 | time_forward 1.1620 | time_backward 1.3400
[2023-09-02 13:18:31,958::train::INFO] [train] Iter 10301 | loss 1.3573 | loss(rot) 0.6539 | loss(pos) 0.2589 | loss(seq) 0.4445 | grad 5.0952 | lr 0.0010 | time_forward 3.9160 | time_backward 5.2870
[2023-09-02 13:18:40,584::train::INFO] [train] Iter 10302 | loss 0.9901 | loss(rot) 0.2347 | loss(pos) 0.6595 | loss(seq) 0.0959 | grad 5.8152 | lr 0.0010 | time_forward 3.6540 | time_backward 4.9670
[2023-09-02 13:18:47,760::train::INFO] [train] Iter 10303 | loss 1.1019 | loss(rot) 0.6044 | loss(pos) 0.4595 | loss(seq) 0.0380 | grad 3.6751 | lr 0.0010 | time_forward 2.9370 | time_backward 4.2350
[2023-09-02 13:18:50,519::train::INFO] [train] Iter 10304 | loss 1.1853 | loss(rot) 0.4610 | loss(pos) 0.2386 | loss(seq) 0.4857 | grad 4.8988 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4680
[2023-09-02 13:18:53,924::train::INFO] [train] Iter 10305 | loss 1.9246 | loss(rot) 1.7709 | loss(pos) 0.1290 | loss(seq) 0.0248 | grad 4.3256 | lr 0.0010 | time_forward 1.4390 | time_backward 1.9610
[2023-09-02 13:19:01,073::train::INFO] [train] Iter 10306 | loss 1.8530 | loss(rot) 1.5109 | loss(pos) 0.2458 | loss(seq) 0.0963 | grad 6.4292 | lr 0.0010 | time_forward 2.9680 | time_backward 4.1790
[2023-09-02 13:19:10,929::train::INFO] [train] Iter 10307 | loss 1.4101 | loss(rot) 1.3092 | loss(pos) 0.0872 | loss(seq) 0.0138 | grad 4.5327 | lr 0.0010 | time_forward 4.0030 | time_backward 5.8500
[2023-09-02 13:19:21,021::train::INFO] [train] Iter 10308 | loss 1.4066 | loss(rot) 1.2134 | loss(pos) 0.1882 | loss(seq) 0.0051 | grad 4.9003 | lr 0.0010 | time_forward 4.2160 | time_backward 5.8730
[2023-09-02 13:19:23,229::train::INFO] [train] Iter 10309 | loss 1.1753 | loss(rot) 1.0346 | loss(pos) 0.1163 | loss(seq) 0.0244 | grad 6.8303 | lr 0.0010 | time_forward 1.0170 | time_backward 1.1870
[2023-09-02 13:19:32,962::train::INFO] [train] Iter 10310 | loss 1.4617 | loss(rot) 0.4927 | loss(pos) 0.4647 | loss(seq) 0.5042 | grad 4.9111 | lr 0.0010 | time_forward 3.8990 | time_backward 5.8300
[2023-09-02 13:19:41,922::train::INFO] [train] Iter 10311 | loss 0.9353 | loss(rot) 0.8070 | loss(pos) 0.1042 | loss(seq) 0.0240 | grad 3.4953 | lr 0.0010 | time_forward 3.7900 | time_backward 5.1670
[2023-09-02 13:19:51,605::train::INFO] [train] Iter 10312 | loss 1.3020 | loss(rot) 0.3258 | loss(pos) 0.3444 | loss(seq) 0.6318 | grad 3.4238 | lr 0.0010 | time_forward 3.9890 | time_backward 5.6900
[2023-09-02 13:20:00,093::train::INFO] [train] Iter 10313 | loss 1.6525 | loss(rot) 0.8053 | loss(pos) 0.3916 | loss(seq) 0.4556 | grad 4.8200 | lr 0.0010 | time_forward 3.5720 | time_backward 4.9120
[2023-09-02 13:20:08,124::train::INFO] [train] Iter 10314 | loss 1.6055 | loss(rot) 1.1259 | loss(pos) 0.1023 | loss(seq) 0.3772 | grad 5.1702 | lr 0.0010 | time_forward 3.3600 | time_backward 4.6680
[2023-09-02 13:20:10,792::train::INFO] [train] Iter 10315 | loss 2.7323 | loss(rot) 2.4267 | loss(pos) 0.2381 | loss(seq) 0.0676 | grad 3.7193 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4300
[2023-09-02 13:20:20,419::train::INFO] [train] Iter 10316 | loss 1.5051 | loss(rot) 0.9525 | loss(pos) 0.1606 | loss(seq) 0.3920 | grad 3.9992 | lr 0.0010 | time_forward 3.9390 | time_backward 5.6850
[2023-09-02 13:20:23,122::train::INFO] [train] Iter 10317 | loss 0.9962 | loss(rot) 0.5715 | loss(pos) 0.3573 | loss(seq) 0.0675 | grad 3.1226 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4400
[2023-09-02 13:20:26,451::train::INFO] [train] Iter 10318 | loss 1.4915 | loss(rot) 0.6036 | loss(pos) 0.4620 | loss(seq) 0.4259 | grad 3.3764 | lr 0.0010 | time_forward 1.4260 | time_backward 1.8990
[2023-09-02 13:20:36,211::train::INFO] [train] Iter 10319 | loss 1.7750 | loss(rot) 1.3786 | loss(pos) 0.3946 | loss(seq) 0.0019 | grad 4.1677 | lr 0.0010 | time_forward 3.9470 | time_backward 5.8090
[2023-09-02 13:20:38,611::train::INFO] [train] Iter 10320 | loss 1.9927 | loss(rot) 1.7679 | loss(pos) 0.1938 | loss(seq) 0.0311 | grad 5.5353 | lr 0.0010 | time_forward 1.1250 | time_backward 1.2720
[2023-09-02 13:20:41,297::train::INFO] [train] Iter 10321 | loss 1.9425 | loss(rot) 1.6635 | loss(pos) 0.2788 | loss(seq) 0.0001 | grad 5.3289 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4240
[2023-09-02 13:20:49,698::train::INFO] [train] Iter 10322 | loss 1.4327 | loss(rot) 0.6785 | loss(pos) 0.4266 | loss(seq) 0.3276 | grad 5.9639 | lr 0.0010 | time_forward 3.5730 | time_backward 4.8250
[2023-09-02 13:20:58,849::train::INFO] [train] Iter 10323 | loss 1.3009 | loss(rot) 1.1579 | loss(pos) 0.1396 | loss(seq) 0.0033 | grad 5.5557 | lr 0.0010 | time_forward 3.8000 | time_backward 5.3480
[2023-09-02 13:21:08,889::train::INFO] [train] Iter 10324 | loss 0.8625 | loss(rot) 0.1460 | loss(pos) 0.6993 | loss(seq) 0.0172 | grad 3.3777 | lr 0.0010 | time_forward 4.1660 | time_backward 5.8710
[2023-09-02 13:21:18,112::train::INFO] [train] Iter 10325 | loss 1.3453 | loss(rot) 0.0468 | loss(pos) 1.1269 | loss(seq) 0.1716 | grad 3.9571 | lr 0.0010 | time_forward 3.8090 | time_backward 5.4090
[2023-09-02 13:21:26,984::train::INFO] [train] Iter 10326 | loss 1.5970 | loss(rot) 0.8753 | loss(pos) 0.1909 | loss(seq) 0.5308 | grad 4.4209 | lr 0.0010 | time_forward 3.8230 | time_backward 5.0460
[2023-09-02 13:21:37,801::train::INFO] [train] Iter 10327 | loss 1.5428 | loss(rot) 0.7273 | loss(pos) 0.4142 | loss(seq) 0.4013 | grad 3.2511 | lr 0.0010 | time_forward 4.7050 | time_backward 6.1080
[2023-09-02 13:21:40,100::train::INFO] [train] Iter 10328 | loss 1.4295 | loss(rot) 0.5334 | loss(pos) 0.5822 | loss(seq) 0.3139 | grad 6.2063 | lr 0.0010 | time_forward 1.0540 | time_backward 1.2420
[2023-09-02 13:21:42,832::train::INFO] [train] Iter 10329 | loss 0.8450 | loss(rot) 0.4256 | loss(pos) 0.1430 | loss(seq) 0.2764 | grad 5.6160 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4680
[2023-09-02 13:21:52,563::train::INFO] [train] Iter 10330 | loss 1.9139 | loss(rot) 1.4150 | loss(pos) 0.1393 | loss(seq) 0.3596 | grad 4.1229 | lr 0.0010 | time_forward 3.9280 | time_backward 5.8000
[2023-09-02 13:22:00,459::train::INFO] [train] Iter 10331 | loss 2.0379 | loss(rot) 1.6679 | loss(pos) 0.1825 | loss(seq) 0.1876 | grad 4.7105 | lr 0.0010 | time_forward 3.2860 | time_backward 4.6060
[2023-09-02 13:22:09,220::train::INFO] [train] Iter 10332 | loss 2.6277 | loss(rot) 2.4108 | loss(pos) 0.2069 | loss(seq) 0.0100 | grad 7.0230 | lr 0.0010 | time_forward 3.5250 | time_backward 5.2330
[2023-09-02 13:22:19,955::train::INFO] [train] Iter 10333 | loss 1.5926 | loss(rot) 1.4358 | loss(pos) 0.1396 | loss(seq) 0.0172 | grad 5.9118 | lr 0.0010 | time_forward 4.3230 | time_backward 6.4080
[2023-09-02 13:22:30,019::train::INFO] [train] Iter 10334 | loss 2.8258 | loss(rot) 2.3863 | loss(pos) 0.1963 | loss(seq) 0.2433 | grad 5.2579 | lr 0.0010 | time_forward 4.1790 | time_backward 5.8820
[2023-09-02 13:22:32,684::train::INFO] [train] Iter 10335 | loss 1.1336 | loss(rot) 0.3285 | loss(pos) 0.2817 | loss(seq) 0.5233 | grad 2.9432 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4190
[2023-09-02 13:22:35,360::train::INFO] [train] Iter 10336 | loss 2.2034 | loss(rot) 1.6453 | loss(pos) 0.1432 | loss(seq) 0.4149 | grad 4.9244 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4050
[2023-09-02 13:22:45,001::train::INFO] [train] Iter 10337 | loss 1.3858 | loss(rot) 0.6332 | loss(pos) 0.4447 | loss(seq) 0.3079 | grad 4.8839 | lr 0.0010 | time_forward 3.8150 | time_backward 5.8240
[2023-09-02 13:22:55,051::train::INFO] [train] Iter 10338 | loss 0.9739 | loss(rot) 0.0403 | loss(pos) 0.9299 | loss(seq) 0.0037 | grad 5.2080 | lr 0.0010 | time_forward 4.0970 | time_backward 5.9500
[2023-09-02 13:23:05,070::train::INFO] [train] Iter 10339 | loss 1.7554 | loss(rot) 1.2230 | loss(pos) 0.2275 | loss(seq) 0.3049 | grad 3.5810 | lr 0.0010 | time_forward 4.0520 | time_backward 5.9500
[2023-09-02 13:23:13,726::train::INFO] [train] Iter 10340 | loss 2.1179 | loss(rot) 1.9993 | loss(pos) 0.0490 | loss(seq) 0.0696 | grad 5.0051 | lr 0.0010 | time_forward 3.6650 | time_backward 4.9880
[2023-09-02 13:23:23,795::train::INFO] [train] Iter 10341 | loss 1.2874 | loss(rot) 0.5896 | loss(pos) 0.1702 | loss(seq) 0.5276 | grad 10.7715 | lr 0.0010 | time_forward 4.0210 | time_backward 6.0440
[2023-09-02 13:23:32,169::train::INFO] [train] Iter 10342 | loss 1.7918 | loss(rot) 1.6418 | loss(pos) 0.1498 | loss(seq) 0.0001 | grad 6.7629 | lr 0.0010 | time_forward 3.5300 | time_backward 4.8400
[2023-09-02 13:23:34,864::train::INFO] [train] Iter 10343 | loss 2.7287 | loss(rot) 0.6217 | loss(pos) 1.9016 | loss(seq) 0.2054 | grad 7.4979 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4470
[2023-09-02 13:23:43,743::train::INFO] [train] Iter 10344 | loss 1.3685 | loss(rot) 1.1945 | loss(pos) 0.1107 | loss(seq) 0.0634 | grad 4.7939 | lr 0.0010 | time_forward 3.7200 | time_backward 5.1560
[2023-09-02 13:23:52,159::train::INFO] [train] Iter 10345 | loss 1.8645 | loss(rot) 1.8220 | loss(pos) 0.0304 | loss(seq) 0.0121 | grad 6.1416 | lr 0.0010 | time_forward 3.5010 | time_backward 4.9120
[2023-09-02 13:23:59,511::train::INFO] [train] Iter 10346 | loss 1.1611 | loss(rot) 1.0667 | loss(pos) 0.0662 | loss(seq) 0.0281 | grad 3.6978 | lr 0.0010 | time_forward 3.0980 | time_backward 4.2510
[2023-09-02 13:24:09,811::train::INFO] [train] Iter 10347 | loss 1.7774 | loss(rot) 1.1866 | loss(pos) 0.1213 | loss(seq) 0.4696 | grad 3.5996 | lr 0.0010 | time_forward 4.5290 | time_backward 5.7680
[2023-09-02 13:24:17,606::train::INFO] [train] Iter 10348 | loss 1.6970 | loss(rot) 0.9651 | loss(pos) 0.1884 | loss(seq) 0.5435 | grad 4.8263 | lr 0.0010 | time_forward 3.3070 | time_backward 4.4840
[2023-09-02 13:24:25,552::train::INFO] [train] Iter 10349 | loss 1.2039 | loss(rot) 0.4834 | loss(pos) 0.1328 | loss(seq) 0.5877 | grad 3.5759 | lr 0.0010 | time_forward 3.3390 | time_backward 4.6040
[2023-09-02 13:24:28,226::train::INFO] [train] Iter 10350 | loss 2.0177 | loss(rot) 1.6059 | loss(pos) 0.1529 | loss(seq) 0.2589 | grad 5.5075 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4140
[2023-09-02 13:24:30,902::train::INFO] [train] Iter 10351 | loss 1.5142 | loss(rot) 0.5898 | loss(pos) 0.4038 | loss(seq) 0.5206 | grad 4.2565 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4190
[2023-09-02 13:24:40,798::train::INFO] [train] Iter 10352 | loss 1.2592 | loss(rot) 0.5967 | loss(pos) 0.1941 | loss(seq) 0.4683 | grad 3.8340 | lr 0.0010 | time_forward 3.9710 | time_backward 5.9220
[2023-09-02 13:24:43,501::train::INFO] [train] Iter 10353 | loss 0.6961 | loss(rot) 0.1806 | loss(pos) 0.4864 | loss(seq) 0.0290 | grad 3.1475 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4650
[2023-09-02 13:24:46,309::train::INFO] [train] Iter 10354 | loss 1.8504 | loss(rot) 1.3173 | loss(pos) 0.1228 | loss(seq) 0.4102 | grad 5.7492 | lr 0.0010 | time_forward 1.2820 | time_backward 1.5220
[2023-09-02 13:24:49,009::train::INFO] [train] Iter 10355 | loss 0.6763 | loss(rot) 0.0327 | loss(pos) 0.6361 | loss(seq) 0.0075 | grad 4.2711 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4280
[2023-09-02 13:24:58,626::train::INFO] [train] Iter 10356 | loss 1.3414 | loss(rot) 0.8592 | loss(pos) 0.1804 | loss(seq) 0.3018 | grad 5.6292 | lr 0.0010 | time_forward 4.0020 | time_backward 5.6130
[2023-09-02 13:25:01,312::train::INFO] [train] Iter 10357 | loss 1.5027 | loss(rot) 0.7999 | loss(pos) 0.1631 | loss(seq) 0.5396 | grad 4.1453 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4440
[2023-09-02 13:25:04,080::train::INFO] [train] Iter 10358 | loss 1.7776 | loss(rot) 1.5812 | loss(pos) 0.0588 | loss(seq) 0.1377 | grad 8.0628 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4550
[2023-09-02 13:25:13,259::train::INFO] [train] Iter 10359 | loss 1.7215 | loss(rot) 1.0247 | loss(pos) 0.2751 | loss(seq) 0.4217 | grad 4.6997 | lr 0.0010 | time_forward 3.8370 | time_backward 5.3390
[2023-09-02 13:25:22,379::train::INFO] [train] Iter 10360 | loss 1.2698 | loss(rot) 0.2595 | loss(pos) 0.6792 | loss(seq) 0.3311 | grad 5.5751 | lr 0.0010 | time_forward 3.8000 | time_backward 5.3170
[2023-09-02 13:25:25,099::train::INFO] [train] Iter 10361 | loss 1.0193 | loss(rot) 0.1265 | loss(pos) 0.2906 | loss(seq) 0.6021 | grad 3.5911 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4520
[2023-09-02 13:25:35,270::train::INFO] [train] Iter 10362 | loss 1.3857 | loss(rot) 0.6996 | loss(pos) 0.1158 | loss(seq) 0.5702 | grad 3.8982 | lr 0.0010 | time_forward 4.0490 | time_backward 6.1190
[2023-09-02 13:25:43,588::train::INFO] [train] Iter 10363 | loss 0.8900 | loss(rot) 0.3240 | loss(pos) 0.5156 | loss(seq) 0.0505 | grad 3.6811 | lr 0.0010 | time_forward 3.9410 | time_backward 4.3730
[2023-09-02 13:25:46,272::train::INFO] [train] Iter 10364 | loss 1.2869 | loss(rot) 1.1757 | loss(pos) 0.0817 | loss(seq) 0.0295 | grad 3.8683 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4310
[2023-09-02 13:25:53,723::train::INFO] [train] Iter 10365 | loss 1.7797 | loss(rot) 1.5057 | loss(pos) 0.2719 | loss(seq) 0.0020 | grad 5.3257 | lr 0.0010 | time_forward 3.4020 | time_backward 4.0470
[2023-09-02 13:26:02,582::train::INFO] [train] Iter 10366 | loss 1.1253 | loss(rot) 0.1543 | loss(pos) 0.9641 | loss(seq) 0.0068 | grad 6.8561 | lr 0.0010 | time_forward 3.7700 | time_backward 5.0860
[2023-09-02 13:26:11,291::train::INFO] [train] Iter 10367 | loss 1.2531 | loss(rot) 0.5097 | loss(pos) 0.1997 | loss(seq) 0.5436 | grad 4.5710 | lr 0.0010 | time_forward 3.6270 | time_backward 5.0780
[2023-09-02 13:26:19,520::train::INFO] [train] Iter 10368 | loss 1.7941 | loss(rot) 1.1745 | loss(pos) 0.1968 | loss(seq) 0.4228 | grad 7.6048 | lr 0.0010 | time_forward 3.3870 | time_backward 4.8370
[2023-09-02 13:26:22,179::train::INFO] [train] Iter 10369 | loss 1.4729 | loss(rot) 1.2720 | loss(pos) 0.1845 | loss(seq) 0.0164 | grad 5.0299 | lr 0.0010 | time_forward 1.2600 | time_backward 1.3960
[2023-09-02 13:26:31,515::train::INFO] [train] Iter 10370 | loss 0.8813 | loss(rot) 0.1419 | loss(pos) 0.7208 | loss(seq) 0.0187 | grad 4.7952 | lr 0.0010 | time_forward 3.9000 | time_backward 5.4320
[2023-09-02 13:26:42,253::train::INFO] [train] Iter 10371 | loss 1.9868 | loss(rot) 1.0479 | loss(pos) 0.5826 | loss(seq) 0.3562 | grad 5.3598 | lr 0.0010 | time_forward 5.2200 | time_backward 5.5150
[2023-09-02 13:26:44,917::train::INFO] [train] Iter 10372 | loss 0.9991 | loss(rot) 0.8268 | loss(pos) 0.1723 | loss(seq) 0.0000 | grad 4.6610 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4050
[2023-09-02 13:26:54,022::train::INFO] [train] Iter 10373 | loss 1.0716 | loss(rot) 0.3894 | loss(pos) 0.3536 | loss(seq) 0.3286 | grad 4.9846 | lr 0.0010 | time_forward 3.8660 | time_backward 5.2360
[2023-09-02 13:27:03,360::train::INFO] [train] Iter 10374 | loss 2.0619 | loss(rot) 1.1708 | loss(pos) 0.3997 | loss(seq) 0.4913 | grad 5.3310 | lr 0.0010 | time_forward 3.9960 | time_backward 5.3380
[2023-09-02 13:27:11,782::train::INFO] [train] Iter 10375 | loss 2.3202 | loss(rot) 2.1764 | loss(pos) 0.1027 | loss(seq) 0.0411 | grad 8.4293 | lr 0.0010 | time_forward 3.5010 | time_backward 4.9170
[2023-09-02 13:27:21,808::train::INFO] [train] Iter 10376 | loss 2.9835 | loss(rot) 2.3443 | loss(pos) 0.2555 | loss(seq) 0.3837 | grad 3.3198 | lr 0.0010 | time_forward 4.0250 | time_backward 5.9980
[2023-09-02 13:27:31,813::train::INFO] [train] Iter 10377 | loss 1.2634 | loss(rot) 0.7535 | loss(pos) 0.0978 | loss(seq) 0.4121 | grad 6.5523 | lr 0.0010 | time_forward 3.9670 | time_backward 6.0340
[2023-09-02 13:27:40,160::train::INFO] [train] Iter 10378 | loss 1.7949 | loss(rot) 1.3008 | loss(pos) 0.2210 | loss(seq) 0.2731 | grad 4.5729 | lr 0.0010 | time_forward 3.4770 | time_backward 4.8670
[2023-09-02 13:27:48,460::train::INFO] [train] Iter 10379 | loss 0.9683 | loss(rot) 0.5340 | loss(pos) 0.1628 | loss(seq) 0.2715 | grad 5.1322 | lr 0.0010 | time_forward 3.4520 | time_backward 4.8440
[2023-09-02 13:27:51,121::train::INFO] [train] Iter 10380 | loss 1.9923 | loss(rot) 0.7595 | loss(pos) 0.5852 | loss(seq) 0.6476 | grad 5.6196 | lr 0.0010 | time_forward 1.2220 | time_backward 1.4360
[2023-09-02 13:27:53,805::train::INFO] [train] Iter 10381 | loss 2.8286 | loss(rot) 2.6258 | loss(pos) 0.1667 | loss(seq) 0.0361 | grad 4.6643 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4120
[2023-09-02 13:28:02,319::train::INFO] [train] Iter 10382 | loss 1.5592 | loss(rot) 0.4039 | loss(pos) 0.4615 | loss(seq) 0.6938 | grad 5.1177 | lr 0.0010 | time_forward 3.5820 | time_backward 4.9290
[2023-09-02 13:28:11,545::train::INFO] [train] Iter 10383 | loss 0.8755 | loss(rot) 0.2764 | loss(pos) 0.2734 | loss(seq) 0.3256 | grad 3.6511 | lr 0.0010 | time_forward 3.9320 | time_backward 5.2890
[2023-09-02 13:28:21,467::train::INFO] [train] Iter 10384 | loss 0.8167 | loss(rot) 0.1115 | loss(pos) 0.5679 | loss(seq) 0.1373 | grad 4.1884 | lr 0.0010 | time_forward 3.9830 | time_backward 5.9350