text
stringlengths
56
1.16k
[2023-09-02 15:31:32,572::train::INFO] [train] Iter 11384 | loss 1.1838 | loss(rot) 0.5163 | loss(pos) 0.1906 | loss(seq) 0.4769 | grad 3.9730 | lr 0.0010 | time_forward 3.3180 | time_backward 4.1270
[2023-09-02 15:31:35,177::train::INFO] [train] Iter 11385 | loss 0.9809 | loss(rot) 0.0437 | loss(pos) 0.9313 | loss(seq) 0.0059 | grad 4.1531 | lr 0.0010 | time_forward 1.2190 | time_backward 1.3830
[2023-09-02 15:31:42,472::train::INFO] [train] Iter 11386 | loss 1.5031 | loss(rot) 0.9107 | loss(pos) 0.1861 | loss(seq) 0.4063 | grad 5.4855 | lr 0.0010 | time_forward 3.1270 | time_backward 4.1650
[2023-09-02 15:31:49,786::train::INFO] [train] Iter 11387 | loss 1.8127 | loss(rot) 1.5961 | loss(pos) 0.2166 | loss(seq) 0.0000 | grad 4.3581 | lr 0.0010 | time_forward 3.0840 | time_backward 4.2270
[2023-09-02 15:31:58,371::train::INFO] [train] Iter 11388 | loss 1.5097 | loss(rot) 1.4091 | loss(pos) 0.1006 | loss(seq) 0.0000 | grad 5.3609 | lr 0.0010 | time_forward 3.4260 | time_backward 5.1550
[2023-09-02 15:32:06,807::train::INFO] [train] Iter 11389 | loss 1.8092 | loss(rot) 1.5310 | loss(pos) 0.2779 | loss(seq) 0.0003 | grad 4.6861 | lr 0.0010 | time_forward 3.5120 | time_backward 4.9210
[2023-09-02 15:32:14,281::train::INFO] [train] Iter 11390 | loss 2.9239 | loss(rot) 2.2205 | loss(pos) 0.2727 | loss(seq) 0.4307 | grad 4.0822 | lr 0.0010 | time_forward 3.2270 | time_backward 4.2430
[2023-09-02 15:32:22,104::train::INFO] [train] Iter 11391 | loss 2.2937 | loss(rot) 2.1114 | loss(pos) 0.1820 | loss(seq) 0.0003 | grad 3.8688 | lr 0.0010 | time_forward 3.3460 | time_backward 4.4740
[2023-09-02 15:32:28,589::train::INFO] [train] Iter 11392 | loss 1.2484 | loss(rot) 0.9376 | loss(pos) 0.0560 | loss(seq) 0.2548 | grad 8.7786 | lr 0.0010 | time_forward 2.8780 | time_backward 3.6030
[2023-09-02 15:32:31,756::train::INFO] [train] Iter 11393 | loss 2.4960 | loss(rot) 2.1919 | loss(pos) 0.3041 | loss(seq) 0.0000 | grad 6.5632 | lr 0.0010 | time_forward 1.3410 | time_backward 1.8220
[2023-09-02 15:32:37,910::train::INFO] [train] Iter 11394 | loss 2.2864 | loss(rot) 1.5006 | loss(pos) 0.2387 | loss(seq) 0.5471 | grad 5.5292 | lr 0.0010 | time_forward 2.6670 | time_backward 3.4850
[2023-09-02 15:32:44,900::train::INFO] [train] Iter 11395 | loss 1.9205 | loss(rot) 1.0618 | loss(pos) 0.4539 | loss(seq) 0.4049 | grad 4.9972 | lr 0.0010 | time_forward 2.9440 | time_backward 4.0420
[2023-09-02 15:32:49,859::train::INFO] [train] Iter 11396 | loss 1.4364 | loss(rot) 0.9729 | loss(pos) 0.1504 | loss(seq) 0.3132 | grad 5.3066 | lr 0.0010 | time_forward 2.1510 | time_backward 2.8040
[2023-09-02 15:32:57,098::train::INFO] [train] Iter 11397 | loss 0.9730 | loss(rot) 0.2014 | loss(pos) 0.6936 | loss(seq) 0.0779 | grad 8.7206 | lr 0.0010 | time_forward 3.0640 | time_backward 4.1720
[2023-09-02 15:33:04,024::train::INFO] [train] Iter 11398 | loss 1.5993 | loss(rot) 1.3182 | loss(pos) 0.0877 | loss(seq) 0.1935 | grad 6.7180 | lr 0.0010 | time_forward 2.8460 | time_backward 4.0750
[2023-09-02 15:33:11,446::train::INFO] [train] Iter 11399 | loss 2.4449 | loss(rot) 1.0926 | loss(pos) 0.7704 | loss(seq) 0.5819 | grad 5.8474 | lr 0.0010 | time_forward 2.9660 | time_backward 4.4530
[2023-09-02 15:33:20,155::train::INFO] [train] Iter 11400 | loss 1.4303 | loss(rot) 0.6432 | loss(pos) 0.2798 | loss(seq) 0.5072 | grad 4.3874 | lr 0.0010 | time_forward 3.3730 | time_backward 5.3330
[2023-09-02 15:33:22,751::train::INFO] [train] Iter 11401 | loss 1.4282 | loss(rot) 0.8496 | loss(pos) 0.2790 | loss(seq) 0.2997 | grad 6.5639 | lr 0.0010 | time_forward 1.2110 | time_backward 1.3830
[2023-09-02 15:33:25,285::train::INFO] [train] Iter 11402 | loss 1.7406 | loss(rot) 1.5975 | loss(pos) 0.1420 | loss(seq) 0.0012 | grad 7.6221 | lr 0.0010 | time_forward 1.1670 | time_backward 1.3540
[2023-09-02 15:33:33,502::train::INFO] [train] Iter 11403 | loss 2.8055 | loss(rot) 2.5663 | loss(pos) 0.1578 | loss(seq) 0.0814 | grad 4.6476 | lr 0.0010 | time_forward 3.4510 | time_backward 4.7630
[2023-09-02 15:33:42,050::train::INFO] [train] Iter 11404 | loss 1.5124 | loss(rot) 0.1013 | loss(pos) 0.9515 | loss(seq) 0.4596 | grad 5.5987 | lr 0.0010 | time_forward 3.4240 | time_backward 5.1210
[2023-09-02 15:33:48,524::train::INFO] [train] Iter 11405 | loss 0.6761 | loss(rot) 0.0484 | loss(pos) 0.5925 | loss(seq) 0.0352 | grad 6.1221 | lr 0.0010 | time_forward 2.6120 | time_backward 3.8580
[2023-09-02 15:33:55,050::train::INFO] [train] Iter 11406 | loss 1.5423 | loss(rot) 1.3150 | loss(pos) 0.1764 | loss(seq) 0.0510 | grad 5.9810 | lr 0.0010 | time_forward 2.8270 | time_backward 3.6960
[2023-09-02 15:33:57,619::train::INFO] [train] Iter 11407 | loss 1.7433 | loss(rot) 0.9544 | loss(pos) 0.2523 | loss(seq) 0.5366 | grad 3.0493 | lr 0.0010 | time_forward 1.1940 | time_backward 1.3710
[2023-09-02 15:34:04,475::train::INFO] [train] Iter 11408 | loss 0.4650 | loss(rot) 0.1066 | loss(pos) 0.3273 | loss(seq) 0.0311 | grad 2.6544 | lr 0.0010 | time_forward 2.9540 | time_backward 3.8980
[2023-09-02 15:34:13,170::train::INFO] [train] Iter 11409 | loss 2.4713 | loss(rot) 2.0340 | loss(pos) 0.2869 | loss(seq) 0.1504 | grad 5.5823 | lr 0.0010 | time_forward 3.6520 | time_backward 5.0410
[2023-09-02 15:34:15,719::train::INFO] [train] Iter 11410 | loss 2.0698 | loss(rot) 1.6365 | loss(pos) 0.1197 | loss(seq) 0.3136 | grad 4.9276 | lr 0.0010 | time_forward 1.1750 | time_backward 1.3700
[2023-09-02 15:34:22,468::train::INFO] [train] Iter 11411 | loss 1.2916 | loss(rot) 0.1729 | loss(pos) 1.0722 | loss(seq) 0.0465 | grad 5.0404 | lr 0.0010 | time_forward 2.8690 | time_backward 3.8770
[2023-09-02 15:34:31,001::train::INFO] [train] Iter 11412 | loss 1.9244 | loss(rot) 1.0816 | loss(pos) 0.3098 | loss(seq) 0.5330 | grad 3.3670 | lr 0.0010 | time_forward 3.3200 | time_backward 5.2100
[2023-09-02 15:34:33,535::train::INFO] [train] Iter 11413 | loss 0.6116 | loss(rot) 0.1006 | loss(pos) 0.4660 | loss(seq) 0.0450 | grad 4.7531 | lr 0.0010 | time_forward 1.1620 | time_backward 1.3690
[2023-09-02 15:34:41,566::train::INFO] [train] Iter 11414 | loss 1.4967 | loss(rot) 0.0676 | loss(pos) 1.4278 | loss(seq) 0.0013 | grad 4.9169 | lr 0.0010 | time_forward 3.3450 | time_backward 4.6820
[2023-09-02 15:34:47,963::train::INFO] [train] Iter 11415 | loss 1.4309 | loss(rot) 1.0743 | loss(pos) 0.1955 | loss(seq) 0.1612 | grad 5.1589 | lr 0.0010 | time_forward 2.7120 | time_backward 3.6760
[2023-09-02 15:34:56,294::train::INFO] [train] Iter 11416 | loss 1.5048 | loss(rot) 0.5696 | loss(pos) 0.3355 | loss(seq) 0.5997 | grad 4.5778 | lr 0.0010 | time_forward 3.2380 | time_backward 5.0810
[2023-09-02 15:34:58,861::train::INFO] [train] Iter 11417 | loss 0.8300 | loss(rot) 0.0614 | loss(pos) 0.7612 | loss(seq) 0.0075 | grad 4.5823 | lr 0.0010 | time_forward 1.1740 | time_backward 1.3890
[2023-09-02 15:35:06,978::train::INFO] [train] Iter 11418 | loss 2.4347 | loss(rot) 1.6913 | loss(pos) 0.2764 | loss(seq) 0.4670 | grad 3.9134 | lr 0.0010 | time_forward 3.2610 | time_backward 4.8520
[2023-09-02 15:35:13,546::train::INFO] [train] Iter 11419 | loss 1.6185 | loss(rot) 0.9374 | loss(pos) 0.3343 | loss(seq) 0.3468 | grad 10.6324 | lr 0.0010 | time_forward 2.7860 | time_backward 3.7790
[2023-09-02 15:35:20,694::train::INFO] [train] Iter 11420 | loss 1.0809 | loss(rot) 0.4266 | loss(pos) 0.2524 | loss(seq) 0.4019 | grad 4.4964 | lr 0.0010 | time_forward 2.9000 | time_backward 4.2440
[2023-09-02 15:35:27,981::train::INFO] [train] Iter 11421 | loss 1.4905 | loss(rot) 1.3822 | loss(pos) 0.1082 | loss(seq) 0.0001 | grad 4.4870 | lr 0.0010 | time_forward 3.2560 | time_backward 4.0280
[2023-09-02 15:35:29,941::train::INFO] [train] Iter 11422 | loss 1.0914 | loss(rot) 0.1356 | loss(pos) 0.9254 | loss(seq) 0.0303 | grad 5.3332 | lr 0.0010 | time_forward 0.8630 | time_backward 1.0930
[2023-09-02 15:35:37,097::train::INFO] [train] Iter 11423 | loss 1.3595 | loss(rot) 1.0202 | loss(pos) 0.3393 | loss(seq) 0.0000 | grad 5.4760 | lr 0.0010 | time_forward 2.9370 | time_backward 4.2090
[2023-09-02 15:35:42,817::train::INFO] [train] Iter 11424 | loss 2.3439 | loss(rot) 2.1622 | loss(pos) 0.1686 | loss(seq) 0.0131 | grad 3.9335 | lr 0.0010 | time_forward 2.2180 | time_backward 3.4940
[2023-09-02 15:35:51,389::train::INFO] [train] Iter 11425 | loss 1.5569 | loss(rot) 1.3414 | loss(pos) 0.1844 | loss(seq) 0.0312 | grad 5.0467 | lr 0.0010 | time_forward 3.4270 | time_backward 5.1410
[2023-09-02 15:35:57,834::train::INFO] [train] Iter 11426 | loss 0.9648 | loss(rot) 0.3645 | loss(pos) 0.2762 | loss(seq) 0.3241 | grad 4.4830 | lr 0.0010 | time_forward 2.8140 | time_backward 3.6180
[2023-09-02 15:36:00,395::train::INFO] [train] Iter 11427 | loss 1.3376 | loss(rot) 0.6760 | loss(pos) 0.1822 | loss(seq) 0.4794 | grad 3.8816 | lr 0.0010 | time_forward 1.1900 | time_backward 1.3680
[2023-09-02 15:36:08,092::train::INFO] [train] Iter 11428 | loss 1.9008 | loss(rot) 0.9167 | loss(pos) 0.4976 | loss(seq) 0.4865 | grad 3.2417 | lr 0.0010 | time_forward 3.2670 | time_backward 4.4280
[2023-09-02 15:36:15,861::train::INFO] [train] Iter 11429 | loss 1.2412 | loss(rot) 0.4151 | loss(pos) 0.3384 | loss(seq) 0.4876 | grad 4.1976 | lr 0.0010 | time_forward 3.3940 | time_backward 4.3710
[2023-09-02 15:36:22,796::train::INFO] [train] Iter 11430 | loss 3.2193 | loss(rot) 2.9937 | loss(pos) 0.2236 | loss(seq) 0.0020 | grad 3.6438 | lr 0.0010 | time_forward 2.7320 | time_backward 4.1990
[2023-09-02 15:36:25,172::train::INFO] [train] Iter 11431 | loss 1.5096 | loss(rot) 0.8695 | loss(pos) 0.2080 | loss(seq) 0.4321 | grad 4.2115 | lr 0.0010 | time_forward 1.1040 | time_backward 1.2680
[2023-09-02 15:36:33,538::train::INFO] [train] Iter 11432 | loss 0.8626 | loss(rot) 0.3848 | loss(pos) 0.0879 | loss(seq) 0.3900 | grad 3.8673 | lr 0.0010 | time_forward 3.3240 | time_backward 5.0400
[2023-09-02 15:36:36,128::train::INFO] [train] Iter 11433 | loss 1.6736 | loss(rot) 0.6544 | loss(pos) 0.6264 | loss(seq) 0.3928 | grad 9.6914 | lr 0.0010 | time_forward 1.1760 | time_backward 1.4100
[2023-09-02 15:36:41,343::train::INFO] [train] Iter 11434 | loss 0.8586 | loss(rot) 0.0596 | loss(pos) 0.7896 | loss(seq) 0.0094 | grad 5.3404 | lr 0.0010 | time_forward 2.2020 | time_backward 3.0100
[2023-09-02 15:36:48,348::train::INFO] [train] Iter 11435 | loss 1.5898 | loss(rot) 0.9727 | loss(pos) 0.2203 | loss(seq) 0.3967 | grad 7.8116 | lr 0.0010 | time_forward 3.0310 | time_backward 3.9710
[2023-09-02 15:36:56,649::train::INFO] [train] Iter 11436 | loss 2.2199 | loss(rot) 1.4798 | loss(pos) 0.3299 | loss(seq) 0.4103 | grad 5.5967 | lr 0.0010 | time_forward 3.3950 | time_backward 4.9030
[2023-09-02 15:37:05,267::train::INFO] [train] Iter 11437 | loss 1.9819 | loss(rot) 1.1765 | loss(pos) 0.2796 | loss(seq) 0.5258 | grad 6.4773 | lr 0.0010 | time_forward 3.5290 | time_backward 5.0860
[2023-09-02 15:37:07,863::train::INFO] [train] Iter 11438 | loss 1.5942 | loss(rot) 0.2109 | loss(pos) 0.9199 | loss(seq) 0.4635 | grad 8.3286 | lr 0.0010 | time_forward 1.1950 | time_backward 1.3970
[2023-09-02 15:37:16,316::train::INFO] [train] Iter 11439 | loss 2.4640 | loss(rot) 2.1431 | loss(pos) 0.1903 | loss(seq) 0.1306 | grad 4.5458 | lr 0.0010 | time_forward 3.4470 | time_backward 5.0020
[2023-09-02 15:37:23,261::train::INFO] [train] Iter 11440 | loss 2.1896 | loss(rot) 1.8300 | loss(pos) 0.0741 | loss(seq) 0.2855 | grad 4.7134 | lr 0.0010 | time_forward 2.7100 | time_backward 4.2320
[2023-09-02 15:37:25,869::train::INFO] [train] Iter 11441 | loss 1.6545 | loss(rot) 1.0288 | loss(pos) 0.4404 | loss(seq) 0.1854 | grad 5.4443 | lr 0.0010 | time_forward 1.1960 | time_backward 1.4090
[2023-09-02 15:37:33,926::train::INFO] [train] Iter 11442 | loss 0.7302 | loss(rot) 0.0885 | loss(pos) 0.6241 | loss(seq) 0.0177 | grad 4.3604 | lr 0.0010 | time_forward 3.3310 | time_backward 4.7220
[2023-09-02 15:37:41,262::train::INFO] [train] Iter 11443 | loss 1.8587 | loss(rot) 1.2493 | loss(pos) 0.2543 | loss(seq) 0.3550 | grad 5.1910 | lr 0.0010 | time_forward 2.9340 | time_backward 4.4000
[2023-09-02 15:37:43,873::train::INFO] [train] Iter 11444 | loss 3.0251 | loss(rot) 0.0377 | loss(pos) 2.9874 | loss(seq) 0.0000 | grad 10.7595 | lr 0.0010 | time_forward 1.1840 | time_backward 1.4230
[2023-09-02 15:37:51,160::train::INFO] [train] Iter 11445 | loss 2.8173 | loss(rot) 2.1396 | loss(pos) 0.3140 | loss(seq) 0.3637 | grad 3.8663 | lr 0.0010 | time_forward 2.9670 | time_backward 4.3160
[2023-09-02 15:37:58,572::train::INFO] [train] Iter 11446 | loss 1.6172 | loss(rot) 0.7332 | loss(pos) 0.3034 | loss(seq) 0.5806 | grad 5.7509 | lr 0.0010 | time_forward 3.1990 | time_backward 4.2090
[2023-09-02 15:38:11,832::train::INFO] [train] Iter 11447 | loss 3.1912 | loss(rot) 2.8790 | loss(pos) 0.3122 | loss(seq) 0.0000 | grad 5.7585 | lr 0.0010 | time_forward 8.5990 | time_backward 4.6570
[2023-09-02 15:38:22,815::train::INFO] [train] Iter 11448 | loss 1.4764 | loss(rot) 1.3705 | loss(pos) 0.0779 | loss(seq) 0.0280 | grad 4.6217 | lr 0.0010 | time_forward 6.6890 | time_backward 4.2900
[2023-09-02 15:38:31,102::train::INFO] [train] Iter 11449 | loss 0.7099 | loss(rot) 0.2420 | loss(pos) 0.3660 | loss(seq) 0.1019 | grad 4.4608 | lr 0.0010 | time_forward 3.2810 | time_backward 5.0030
[2023-09-02 15:38:33,657::train::INFO] [train] Iter 11450 | loss 1.4376 | loss(rot) 1.3190 | loss(pos) 0.0537 | loss(seq) 0.0648 | grad 3.4381 | lr 0.0010 | time_forward 1.1660 | time_backward 1.3840
[2023-09-02 15:38:40,893::train::INFO] [train] Iter 11451 | loss 2.0034 | loss(rot) 1.4667 | loss(pos) 0.1932 | loss(seq) 0.3434 | grad 7.6076 | lr 0.0010 | time_forward 3.0170 | time_backward 4.2150
[2023-09-02 15:38:48,293::train::INFO] [train] Iter 11452 | loss 1.4664 | loss(rot) 0.8238 | loss(pos) 0.1532 | loss(seq) 0.4893 | grad 4.8710 | lr 0.0010 | time_forward 3.1040 | time_backward 4.2920
[2023-09-02 15:38:56,560::train::INFO] [train] Iter 11453 | loss 1.1037 | loss(rot) 0.3136 | loss(pos) 0.5116 | loss(seq) 0.2784 | grad 3.7527 | lr 0.0010 | time_forward 3.4890 | time_backward 4.7740
[2023-09-02 15:39:05,672::train::INFO] [train] Iter 11454 | loss 1.1759 | loss(rot) 0.3474 | loss(pos) 0.6943 | loss(seq) 0.1343 | grad 4.2516 | lr 0.0010 | time_forward 4.1250 | time_backward 4.9780
[2023-09-02 15:39:08,410::train::INFO] [train] Iter 11455 | loss 1.1475 | loss(rot) 0.0543 | loss(pos) 1.0833 | loss(seq) 0.0099 | grad 6.0350 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4810
[2023-09-02 15:39:17,108::train::INFO] [train] Iter 11456 | loss 1.9534 | loss(rot) 1.5727 | loss(pos) 0.1996 | loss(seq) 0.1811 | grad 4.2460 | lr 0.0010 | time_forward 3.5460 | time_backward 5.1480
[2023-09-02 15:39:25,255::train::INFO] [train] Iter 11457 | loss 1.9486 | loss(rot) 1.4110 | loss(pos) 0.1334 | loss(seq) 0.4042 | grad 4.3684 | lr 0.0010 | time_forward 3.4190 | time_backward 4.7250
[2023-09-02 15:39:27,950::train::INFO] [train] Iter 11458 | loss 2.1213 | loss(rot) 1.4497 | loss(pos) 0.1716 | loss(seq) 0.5000 | grad 8.5440 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4190
[2023-09-02 15:39:31,111::train::INFO] [train] Iter 11459 | loss 2.0696 | loss(rot) 0.7663 | loss(pos) 0.8749 | loss(seq) 0.4283 | grad 6.8770 | lr 0.0010 | time_forward 1.4100 | time_backward 1.7480
[2023-09-02 15:39:38,136::train::INFO] [train] Iter 11460 | loss 1.4153 | loss(rot) 0.8032 | loss(pos) 0.2810 | loss(seq) 0.3312 | grad 4.2398 | lr 0.0010 | time_forward 2.8160 | time_backward 4.2060
[2023-09-02 15:39:47,082::train::INFO] [train] Iter 11461 | loss 1.3152 | loss(rot) 0.7547 | loss(pos) 0.2831 | loss(seq) 0.2773 | grad 3.3538 | lr 0.0010 | time_forward 3.5870 | time_backward 5.3550
[2023-09-02 15:39:55,899::train::INFO] [train] Iter 11462 | loss 1.3069 | loss(rot) 0.4918 | loss(pos) 0.4795 | loss(seq) 0.3357 | grad 3.7692 | lr 0.0010 | time_forward 3.5980 | time_backward 5.2170
[2023-09-02 15:40:03,516::train::INFO] [train] Iter 11463 | loss 1.4640 | loss(rot) 0.8339 | loss(pos) 0.2895 | loss(seq) 0.3406 | grad 5.9920 | lr 0.0010 | time_forward 3.2730 | time_backward 4.3400
[2023-09-02 15:40:06,118::train::INFO] [train] Iter 11464 | loss 1.6205 | loss(rot) 1.5642 | loss(pos) 0.0530 | loss(seq) 0.0033 | grad 5.8168 | lr 0.0010 | time_forward 1.2350 | time_backward 1.3630
[2023-09-02 15:40:12,628::train::INFO] [train] Iter 11465 | loss 1.6040 | loss(rot) 0.1942 | loss(pos) 1.1354 | loss(seq) 0.2745 | grad 5.3501 | lr 0.0010 | time_forward 2.8160 | time_backward 3.6900
[2023-09-02 15:40:20,627::train::INFO] [train] Iter 11466 | loss 1.7142 | loss(rot) 0.9539 | loss(pos) 0.3104 | loss(seq) 0.4498 | grad 4.4538 | lr 0.0010 | time_forward 3.4550 | time_backward 4.5410
[2023-09-02 15:40:28,144::train::INFO] [train] Iter 11467 | loss 1.0575 | loss(rot) 0.3088 | loss(pos) 0.5481 | loss(seq) 0.2007 | grad 3.8266 | lr 0.0010 | time_forward 3.2280 | time_backward 4.2860
[2023-09-02 15:40:34,194::train::INFO] [train] Iter 11468 | loss 2.4348 | loss(rot) 0.0319 | loss(pos) 2.4021 | loss(seq) 0.0008 | grad 4.2241 | lr 0.0010 | time_forward 2.5750 | time_backward 3.4720
[2023-09-02 15:40:42,913::train::INFO] [train] Iter 11469 | loss 1.0245 | loss(rot) 0.3201 | loss(pos) 0.3123 | loss(seq) 0.3921 | grad 3.5591 | lr 0.0010 | time_forward 3.3640 | time_backward 5.3510
[2023-09-02 15:40:50,134::train::INFO] [train] Iter 11470 | loss 1.1634 | loss(rot) 0.4047 | loss(pos) 0.1777 | loss(seq) 0.5810 | grad 3.6053 | lr 0.0010 | time_forward 3.1020 | time_backward 4.1160
[2023-09-02 15:40:52,700::train::INFO] [train] Iter 11471 | loss 1.4369 | loss(rot) 0.9457 | loss(pos) 0.1529 | loss(seq) 0.3382 | grad 5.3307 | lr 0.0010 | time_forward 1.1630 | time_backward 1.3980
[2023-09-02 15:40:55,235::train::INFO] [train] Iter 11472 | loss 1.7867 | loss(rot) 1.1445 | loss(pos) 0.2015 | loss(seq) 0.4407 | grad 3.9455 | lr 0.0010 | time_forward 1.1670 | time_backward 1.3650
[2023-09-02 15:41:04,254::train::INFO] [train] Iter 11473 | loss 2.6370 | loss(rot) 2.0915 | loss(pos) 0.1930 | loss(seq) 0.3525 | grad 3.6813 | lr 0.0010 | time_forward 3.7000 | time_backward 5.3140
[2023-09-02 15:41:11,867::train::INFO] [train] Iter 11474 | loss 2.2346 | loss(rot) 1.3267 | loss(pos) 0.3200 | loss(seq) 0.5880 | grad 4.4538 | lr 0.0010 | time_forward 3.2910 | time_backward 4.3180
[2023-09-02 15:41:19,834::train::INFO] [train] Iter 11475 | loss 1.4529 | loss(rot) 1.0066 | loss(pos) 0.1787 | loss(seq) 0.2677 | grad 4.4948 | lr 0.0010 | time_forward 3.4520 | time_backward 4.5110
[2023-09-02 15:41:27,238::train::INFO] [train] Iter 11476 | loss 1.0924 | loss(rot) 0.4451 | loss(pos) 0.1266 | loss(seq) 0.5207 | grad 4.4470 | lr 0.0010 | time_forward 3.1910 | time_backward 4.2100
[2023-09-02 15:41:29,857::train::INFO] [train] Iter 11477 | loss 1.8713 | loss(rot) 1.3151 | loss(pos) 0.1721 | loss(seq) 0.3841 | grad 5.0885 | lr 0.0010 | time_forward 1.2320 | time_backward 1.3830
[2023-09-02 15:41:37,468::train::INFO] [train] Iter 11478 | loss 0.9035 | loss(rot) 0.7155 | loss(pos) 0.0968 | loss(seq) 0.0912 | grad 3.6002 | lr 0.0010 | time_forward 3.3190 | time_backward 4.2890
[2023-09-02 15:41:45,462::train::INFO] [train] Iter 11479 | loss 0.7848 | loss(rot) 0.5443 | loss(pos) 0.1003 | loss(seq) 0.1402 | grad 2.3761 | lr 0.0010 | time_forward 3.4120 | time_backward 4.5780
[2023-09-02 15:41:54,437::train::INFO] [train] Iter 11480 | loss 2.2962 | loss(rot) 1.6439 | loss(pos) 0.1888 | loss(seq) 0.4636 | grad 5.2433 | lr 0.0010 | time_forward 3.8080 | time_backward 5.1630
[2023-09-02 15:41:57,063::train::INFO] [train] Iter 11481 | loss 0.9156 | loss(rot) 0.1501 | loss(pos) 0.7188 | loss(seq) 0.0468 | grad 5.2327 | lr 0.0010 | time_forward 1.2260 | time_backward 1.3970
[2023-09-02 15:42:04,771::train::INFO] [train] Iter 11482 | loss 1.0888 | loss(rot) 0.4208 | loss(pos) 0.2005 | loss(seq) 0.4676 | grad 4.5284 | lr 0.0010 | time_forward 3.2140 | time_backward 4.4900
[2023-09-02 15:42:11,308::train::INFO] [train] Iter 11483 | loss 1.0791 | loss(rot) 0.8614 | loss(pos) 0.2052 | loss(seq) 0.0124 | grad 5.0904 | lr 0.0010 | time_forward 2.8540 | time_backward 3.6780