text
stringlengths
56
1.16k
[2023-09-02 14:04:18,490::train::INFO] [train] Iter 10685 | loss 2.1306 | loss(rot) 0.6227 | loss(pos) 0.9626 | loss(seq) 0.5454 | grad 4.0725 | lr 0.0010 | time_forward 3.8920 | time_backward 6.5140
[2023-09-02 14:04:28,269::train::INFO] [train] Iter 10686 | loss 1.7451 | loss(rot) 1.0406 | loss(pos) 0.2647 | loss(seq) 0.4398 | grad 4.1298 | lr 0.0010 | time_forward 4.1700 | time_backward 5.6050
[2023-09-02 14:04:31,001::train::INFO] [train] Iter 10687 | loss 1.5770 | loss(rot) 1.2077 | loss(pos) 0.1109 | loss(seq) 0.2583 | grad 5.0512 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4370
[2023-09-02 14:04:38,746::train::INFO] [train] Iter 10688 | loss 2.3615 | loss(rot) 2.2990 | loss(pos) 0.0623 | loss(seq) 0.0003 | grad 3.6879 | lr 0.0010 | time_forward 3.1990 | time_backward 4.5420
[2023-09-02 14:04:47,400::train::INFO] [train] Iter 10689 | loss 2.2848 | loss(rot) 2.1015 | loss(pos) 0.1212 | loss(seq) 0.0621 | grad 3.9555 | lr 0.0010 | time_forward 3.6480 | time_backward 5.0020
[2023-09-02 14:04:50,301::train::INFO] [train] Iter 10690 | loss 1.1184 | loss(rot) 0.2713 | loss(pos) 0.3057 | loss(seq) 0.5414 | grad 4.0815 | lr 0.0010 | time_forward 1.3580 | time_backward 1.5390
[2023-09-02 14:05:04,153::train::INFO] [train] Iter 10691 | loss 1.9530 | loss(rot) 1.7507 | loss(pos) 0.2020 | loss(seq) 0.0003 | grad 5.0413 | lr 0.0010 | time_forward 4.1650 | time_backward 9.6840
[2023-09-02 14:05:07,748::train::INFO] [train] Iter 10692 | loss 1.4679 | loss(rot) 0.0356 | loss(pos) 1.4256 | loss(seq) 0.0067 | grad 6.4132 | lr 0.0010 | time_forward 1.9990 | time_backward 1.5920
[2023-09-02 14:05:18,634::train::INFO] [train] Iter 10693 | loss 0.7827 | loss(rot) 0.3933 | loss(pos) 0.2723 | loss(seq) 0.1171 | grad 3.4397 | lr 0.0010 | time_forward 4.3670 | time_backward 6.5140
[2023-09-02 14:05:27,460::train::INFO] [train] Iter 10694 | loss 2.3772 | loss(rot) 0.0771 | loss(pos) 1.6271 | loss(seq) 0.6730 | grad 6.6874 | lr 0.0010 | time_forward 3.6170 | time_backward 5.2060
[2023-09-02 14:05:35,309::train::INFO] [train] Iter 10695 | loss 1.7601 | loss(rot) 1.4621 | loss(pos) 0.2582 | loss(seq) 0.0397 | grad 7.8319 | lr 0.0010 | time_forward 3.2210 | time_backward 4.6220
[2023-09-02 14:05:43,202::train::INFO] [train] Iter 10696 | loss 1.9489 | loss(rot) 0.8384 | loss(pos) 0.7243 | loss(seq) 0.3861 | grad 7.5849 | lr 0.0010 | time_forward 3.3350 | time_backward 4.5540
[2023-09-02 14:05:45,530::train::INFO] [train] Iter 10697 | loss 1.6467 | loss(rot) 1.2937 | loss(pos) 0.1604 | loss(seq) 0.1926 | grad 5.7309 | lr 0.0010 | time_forward 1.1050 | time_backward 1.2200
[2023-09-02 14:05:48,944::train::INFO] [train] Iter 10698 | loss 1.3182 | loss(rot) 0.0264 | loss(pos) 1.2885 | loss(seq) 0.0033 | grad 5.0972 | lr 0.0010 | time_forward 1.4860 | time_backward 1.9240
[2023-09-02 14:05:55,233::train::INFO] [train] Iter 10699 | loss 2.0423 | loss(rot) 1.5733 | loss(pos) 0.1977 | loss(seq) 0.2713 | grad 6.2741 | lr 0.0010 | time_forward 2.7290 | time_backward 3.5560
[2023-09-02 14:05:57,987::train::INFO] [train] Iter 10700 | loss 0.4648 | loss(rot) 0.0684 | loss(pos) 0.3822 | loss(seq) 0.0141 | grad 3.4329 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4760
[2023-09-02 14:06:00,893::train::INFO] [train] Iter 10701 | loss 1.9297 | loss(rot) 1.3867 | loss(pos) 0.2530 | loss(seq) 0.2900 | grad 3.2085 | lr 0.0010 | time_forward 1.4170 | time_backward 1.4850
[2023-09-02 14:06:11,900::train::INFO] [train] Iter 10702 | loss 1.1181 | loss(rot) 0.4195 | loss(pos) 0.2823 | loss(seq) 0.4162 | grad 3.8000 | lr 0.0010 | time_forward 4.6900 | time_backward 6.3140
[2023-09-02 14:06:20,446::train::INFO] [train] Iter 10703 | loss 1.5716 | loss(rot) 0.0449 | loss(pos) 1.5211 | loss(seq) 0.0056 | grad 11.6759 | lr 0.0010 | time_forward 3.5820 | time_backward 4.9600
[2023-09-02 14:06:23,220::train::INFO] [train] Iter 10704 | loss 1.4835 | loss(rot) 1.1635 | loss(pos) 0.1022 | loss(seq) 0.2177 | grad 6.6891 | lr 0.0010 | time_forward 1.2640 | time_backward 1.5060
[2023-09-02 14:06:26,099::train::INFO] [train] Iter 10705 | loss 1.0689 | loss(rot) 0.1766 | loss(pos) 0.8596 | loss(seq) 0.0327 | grad 5.1428 | lr 0.0010 | time_forward 1.3550 | time_backward 1.5210
[2023-09-02 14:06:35,172::train::INFO] [train] Iter 10706 | loss 1.2290 | loss(rot) 0.5198 | loss(pos) 0.4473 | loss(seq) 0.2620 | grad 5.1627 | lr 0.0010 | time_forward 3.7680 | time_backward 5.3020
[2023-09-02 14:06:37,934::train::INFO] [train] Iter 10707 | loss 1.2847 | loss(rot) 1.1815 | loss(pos) 0.1025 | loss(seq) 0.0007 | grad 7.1029 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4830
[2023-09-02 14:06:46,220::train::INFO] [train] Iter 10708 | loss 1.0361 | loss(rot) 0.1961 | loss(pos) 0.8211 | loss(seq) 0.0189 | grad 5.8774 | lr 0.0010 | time_forward 3.4350 | time_backward 4.8480
[2023-09-02 14:06:53,110::train::INFO] [train] Iter 10709 | loss 1.5568 | loss(rot) 0.8846 | loss(pos) 0.3675 | loss(seq) 0.3047 | grad 5.8972 | lr 0.0010 | time_forward 2.8380 | time_backward 4.0480
[2023-09-02 14:07:01,622::train::INFO] [train] Iter 10710 | loss 1.1865 | loss(rot) 0.5640 | loss(pos) 0.5987 | loss(seq) 0.0238 | grad 4.9089 | lr 0.0010 | time_forward 3.6610 | time_backward 4.8480
[2023-09-02 14:07:11,857::train::INFO] [train] Iter 10711 | loss 2.5674 | loss(rot) 1.7549 | loss(pos) 0.2168 | loss(seq) 0.5957 | grad 4.2101 | lr 0.0010 | time_forward 4.2700 | time_backward 5.9620
[2023-09-02 14:07:22,527::train::INFO] [train] Iter 10712 | loss 1.1979 | loss(rot) 0.4094 | loss(pos) 0.5074 | loss(seq) 0.2811 | grad 4.0809 | lr 0.0010 | time_forward 4.3260 | time_backward 6.3170
[2023-09-02 14:07:25,311::train::INFO] [train] Iter 10713 | loss 1.7752 | loss(rot) 1.1158 | loss(pos) 0.2903 | loss(seq) 0.3691 | grad 5.5963 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4610
[2023-09-02 14:07:36,364::train::INFO] [train] Iter 10714 | loss 2.3786 | loss(rot) 1.4661 | loss(pos) 0.3939 | loss(seq) 0.5187 | grad 5.9007 | lr 0.0010 | time_forward 4.2640 | time_backward 6.7850
[2023-09-02 14:07:46,924::train::INFO] [train] Iter 10715 | loss 1.8032 | loss(rot) 1.1219 | loss(pos) 0.1744 | loss(seq) 0.5068 | grad 6.2322 | lr 0.0010 | time_forward 4.1150 | time_backward 6.4420
[2023-09-02 14:07:57,193::train::INFO] [train] Iter 10716 | loss 1.7420 | loss(rot) 1.5767 | loss(pos) 0.1279 | loss(seq) 0.0375 | grad 5.0364 | lr 0.0010 | time_forward 4.1610 | time_backward 6.1040
[2023-09-02 14:08:07,361::train::INFO] [train] Iter 10717 | loss 1.3711 | loss(rot) 0.7131 | loss(pos) 0.2418 | loss(seq) 0.4161 | grad 2.4930 | lr 0.0010 | time_forward 3.9600 | time_backward 6.2040
[2023-09-02 14:08:17,917::train::INFO] [train] Iter 10718 | loss 2.1218 | loss(rot) 1.7225 | loss(pos) 0.1667 | loss(seq) 0.2326 | grad 4.9608 | lr 0.0010 | time_forward 4.3800 | time_backward 6.1570
[2023-09-02 14:08:20,616::train::INFO] [train] Iter 10719 | loss 1.7876 | loss(rot) 1.2534 | loss(pos) 0.1713 | loss(seq) 0.3629 | grad 4.9180 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4470
[2023-09-02 14:08:26,583::train::INFO] [train] Iter 10720 | loss 2.5916 | loss(rot) 2.0407 | loss(pos) 0.3104 | loss(seq) 0.2405 | grad 6.2109 | lr 0.0010 | time_forward 2.5860 | time_backward 3.3780
[2023-09-02 14:08:37,899::train::INFO] [train] Iter 10721 | loss 2.2459 | loss(rot) 1.6074 | loss(pos) 0.2836 | loss(seq) 0.3549 | grad 5.6377 | lr 0.0010 | time_forward 5.4330 | time_backward 5.8810
[2023-09-02 14:08:46,225::train::INFO] [train] Iter 10722 | loss 1.3307 | loss(rot) 1.0915 | loss(pos) 0.1957 | loss(seq) 0.0435 | grad 5.9177 | lr 0.0010 | time_forward 3.5740 | time_backward 4.7480
[2023-09-02 14:08:56,732::train::INFO] [train] Iter 10723 | loss 2.4673 | loss(rot) 2.1988 | loss(pos) 0.1695 | loss(seq) 0.0990 | grad 4.2663 | lr 0.0010 | time_forward 4.3350 | time_backward 6.1680
[2023-09-02 14:09:06,685::train::INFO] [train] Iter 10724 | loss 0.8355 | loss(rot) 0.2543 | loss(pos) 0.5070 | loss(seq) 0.0742 | grad 3.9252 | lr 0.0010 | time_forward 4.2230 | time_backward 5.7260
[2023-09-02 14:09:15,229::train::INFO] [train] Iter 10725 | loss 1.2815 | loss(rot) 1.1835 | loss(pos) 0.0980 | loss(seq) 0.0000 | grad 5.3317 | lr 0.0010 | time_forward 3.7110 | time_backward 4.8290
[2023-09-02 14:09:24,001::train::INFO] [train] Iter 10726 | loss 0.9399 | loss(rot) 0.2367 | loss(pos) 0.6834 | loss(seq) 0.0198 | grad 3.2729 | lr 0.0010 | time_forward 3.5990 | time_backward 5.1690
[2023-09-02 14:09:26,364::train::INFO] [train] Iter 10727 | loss 1.0575 | loss(rot) 0.5050 | loss(pos) 0.1261 | loss(seq) 0.4264 | grad 3.5777 | lr 0.0010 | time_forward 1.1220 | time_backward 1.2380
[2023-09-02 14:09:35,987::train::INFO] [train] Iter 10728 | loss 0.7566 | loss(rot) 0.2425 | loss(pos) 0.2060 | loss(seq) 0.3080 | grad 3.2787 | lr 0.0010 | time_forward 4.0590 | time_backward 5.5440
[2023-09-02 14:09:39,456::train::INFO] [train] Iter 10729 | loss 2.1322 | loss(rot) 1.7718 | loss(pos) 0.1764 | loss(seq) 0.1840 | grad 6.2480 | lr 0.0010 | time_forward 1.4070 | time_backward 2.0590
[2023-09-02 14:09:49,900::train::INFO] [train] Iter 10730 | loss 1.1674 | loss(rot) 0.9573 | loss(pos) 0.2098 | loss(seq) 0.0003 | grad 4.5352 | lr 0.0010 | time_forward 4.0560 | time_backward 6.3840
[2023-09-02 14:10:00,465::train::INFO] [train] Iter 10731 | loss 1.5295 | loss(rot) 0.0202 | loss(pos) 1.5075 | loss(seq) 0.0019 | grad 4.6917 | lr 0.0010 | time_forward 4.2060 | time_backward 6.3550
[2023-09-02 14:10:03,139::train::INFO] [train] Iter 10732 | loss 2.1869 | loss(rot) 2.0144 | loss(pos) 0.1725 | loss(seq) 0.0000 | grad 4.1030 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4030
[2023-09-02 14:10:12,949::train::INFO] [train] Iter 10733 | loss 1.5739 | loss(rot) 1.1174 | loss(pos) 0.0942 | loss(seq) 0.3623 | grad 3.5108 | lr 0.0010 | time_forward 4.0330 | time_backward 5.7730
[2023-09-02 14:10:23,175::train::INFO] [train] Iter 10734 | loss 0.9475 | loss(rot) 0.1413 | loss(pos) 0.7728 | loss(seq) 0.0335 | grad 4.9820 | lr 0.0010 | time_forward 4.1810 | time_backward 6.0420
[2023-09-02 14:10:25,438::train::INFO] [train] Iter 10735 | loss 1.0930 | loss(rot) 0.8855 | loss(pos) 0.0495 | loss(seq) 0.1580 | grad 3.6401 | lr 0.0010 | time_forward 1.0790 | time_backward 1.1790
[2023-09-02 14:10:28,123::train::INFO] [train] Iter 10736 | loss 1.8012 | loss(rot) 1.6490 | loss(pos) 0.0565 | loss(seq) 0.0958 | grad 5.1403 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4150
[2023-09-02 14:10:38,893::train::INFO] [train] Iter 10737 | loss 0.9009 | loss(rot) 0.2343 | loss(pos) 0.6451 | loss(seq) 0.0214 | grad 3.7892 | lr 0.0010 | time_forward 4.2820 | time_backward 6.4840
[2023-09-02 14:10:41,722::train::INFO] [train] Iter 10738 | loss 1.0534 | loss(rot) 0.1290 | loss(pos) 0.8720 | loss(seq) 0.0523 | grad 3.7566 | lr 0.0010 | time_forward 1.3200 | time_backward 1.5050
[2023-09-02 14:10:51,690::train::INFO] [train] Iter 10739 | loss 0.9615 | loss(rot) 0.2947 | loss(pos) 0.2551 | loss(seq) 0.4117 | grad 3.3258 | lr 0.0010 | time_forward 4.1610 | time_backward 5.8030
[2023-09-02 14:11:01,451::train::INFO] [train] Iter 10740 | loss 1.5006 | loss(rot) 1.3430 | loss(pos) 0.1555 | loss(seq) 0.0021 | grad 4.6237 | lr 0.0010 | time_forward 4.1350 | time_backward 5.6220
[2023-09-02 14:11:04,219::train::INFO] [train] Iter 10741 | loss 1.8257 | loss(rot) 0.8238 | loss(pos) 0.3372 | loss(seq) 0.6647 | grad 3.8775 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4880
[2023-09-02 14:11:06,831::train::INFO] [train] Iter 10742 | loss 0.8242 | loss(rot) 0.6713 | loss(pos) 0.1499 | loss(seq) 0.0030 | grad 17.2251 | lr 0.0010 | time_forward 1.2810 | time_backward 1.3270
[2023-09-02 14:11:09,626::train::INFO] [train] Iter 10743 | loss 2.1380 | loss(rot) 1.9638 | loss(pos) 0.1650 | loss(seq) 0.0092 | grad 6.5367 | lr 0.0010 | time_forward 1.3690 | time_backward 1.4230
[2023-09-02 14:11:20,258::train::INFO] [train] Iter 10744 | loss 2.0975 | loss(rot) 1.4955 | loss(pos) 0.1938 | loss(seq) 0.4081 | grad 3.4135 | lr 0.0010 | time_forward 4.5680 | time_backward 6.0600
[2023-09-02 14:11:28,650::train::INFO] [train] Iter 10745 | loss 3.2978 | loss(rot) 2.5650 | loss(pos) 0.3282 | loss(seq) 0.4046 | grad 4.5316 | lr 0.0010 | time_forward 3.4850 | time_backward 4.9030
[2023-09-02 14:11:38,410::train::INFO] [train] Iter 10746 | loss 1.4619 | loss(rot) 0.7595 | loss(pos) 0.2146 | loss(seq) 0.4878 | grad 4.6667 | lr 0.0010 | time_forward 4.1550 | time_backward 5.6010
[2023-09-02 14:11:46,739::train::INFO] [train] Iter 10747 | loss 0.7922 | loss(rot) 0.0504 | loss(pos) 0.7271 | loss(seq) 0.0147 | grad 6.1467 | lr 0.0010 | time_forward 3.4530 | time_backward 4.8730
[2023-09-02 14:11:49,233::train::INFO] [train] Iter 10748 | loss 1.3761 | loss(rot) 0.6640 | loss(pos) 0.1381 | loss(seq) 0.5740 | grad 4.3740 | lr 0.0010 | time_forward 1.1690 | time_backward 1.3200
[2023-09-02 14:11:58,484::train::INFO] [train] Iter 10749 | loss 0.7226 | loss(rot) 0.5037 | loss(pos) 0.2123 | loss(seq) 0.0066 | grad 4.8830 | lr 0.0010 | time_forward 3.9190 | time_backward 5.3290
[2023-09-02 14:12:07,023::train::INFO] [train] Iter 10750 | loss 0.9609 | loss(rot) 0.2620 | loss(pos) 0.3199 | loss(seq) 0.3791 | grad 2.7133 | lr 0.0010 | time_forward 3.6500 | time_backward 4.8850
[2023-09-02 14:12:09,700::train::INFO] [train] Iter 10751 | loss 1.5251 | loss(rot) 0.7114 | loss(pos) 0.2454 | loss(seq) 0.5683 | grad 4.3335 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4330
[2023-09-02 14:12:19,355::train::INFO] [train] Iter 10752 | loss 1.7539 | loss(rot) 1.2119 | loss(pos) 0.1035 | loss(seq) 0.4386 | grad 4.4987 | lr 0.0010 | time_forward 4.0020 | time_backward 5.6510
[2023-09-02 14:12:22,194::train::INFO] [train] Iter 10753 | loss 1.1600 | loss(rot) 0.4451 | loss(pos) 0.3732 | loss(seq) 0.3416 | grad 4.6138 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4880
[2023-09-02 14:12:28,760::train::INFO] [train] Iter 10754 | loss 1.2494 | loss(rot) 0.6498 | loss(pos) 0.1291 | loss(seq) 0.4705 | grad 4.3369 | lr 0.0010 | time_forward 2.5830 | time_backward 3.9800
[2023-09-02 14:12:38,282::train::INFO] [train] Iter 10755 | loss 1.9251 | loss(rot) 0.9238 | loss(pos) 0.3504 | loss(seq) 0.6510 | grad 3.7256 | lr 0.0010 | time_forward 4.1150 | time_backward 5.4040
[2023-09-02 14:12:48,949::train::INFO] [train] Iter 10756 | loss 3.0650 | loss(rot) 2.6821 | loss(pos) 0.2863 | loss(seq) 0.0966 | grad 5.7591 | lr 0.0010 | time_forward 4.2290 | time_backward 6.4340
[2023-09-02 14:12:51,829::train::INFO] [train] Iter 10757 | loss 2.0027 | loss(rot) 1.5852 | loss(pos) 0.2526 | loss(seq) 0.1648 | grad 6.8347 | lr 0.0010 | time_forward 1.4010 | time_backward 1.4760
[2023-09-02 14:13:00,967::train::INFO] [train] Iter 10758 | loss 1.7084 | loss(rot) 1.4779 | loss(pos) 0.1481 | loss(seq) 0.0824 | grad 7.1505 | lr 0.0010 | time_forward 3.8180 | time_backward 5.3160
[2023-09-02 14:13:10,638::train::INFO] [train] Iter 10759 | loss 1.0845 | loss(rot) 0.2702 | loss(pos) 0.6472 | loss(seq) 0.1671 | grad 4.4511 | lr 0.0010 | time_forward 4.0570 | time_backward 5.6110
[2023-09-02 14:13:19,620::train::INFO] [train] Iter 10760 | loss 2.2771 | loss(rot) 1.6959 | loss(pos) 0.0861 | loss(seq) 0.4950 | grad 5.7084 | lr 0.0010 | time_forward 3.7980 | time_backward 5.1800
[2023-09-02 14:13:30,483::train::INFO] [train] Iter 10761 | loss 2.0939 | loss(rot) 1.9012 | loss(pos) 0.1352 | loss(seq) 0.0575 | grad 4.2970 | lr 0.0010 | time_forward 4.1990 | time_backward 6.6610
[2023-09-02 14:13:33,288::train::INFO] [train] Iter 10762 | loss 2.5048 | loss(rot) 2.2528 | loss(pos) 0.2517 | loss(seq) 0.0003 | grad 5.9182 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4770
[2023-09-02 14:13:40,840::train::INFO] [train] Iter 10763 | loss 1.4667 | loss(rot) 0.4182 | loss(pos) 0.7742 | loss(seq) 0.2742 | grad 6.0945 | lr 0.0010 | time_forward 3.0620 | time_backward 4.4850
[2023-09-02 14:13:51,618::train::INFO] [train] Iter 10764 | loss 0.8418 | loss(rot) 0.1116 | loss(pos) 0.7097 | loss(seq) 0.0205 | grad 3.8735 | lr 0.0010 | time_forward 4.1280 | time_backward 6.6470
[2023-09-02 14:14:02,583::train::INFO] [train] Iter 10765 | loss 1.6892 | loss(rot) 1.5511 | loss(pos) 0.0750 | loss(seq) 0.0631 | grad 6.4573 | lr 0.0010 | time_forward 5.2430 | time_backward 5.6950
[2023-09-02 14:14:12,992::train::INFO] [train] Iter 10766 | loss 2.8652 | loss(rot) 2.6543 | loss(pos) 0.1540 | loss(seq) 0.0568 | grad 3.9772 | lr 0.0010 | time_forward 4.2090 | time_backward 6.1970
[2023-09-02 14:14:22,017::train::INFO] [train] Iter 10767 | loss 1.0489 | loss(rot) 0.9119 | loss(pos) 0.0920 | loss(seq) 0.0450 | grad 4.9306 | lr 0.0010 | time_forward 3.6870 | time_backward 5.3350
[2023-09-02 14:14:30,752::train::INFO] [train] Iter 10768 | loss 1.1560 | loss(rot) 0.6043 | loss(pos) 0.1120 | loss(seq) 0.4396 | grad 4.3760 | lr 0.0010 | time_forward 3.6720 | time_backward 5.0590
[2023-09-02 14:14:39,440::train::INFO] [train] Iter 10769 | loss 0.9542 | loss(rot) 0.8384 | loss(pos) 0.1156 | loss(seq) 0.0001 | grad 13.3585 | lr 0.0010 | time_forward 3.6510 | time_backward 5.0330
[2023-09-02 14:14:47,312::train::INFO] [train] Iter 10770 | loss 1.2877 | loss(rot) 1.1834 | loss(pos) 0.1040 | loss(seq) 0.0003 | grad 8.1185 | lr 0.0010 | time_forward 3.1570 | time_backward 4.7110
[2023-09-02 14:14:57,005::train::INFO] [train] Iter 10771 | loss 2.0867 | loss(rot) 1.0515 | loss(pos) 0.4130 | loss(seq) 0.6222 | grad 4.5577 | lr 0.0010 | time_forward 3.9950 | time_backward 5.6950
[2023-09-02 14:15:03,547::train::INFO] [train] Iter 10772 | loss 0.8355 | loss(rot) 0.1270 | loss(pos) 0.6772 | loss(seq) 0.0313 | grad 4.7697 | lr 0.0010 | time_forward 2.7140 | time_backward 3.8250
[2023-09-02 14:15:14,673::train::INFO] [train] Iter 10773 | loss 1.5349 | loss(rot) 1.2276 | loss(pos) 0.0752 | loss(seq) 0.2321 | grad 5.9838 | lr 0.0010 | time_forward 4.8570 | time_backward 6.2650
[2023-09-02 14:15:23,633::train::INFO] [train] Iter 10774 | loss 0.9388 | loss(rot) 0.0952 | loss(pos) 0.8017 | loss(seq) 0.0419 | grad 5.6282 | lr 0.0010 | time_forward 3.7460 | time_backward 5.1920
[2023-09-02 14:15:33,468::train::INFO] [train] Iter 10775 | loss 1.5523 | loss(rot) 0.8277 | loss(pos) 0.2009 | loss(seq) 0.5238 | grad 2.7276 | lr 0.0010 | time_forward 4.0710 | time_backward 5.7600
[2023-09-02 14:15:36,372::train::INFO] [train] Iter 10776 | loss 2.4306 | loss(rot) 2.2751 | loss(pos) 0.1555 | loss(seq) 0.0000 | grad 6.0475 | lr 0.0010 | time_forward 1.2920 | time_backward 1.6080
[2023-09-02 14:15:38,729::train::INFO] [train] Iter 10777 | loss 2.2332 | loss(rot) 1.4556 | loss(pos) 0.2651 | loss(seq) 0.5125 | grad 6.0302 | lr 0.0010 | time_forward 1.1290 | time_backward 1.2260
[2023-09-02 14:15:49,281::train::INFO] [train] Iter 10778 | loss 1.0939 | loss(rot) 0.8925 | loss(pos) 0.2013 | loss(seq) 0.0001 | grad 3.4851 | lr 0.0010 | time_forward 4.4800 | time_backward 6.0670
[2023-09-02 14:16:00,369::train::INFO] [train] Iter 10779 | loss 1.4680 | loss(rot) 0.7390 | loss(pos) 0.2248 | loss(seq) 0.5041 | grad 4.0402 | lr 0.0010 | time_forward 4.0760 | time_backward 7.0080
[2023-09-02 14:16:09,723::train::INFO] [train] Iter 10780 | loss 1.3057 | loss(rot) 0.6925 | loss(pos) 0.2015 | loss(seq) 0.4117 | grad 4.3106 | lr 0.0010 | time_forward 3.8320 | time_backward 5.5190
[2023-09-02 14:16:12,536::train::INFO] [train] Iter 10781 | loss 1.7928 | loss(rot) 1.6131 | loss(pos) 0.0831 | loss(seq) 0.0967 | grad 10.4371 | lr 0.0010 | time_forward 1.3330 | time_backward 1.4760
[2023-09-02 14:16:23,730::train::INFO] [train] Iter 10782 | loss 1.2143 | loss(rot) 0.5675 | loss(pos) 0.3926 | loss(seq) 0.2542 | grad 3.3782 | lr 0.0010 | time_forward 4.5910 | time_backward 6.6000
[2023-09-02 14:16:36,489::train::INFO] [train] Iter 10783 | loss 1.8417 | loss(rot) 1.5102 | loss(pos) 0.1008 | loss(seq) 0.2306 | grad 11.7180 | lr 0.0010 | time_forward 4.7350 | time_backward 8.0200
[2023-09-02 14:16:46,478::train::INFO] [train] Iter 10784 | loss 2.7460 | loss(rot) 1.8009 | loss(pos) 0.3437 | loss(seq) 0.6014 | grad 6.5854 | lr 0.0010 | time_forward 4.1900 | time_backward 5.7950