text
stringlengths 56
1.16k
|
---|
[2023-09-02 15:52:32,988::train::INFO] [train] Iter 11584 | loss 2.0758 | loss(rot) 1.3591 | loss(pos) 0.2183 | loss(seq) 0.4984 | grad 6.0433 | lr 0.0010 | time_forward 2.8170 | time_backward 4.5400 |
[2023-09-02 15:52:40,669::train::INFO] [train] Iter 11585 | loss 1.2343 | loss(rot) 0.9443 | loss(pos) 0.2057 | loss(seq) 0.0842 | grad 5.5372 | lr 0.0010 | time_forward 3.3260 | time_backward 4.3510 |
[2023-09-02 15:52:48,572::train::INFO] [train] Iter 11586 | loss 0.9539 | loss(rot) 0.0922 | loss(pos) 0.5844 | loss(seq) 0.2772 | grad 4.9293 | lr 0.0010 | time_forward 3.2380 | time_backward 4.6620 |
[2023-09-02 15:52:51,120::train::INFO] [train] Iter 11587 | loss 1.2888 | loss(rot) 0.5404 | loss(pos) 0.2089 | loss(seq) 0.5394 | grad 4.8113 | lr 0.0010 | time_forward 1.1750 | time_backward 1.3690 |
[2023-09-02 15:52:58,456::train::INFO] [train] Iter 11588 | loss 1.5719 | loss(rot) 1.3817 | loss(pos) 0.1735 | loss(seq) 0.0167 | grad 5.7380 | lr 0.0010 | time_forward 3.1610 | time_backward 4.1720 |
[2023-09-02 15:53:01,063::train::INFO] [train] Iter 11589 | loss 1.2788 | loss(rot) 0.0591 | loss(pos) 1.2145 | loss(seq) 0.0052 | grad 6.5857 | lr 0.0010 | time_forward 1.1850 | time_backward 1.4180 |
[2023-09-02 15:53:04,128::train::INFO] [train] Iter 11590 | loss 2.0819 | loss(rot) 0.2647 | loss(pos) 1.5980 | loss(seq) 0.2192 | grad 6.5281 | lr 0.0010 | time_forward 1.3780 | time_backward 1.6840 |
[2023-09-02 15:53:12,171::train::INFO] [train] Iter 11591 | loss 1.0423 | loss(rot) 0.2998 | loss(pos) 0.2872 | loss(seq) 0.4552 | grad 3.1245 | lr 0.0010 | time_forward 3.2690 | time_backward 4.7720 |
[2023-09-02 15:53:18,970::train::INFO] [train] Iter 11592 | loss 1.3946 | loss(rot) 1.3009 | loss(pos) 0.0935 | loss(seq) 0.0001 | grad 6.9209 | lr 0.0010 | time_forward 2.8610 | time_backward 3.9340 |
[2023-09-02 15:53:26,773::train::INFO] [train] Iter 11593 | loss 0.8672 | loss(rot) 0.1169 | loss(pos) 0.5505 | loss(seq) 0.1998 | grad 4.2811 | lr 0.0010 | time_forward 3.1170 | time_backward 4.6820 |
[2023-09-02 15:53:34,619::train::INFO] [train] Iter 11594 | loss 2.4582 | loss(rot) 1.7038 | loss(pos) 0.3554 | loss(seq) 0.3990 | grad 5.3075 | lr 0.0010 | time_forward 3.1750 | time_backward 4.6690 |
[2023-09-02 15:53:43,133::train::INFO] [train] Iter 11595 | loss 1.7603 | loss(rot) 1.0689 | loss(pos) 0.1843 | loss(seq) 0.5072 | grad 4.7843 | lr 0.0010 | time_forward 3.2250 | time_backward 5.2850 |
[2023-09-02 15:53:50,811::train::INFO] [train] Iter 11596 | loss 1.7680 | loss(rot) 1.2698 | loss(pos) 0.1478 | loss(seq) 0.3505 | grad 5.5118 | lr 0.0010 | time_forward 3.3330 | time_backward 4.3410 |
[2023-09-02 15:53:53,438::train::INFO] [train] Iter 11597 | loss 1.5590 | loss(rot) 1.1838 | loss(pos) 0.2215 | loss(seq) 0.1538 | grad 5.2374 | lr 0.0010 | time_forward 1.2160 | time_backward 1.4080 |
[2023-09-02 15:54:00,918::train::INFO] [train] Iter 11598 | loss 0.9365 | loss(rot) 0.4382 | loss(pos) 0.1938 | loss(seq) 0.3045 | grad 7.1800 | lr 0.0010 | time_forward 3.0380 | time_backward 4.4390 |
[2023-09-02 15:54:08,701::train::INFO] [train] Iter 11599 | loss 1.3441 | loss(rot) 0.6426 | loss(pos) 0.2096 | loss(seq) 0.4919 | grad 5.1882 | lr 0.0010 | time_forward 3.3020 | time_backward 4.4770 |
[2023-09-02 15:54:11,296::train::INFO] [train] Iter 11600 | loss 2.6491 | loss(rot) 2.2167 | loss(pos) 0.2986 | loss(seq) 0.1338 | grad 4.4925 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3630 |
[2023-09-02 15:54:19,714::train::INFO] [train] Iter 11601 | loss 2.8690 | loss(rot) 0.0179 | loss(pos) 2.8491 | loss(seq) 0.0020 | grad 7.5467 | lr 0.0010 | time_forward 3.3500 | time_backward 5.0640 |
[2023-09-02 15:54:22,216::train::INFO] [train] Iter 11602 | loss 1.3143 | loss(rot) 0.5592 | loss(pos) 0.3521 | loss(seq) 0.4031 | grad 4.2598 | lr 0.0010 | time_forward 1.1570 | time_backward 1.3430 |
[2023-09-02 15:54:30,390::train::INFO] [train] Iter 11603 | loss 1.5672 | loss(rot) 0.1400 | loss(pos) 1.1361 | loss(seq) 0.2911 | grad 6.9361 | lr 0.0010 | time_forward 3.5360 | time_backward 4.6350 |
[2023-09-02 15:54:32,984::train::INFO] [train] Iter 11604 | loss 1.2679 | loss(rot) 1.1284 | loss(pos) 0.1298 | loss(seq) 0.0097 | grad 5.7945 | lr 0.0010 | time_forward 1.2170 | time_backward 1.3740 |
[2023-09-02 15:54:35,541::train::INFO] [train] Iter 11605 | loss 1.8997 | loss(rot) 1.6697 | loss(pos) 0.1592 | loss(seq) 0.0709 | grad 4.3456 | lr 0.0010 | time_forward 1.1870 | time_backward 1.3670 |
[2023-09-02 15:54:38,137::train::INFO] [train] Iter 11606 | loss 0.9405 | loss(rot) 0.2624 | loss(pos) 0.3122 | loss(seq) 0.3659 | grad 4.0713 | lr 0.0010 | time_forward 1.2130 | time_backward 1.3780 |
[2023-09-02 15:54:46,357::train::INFO] [train] Iter 11607 | loss 2.1738 | loss(rot) 1.9433 | loss(pos) 0.1920 | loss(seq) 0.0385 | grad 4.9116 | lr 0.0010 | time_forward 3.4550 | time_backward 4.7620 |
[2023-09-02 15:54:48,884::train::INFO] [train] Iter 11608 | loss 1.2355 | loss(rot) 0.7508 | loss(pos) 0.3369 | loss(seq) 0.1478 | grad 5.2572 | lr 0.0010 | time_forward 1.1800 | time_backward 1.3440 |
[2023-09-02 15:54:57,395::train::INFO] [train] Iter 11609 | loss 0.9942 | loss(rot) 0.5269 | loss(pos) 0.2385 | loss(seq) 0.2288 | grad 4.7212 | lr 0.0010 | time_forward 3.2400 | time_backward 5.2670 |
[2023-09-02 15:55:04,860::train::INFO] [train] Iter 11610 | loss 3.2458 | loss(rot) 2.9633 | loss(pos) 0.1823 | loss(seq) 0.1001 | grad 4.7984 | lr 0.0010 | time_forward 2.9710 | time_backward 4.4910 |
[2023-09-02 15:55:13,737::train::INFO] [train] Iter 11611 | loss 1.9530 | loss(rot) 1.6187 | loss(pos) 0.2459 | loss(seq) 0.0884 | grad 5.0411 | lr 0.0010 | time_forward 3.5920 | time_backward 5.2810 |
[2023-09-02 15:55:21,850::train::INFO] [train] Iter 11612 | loss 1.4062 | loss(rot) 1.1770 | loss(pos) 0.2013 | loss(seq) 0.0279 | grad 8.1006 | lr 0.0010 | time_forward 3.3900 | time_backward 4.7190 |
[2023-09-02 15:55:29,983::train::INFO] [train] Iter 11613 | loss 1.1663 | loss(rot) 1.0329 | loss(pos) 0.0820 | loss(seq) 0.0514 | grad 5.6470 | lr 0.0010 | time_forward 3.2140 | time_backward 4.9150 |
[2023-09-02 15:55:39,041::train::INFO] [train] Iter 11614 | loss 1.6426 | loss(rot) 1.4138 | loss(pos) 0.2287 | loss(seq) 0.0000 | grad 6.3035 | lr 0.0010 | time_forward 3.5830 | time_backward 5.4720 |
[2023-09-02 15:55:46,407::train::INFO] [train] Iter 11615 | loss 0.6412 | loss(rot) 0.1947 | loss(pos) 0.3967 | loss(seq) 0.0497 | grad 3.8991 | lr 0.0010 | time_forward 3.0750 | time_backward 4.2870 |
[2023-09-02 15:55:54,357::train::INFO] [train] Iter 11616 | loss 1.9516 | loss(rot) 1.0378 | loss(pos) 0.5789 | loss(seq) 0.3348 | grad 3.7844 | lr 0.0010 | time_forward 3.3470 | time_backward 4.5990 |
[2023-09-02 15:56:02,794::train::INFO] [train] Iter 11617 | loss 1.0449 | loss(rot) 0.0940 | loss(pos) 0.9349 | loss(seq) 0.0160 | grad 4.7379 | lr 0.0010 | time_forward 3.4990 | time_backward 4.9350 |
[2023-09-02 15:56:10,405::train::INFO] [train] Iter 11618 | loss 1.5377 | loss(rot) 1.3482 | loss(pos) 0.0548 | loss(seq) 0.1347 | grad 5.1964 | lr 0.0010 | time_forward 2.9850 | time_backward 4.6220 |
[2023-09-02 15:56:12,630::train::INFO] [train] Iter 11619 | loss 1.1567 | loss(rot) 0.5393 | loss(pos) 0.4613 | loss(seq) 0.1561 | grad 2.5236 | lr 0.0010 | time_forward 1.0470 | time_backward 1.1660 |
[2023-09-02 15:56:19,765::train::INFO] [train] Iter 11620 | loss 1.3067 | loss(rot) 0.7284 | loss(pos) 0.1422 | loss(seq) 0.4361 | grad 4.1556 | lr 0.0010 | time_forward 3.0950 | time_backward 4.0230 |
[2023-09-02 15:56:22,383::train::INFO] [train] Iter 11621 | loss 1.5217 | loss(rot) 0.3768 | loss(pos) 1.1338 | loss(seq) 0.0112 | grad 6.1108 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3850 |
[2023-09-02 15:56:29,413::train::INFO] [train] Iter 11622 | loss 1.4827 | loss(rot) 0.0301 | loss(pos) 1.4500 | loss(seq) 0.0026 | grad 5.9418 | lr 0.0010 | time_forward 2.8700 | time_backward 4.1570 |
[2023-09-02 15:56:35,502::train::INFO] [train] Iter 11623 | loss 1.7832 | loss(rot) 1.5907 | loss(pos) 0.0645 | loss(seq) 0.1280 | grad 14.6672 | lr 0.0010 | time_forward 2.6290 | time_backward 3.4560 |
[2023-09-02 15:56:42,415::train::INFO] [train] Iter 11624 | loss 1.4945 | loss(rot) 0.8949 | loss(pos) 0.2090 | loss(seq) 0.3905 | grad 6.2114 | lr 0.0010 | time_forward 2.9360 | time_backward 3.9740 |
[2023-09-02 15:56:45,093::train::INFO] [train] Iter 11625 | loss 2.0839 | loss(rot) 1.7954 | loss(pos) 0.2884 | loss(seq) 0.0000 | grad 4.3201 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4320 |
[2023-09-02 15:56:53,409::train::INFO] [train] Iter 11626 | loss 1.7104 | loss(rot) 1.0025 | loss(pos) 0.2784 | loss(seq) 0.4295 | grad 4.4692 | lr 0.0010 | time_forward 3.2950 | time_backward 5.0170 |
[2023-09-02 15:56:56,048::train::INFO] [train] Iter 11627 | loss 1.6279 | loss(rot) 1.2756 | loss(pos) 0.1558 | loss(seq) 0.1964 | grad 7.1718 | lr 0.0010 | time_forward 1.2140 | time_backward 1.4160 |
[2023-09-02 15:57:04,493::train::INFO] [train] Iter 11628 | loss 1.7134 | loss(rot) 0.7739 | loss(pos) 0.3629 | loss(seq) 0.5766 | grad 4.7368 | lr 0.0010 | time_forward 3.5340 | time_backward 4.9070 |
[2023-09-02 15:57:07,212::train::INFO] [train] Iter 11629 | loss 2.4962 | loss(rot) 1.9686 | loss(pos) 0.1922 | loss(seq) 0.3354 | grad 8.9211 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4530 |
[2023-09-02 15:57:15,934::train::INFO] [train] Iter 11630 | loss 1.4667 | loss(rot) 0.6849 | loss(pos) 0.3817 | loss(seq) 0.4001 | grad 2.6638 | lr 0.0010 | time_forward 3.6300 | time_backward 5.0880 |
[2023-09-02 15:57:23,062::train::INFO] [train] Iter 11631 | loss 2.3127 | loss(rot) 2.0673 | loss(pos) 0.2386 | loss(seq) 0.0068 | grad 5.6579 | lr 0.0010 | time_forward 3.0590 | time_backward 4.0660 |
[2023-09-02 15:57:29,127::train::INFO] [train] Iter 11632 | loss 1.0203 | loss(rot) 0.2270 | loss(pos) 0.4754 | loss(seq) 0.3179 | grad 5.4039 | lr 0.0010 | time_forward 2.5460 | time_backward 3.5160 |
[2023-09-02 15:57:36,283::train::INFO] [train] Iter 11633 | loss 1.5282 | loss(rot) 1.0115 | loss(pos) 0.0857 | loss(seq) 0.4310 | grad 5.0635 | lr 0.0010 | time_forward 2.9930 | time_backward 4.1600 |
[2023-09-02 15:57:38,484::train::INFO] [train] Iter 11634 | loss 1.5086 | loss(rot) 0.4089 | loss(pos) 0.4688 | loss(seq) 0.6308 | grad 3.0478 | lr 0.0010 | time_forward 1.0070 | time_backward 1.1880 |
[2023-09-02 15:57:41,125::train::INFO] [train] Iter 11635 | loss 1.0436 | loss(rot) 0.2271 | loss(pos) 0.5677 | loss(seq) 0.2488 | grad 4.6916 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4060 |
[2023-09-02 15:57:48,457::train::INFO] [train] Iter 11636 | loss 1.3693 | loss(rot) 1.2461 | loss(pos) 0.0417 | loss(seq) 0.0815 | grad 5.1942 | lr 0.0010 | time_forward 2.8700 | time_backward 4.4590 |
[2023-09-02 15:57:55,879::train::INFO] [train] Iter 11637 | loss 0.7017 | loss(rot) 0.5363 | loss(pos) 0.0646 | loss(seq) 0.1007 | grad 4.8215 | lr 0.0010 | time_forward 3.1040 | time_backward 4.3150 |
[2023-09-02 15:57:58,406::train::INFO] [train] Iter 11638 | loss 1.9775 | loss(rot) 1.6365 | loss(pos) 0.2171 | loss(seq) 0.1239 | grad 4.4442 | lr 0.0010 | time_forward 1.1690 | time_backward 1.3550 |
[2023-09-02 15:58:05,969::train::INFO] [train] Iter 11639 | loss 0.8218 | loss(rot) 0.3737 | loss(pos) 0.2244 | loss(seq) 0.2238 | grad 4.6610 | lr 0.0010 | time_forward 3.3130 | time_backward 4.2460 |
[2023-09-02 15:58:08,509::train::INFO] [train] Iter 11640 | loss 1.7799 | loss(rot) 1.6840 | loss(pos) 0.0835 | loss(seq) 0.0124 | grad 3.9685 | lr 0.0010 | time_forward 1.1610 | time_backward 1.3750 |
[2023-09-02 15:58:17,652::train::INFO] [train] Iter 11641 | loss 2.0859 | loss(rot) 1.0486 | loss(pos) 0.5467 | loss(seq) 0.4906 | grad 2.9317 | lr 0.0010 | time_forward 3.8570 | time_backward 5.2820 |
[2023-09-02 15:58:24,803::train::INFO] [train] Iter 11642 | loss 1.4316 | loss(rot) 0.8905 | loss(pos) 0.2636 | loss(seq) 0.2775 | grad 5.7466 | lr 0.0010 | time_forward 2.9630 | time_backward 4.1850 |
[2023-09-02 15:58:27,434::train::INFO] [train] Iter 11643 | loss 1.5815 | loss(rot) 0.9967 | loss(pos) 0.2231 | loss(seq) 0.3617 | grad 4.2973 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4170 |
[2023-09-02 15:58:34,188::train::INFO] [train] Iter 11644 | loss 1.5103 | loss(rot) 1.3584 | loss(pos) 0.1491 | loss(seq) 0.0028 | grad 5.3240 | lr 0.0010 | time_forward 2.7450 | time_backward 4.0060 |
[2023-09-02 15:58:42,712::train::INFO] [train] Iter 11645 | loss 2.5429 | loss(rot) 0.0513 | loss(pos) 2.4896 | loss(seq) 0.0020 | grad 7.0386 | lr 0.0010 | time_forward 3.6070 | time_backward 4.9130 |
[2023-09-02 15:58:51,682::train::INFO] [train] Iter 11646 | loss 1.8927 | loss(rot) 0.9075 | loss(pos) 0.3984 | loss(seq) 0.5868 | grad 4.7321 | lr 0.0010 | time_forward 3.8610 | time_backward 5.1060 |
[2023-09-02 15:59:00,191::train::INFO] [train] Iter 11647 | loss 2.8629 | loss(rot) 1.6585 | loss(pos) 0.3667 | loss(seq) 0.8377 | grad 4.9115 | lr 0.0010 | time_forward 3.6410 | time_backward 4.8640 |
[2023-09-02 15:59:09,166::train::INFO] [train] Iter 11648 | loss 1.6057 | loss(rot) 0.0519 | loss(pos) 1.5498 | loss(seq) 0.0040 | grad 6.2864 | lr 0.0010 | time_forward 3.9020 | time_backward 5.0690 |
[2023-09-02 15:59:11,543::train::INFO] [train] Iter 11649 | loss 2.8058 | loss(rot) 1.6928 | loss(pos) 0.9639 | loss(seq) 0.1491 | grad 11.5660 | lr 0.0010 | time_forward 1.1360 | time_backward 1.2380 |
[2023-09-02 15:59:14,182::train::INFO] [train] Iter 11650 | loss 1.2639 | loss(rot) 0.3607 | loss(pos) 0.2345 | loss(seq) 0.6687 | grad 4.8819 | lr 0.0010 | time_forward 1.2460 | time_backward 1.3790 |
[2023-09-02 15:59:16,787::train::INFO] [train] Iter 11651 | loss 1.4815 | loss(rot) 0.1774 | loss(pos) 0.6235 | loss(seq) 0.6807 | grad 6.2745 | lr 0.0010 | time_forward 1.2490 | time_backward 1.3530 |
[2023-09-02 15:59:19,318::train::INFO] [train] Iter 11652 | loss 1.0442 | loss(rot) 0.0371 | loss(pos) 1.0032 | loss(seq) 0.0040 | grad 6.8002 | lr 0.0010 | time_forward 1.1750 | time_backward 1.3530 |
[2023-09-02 15:59:27,706::train::INFO] [train] Iter 11653 | loss 1.6194 | loss(rot) 0.6444 | loss(pos) 0.6242 | loss(seq) 0.3508 | grad 5.0314 | lr 0.0010 | time_forward 3.4880 | time_backward 4.8980 |
[2023-09-02 15:59:36,943::train::INFO] [train] Iter 11654 | loss 1.6534 | loss(rot) 0.8222 | loss(pos) 0.3955 | loss(seq) 0.4357 | grad 3.6810 | lr 0.0010 | time_forward 3.5890 | time_backward 5.6440 |
[2023-09-02 15:59:45,651::train::INFO] [train] Iter 11655 | loss 1.2802 | loss(rot) 0.8336 | loss(pos) 0.1511 | loss(seq) 0.2955 | grad 5.2214 | lr 0.0010 | time_forward 3.5640 | time_backward 5.1400 |
[2023-09-02 15:59:54,250::train::INFO] [train] Iter 11656 | loss 1.0260 | loss(rot) 0.3107 | loss(pos) 0.6813 | loss(seq) 0.0339 | grad 4.4799 | lr 0.0010 | time_forward 3.3320 | time_backward 5.2630 |
[2023-09-02 16:00:02,473::train::INFO] [train] Iter 11657 | loss 1.0619 | loss(rot) 0.5848 | loss(pos) 0.2964 | loss(seq) 0.1807 | grad 4.2686 | lr 0.0010 | time_forward 3.2580 | time_backward 4.9610 |
[2023-09-02 16:00:09,406::train::INFO] [train] Iter 11658 | loss 1.6533 | loss(rot) 1.3581 | loss(pos) 0.0883 | loss(seq) 0.2069 | grad 9.3783 | lr 0.0010 | time_forward 3.0140 | time_backward 3.9150 |
[2023-09-02 16:00:11,989::train::INFO] [train] Iter 11659 | loss 2.5346 | loss(rot) 1.5618 | loss(pos) 0.3037 | loss(seq) 0.6691 | grad 6.0273 | lr 0.0010 | time_forward 1.1530 | time_backward 1.4260 |
[2023-09-02 16:00:18,469::train::INFO] [train] Iter 11660 | loss 2.1925 | loss(rot) 2.0332 | loss(pos) 0.1470 | loss(seq) 0.0123 | grad 3.8406 | lr 0.0010 | time_forward 2.7130 | time_backward 3.7640 |
[2023-09-02 16:00:25,810::train::INFO] [train] Iter 11661 | loss 2.6479 | loss(rot) 2.2588 | loss(pos) 0.2939 | loss(seq) 0.0952 | grad 4.3615 | lr 0.0010 | time_forward 2.9590 | time_backward 4.3790 |
[2023-09-02 16:00:33,257::train::INFO] [train] Iter 11662 | loss 1.4878 | loss(rot) 0.7551 | loss(pos) 0.3175 | loss(seq) 0.4151 | grad 5.4066 | lr 0.0010 | time_forward 3.2140 | time_backward 4.2300 |
[2023-09-02 16:00:41,056::train::INFO] [train] Iter 11663 | loss 2.0851 | loss(rot) 1.3169 | loss(pos) 0.3400 | loss(seq) 0.4281 | grad 5.3742 | lr 0.0010 | time_forward 3.2520 | time_backward 4.5430 |
[2023-09-02 16:00:43,178::train::INFO] [train] Iter 11664 | loss 1.8077 | loss(rot) 1.5998 | loss(pos) 0.1711 | loss(seq) 0.0368 | grad 5.1062 | lr 0.0010 | time_forward 0.9870 | time_backward 1.1310 |
[2023-09-02 16:00:45,668::train::INFO] [train] Iter 11665 | loss 0.9944 | loss(rot) 0.8466 | loss(pos) 0.0657 | loss(seq) 0.0821 | grad 8.2719 | lr 0.0010 | time_forward 1.1610 | time_backward 1.3250 |
[2023-09-02 16:00:54,270::train::INFO] [train] Iter 11666 | loss 1.6514 | loss(rot) 0.8182 | loss(pos) 0.3515 | loss(seq) 0.4816 | grad 5.0270 | lr 0.0010 | time_forward 3.4190 | time_backward 5.1800 |
[2023-09-02 16:01:02,700::train::INFO] [train] Iter 11667 | loss 1.6979 | loss(rot) 1.1808 | loss(pos) 0.2168 | loss(seq) 0.3003 | grad 3.9858 | lr 0.0010 | time_forward 3.4590 | time_backward 4.9670 |
[2023-09-02 16:01:10,384::train::INFO] [train] Iter 11668 | loss 2.5203 | loss(rot) 2.3012 | loss(pos) 0.2067 | loss(seq) 0.0124 | grad 4.3859 | lr 0.0010 | time_forward 3.3310 | time_backward 4.3500 |
[2023-09-02 16:01:19,110::train::INFO] [train] Iter 11669 | loss 0.8906 | loss(rot) 0.2797 | loss(pos) 0.4308 | loss(seq) 0.1801 | grad 3.0779 | lr 0.0010 | time_forward 3.5090 | time_backward 5.2130 |
[2023-09-02 16:01:27,841::train::INFO] [train] Iter 11670 | loss 2.6778 | loss(rot) 2.0177 | loss(pos) 0.2296 | loss(seq) 0.4305 | grad 3.9729 | lr 0.0010 | time_forward 3.6190 | time_backward 5.1100 |
[2023-09-02 16:01:36,302::train::INFO] [train] Iter 11671 | loss 1.9203 | loss(rot) 1.7387 | loss(pos) 0.1754 | loss(seq) 0.0062 | grad 4.0604 | lr 0.0010 | time_forward 3.3950 | time_backward 5.0620 |
[2023-09-02 16:01:39,560::train::INFO] [train] Iter 11672 | loss 1.6774 | loss(rot) 1.0090 | loss(pos) 0.1765 | loss(seq) 0.4919 | grad 3.8992 | lr 0.0010 | time_forward 1.3800 | time_backward 1.8740 |
[2023-09-02 16:01:46,894::train::INFO] [train] Iter 11673 | loss 2.2260 | loss(rot) 1.1109 | loss(pos) 0.5219 | loss(seq) 0.5932 | grad 4.7988 | lr 0.0010 | time_forward 3.1380 | time_backward 4.1930 |
[2023-09-02 16:01:54,013::train::INFO] [train] Iter 11674 | loss 2.6859 | loss(rot) 2.3713 | loss(pos) 0.2342 | loss(seq) 0.0804 | grad 7.7288 | lr 0.0010 | time_forward 3.0140 | time_backward 4.1000 |
[2023-09-02 16:02:02,654::train::INFO] [train] Iter 11675 | loss 0.9748 | loss(rot) 0.3542 | loss(pos) 0.3897 | loss(seq) 0.2310 | grad 3.1507 | lr 0.0010 | time_forward 3.4920 | time_backward 5.1460 |
[2023-09-02 16:02:11,075::train::INFO] [train] Iter 11676 | loss 1.9474 | loss(rot) 0.0404 | loss(pos) 1.6008 | loss(seq) 0.3062 | grad 6.6421 | lr 0.0010 | time_forward 3.4860 | time_backward 4.9320 |
[2023-09-02 16:02:19,653::train::INFO] [train] Iter 11677 | loss 1.9570 | loss(rot) 1.6033 | loss(pos) 0.1057 | loss(seq) 0.2480 | grad 6.0610 | lr 0.0010 | time_forward 3.5410 | time_backward 5.0320 |
[2023-09-02 16:02:22,313::train::INFO] [train] Iter 11678 | loss 1.6901 | loss(rot) 0.4481 | loss(pos) 0.7524 | loss(seq) 0.4896 | grad 5.9239 | lr 0.0010 | time_forward 1.2060 | time_backward 1.4510 |
[2023-09-02 16:02:29,709::train::INFO] [train] Iter 11679 | loss 1.4917 | loss(rot) 0.9606 | loss(pos) 0.1160 | loss(seq) 0.4151 | grad 3.8551 | lr 0.0010 | time_forward 3.0110 | time_backward 4.3810 |
[2023-09-02 16:02:37,673::train::INFO] [train] Iter 11680 | loss 1.6106 | loss(rot) 0.7517 | loss(pos) 0.5140 | loss(seq) 0.3449 | grad 3.8766 | lr 0.0010 | time_forward 3.2350 | time_backward 4.7260 |
[2023-09-02 16:02:40,659::train::INFO] [train] Iter 11681 | loss 1.1829 | loss(rot) 0.0596 | loss(pos) 1.1203 | loss(seq) 0.0030 | grad 5.8725 | lr 0.0010 | time_forward 1.3050 | time_backward 1.6780 |
[2023-09-02 16:02:48,956::train::INFO] [train] Iter 11682 | loss 1.9694 | loss(rot) 0.0133 | loss(pos) 1.9545 | loss(seq) 0.0016 | grad 9.1399 | lr 0.0010 | time_forward 3.1940 | time_backward 5.1000 |
[2023-09-02 16:02:55,767::train::INFO] [train] Iter 11683 | loss 1.2844 | loss(rot) 0.3889 | loss(pos) 0.2272 | loss(seq) 0.6683 | grad 5.4940 | lr 0.0010 | time_forward 2.7840 | time_backward 4.0230 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.