text
stringlengths 56
1.16k
|
---|
[2023-09-02 16:55:54,658::train::INFO] [train] Iter 12183 | loss 0.8754 | loss(rot) 0.0622 | loss(pos) 0.8032 | loss(seq) 0.0100 | grad 3.7803 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4580 |
[2023-09-02 16:56:02,238::train::INFO] [train] Iter 12184 | loss 2.3171 | loss(rot) 1.0859 | loss(pos) 0.7019 | loss(seq) 0.5293 | grad 5.2386 | lr 0.0010 | time_forward 3.1330 | time_backward 4.4450 |
[2023-09-02 16:56:09,239::train::INFO] [train] Iter 12185 | loss 1.9800 | loss(rot) 1.1098 | loss(pos) 0.2567 | loss(seq) 0.6135 | grad 6.3595 | lr 0.0010 | time_forward 3.0240 | time_backward 3.9730 |
[2023-09-02 16:56:15,957::train::INFO] [train] Iter 12186 | loss 1.7126 | loss(rot) 0.2281 | loss(pos) 0.9858 | loss(seq) 0.4987 | grad 3.7459 | lr 0.0010 | time_forward 2.8370 | time_backward 3.8770 |
[2023-09-02 16:56:24,311::train::INFO] [train] Iter 12187 | loss 1.8893 | loss(rot) 1.1008 | loss(pos) 0.3213 | loss(seq) 0.4672 | grad 2.4771 | lr 0.0010 | time_forward 3.4460 | time_backward 4.9040 |
[2023-09-02 16:56:26,986::train::INFO] [train] Iter 12188 | loss 2.0358 | loss(rot) 1.1647 | loss(pos) 0.3921 | loss(seq) 0.4790 | grad 5.1606 | lr 0.0010 | time_forward 1.2080 | time_backward 1.4640 |
[2023-09-02 16:56:34,293::train::INFO] [train] Iter 12189 | loss 1.0976 | loss(rot) 0.6043 | loss(pos) 0.2095 | loss(seq) 0.2837 | grad 3.6191 | lr 0.0010 | time_forward 2.9190 | time_backward 4.3840 |
[2023-09-02 16:56:37,450::train::INFO] [train] Iter 12190 | loss 1.9579 | loss(rot) 0.1427 | loss(pos) 1.8136 | loss(seq) 0.0016 | grad 4.8262 | lr 0.0010 | time_forward 1.3770 | time_backward 1.7760 |
[2023-09-02 16:56:45,508::train::INFO] [train] Iter 12191 | loss 2.8306 | loss(rot) 2.3991 | loss(pos) 0.1664 | loss(seq) 0.2650 | grad 7.5830 | lr 0.0010 | time_forward 3.2840 | time_backward 4.7700 |
[2023-09-02 16:56:47,760::train::INFO] [train] Iter 12192 | loss 1.9210 | loss(rot) 0.0161 | loss(pos) 1.9017 | loss(seq) 0.0032 | grad 6.6042 | lr 0.0010 | time_forward 1.0140 | time_backward 1.2340 |
[2023-09-02 16:56:56,131::train::INFO] [train] Iter 12193 | loss 1.6858 | loss(rot) 0.8629 | loss(pos) 0.3479 | loss(seq) 0.4750 | grad 5.4065 | lr 0.0010 | time_forward 3.4430 | time_backward 4.9250 |
[2023-09-02 16:56:58,760::train::INFO] [train] Iter 12194 | loss 1.0233 | loss(rot) 0.5734 | loss(pos) 0.4406 | loss(seq) 0.0093 | grad 8.5270 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4010 |
[2023-09-02 16:57:05,615::train::INFO] [train] Iter 12195 | loss 1.6986 | loss(rot) 0.8202 | loss(pos) 0.3278 | loss(seq) 0.5506 | grad 4.1425 | lr 0.0010 | time_forward 2.6900 | time_backward 4.1610 |
[2023-09-02 16:57:08,189::train::INFO] [train] Iter 12196 | loss 2.6219 | loss(rot) 1.1104 | loss(pos) 0.8919 | loss(seq) 0.6195 | grad 6.0934 | lr 0.0010 | time_forward 1.1690 | time_backward 1.4030 |
[2023-09-02 16:57:15,715::train::INFO] [train] Iter 12197 | loss 1.3497 | loss(rot) 0.4760 | loss(pos) 0.4879 | loss(seq) 0.3858 | grad 3.1155 | lr 0.0010 | time_forward 3.2220 | time_backward 4.3010 |
[2023-09-02 16:57:18,409::train::INFO] [train] Iter 12198 | loss 0.7431 | loss(rot) 0.1937 | loss(pos) 0.5205 | loss(seq) 0.0289 | grad 4.7995 | lr 0.0010 | time_forward 1.2170 | time_backward 1.4730 |
[2023-09-02 16:57:25,489::train::INFO] [train] Iter 12199 | loss 1.2691 | loss(rot) 0.8782 | loss(pos) 0.1868 | loss(seq) 0.2041 | grad 4.5897 | lr 0.0010 | time_forward 3.1140 | time_backward 3.9620 |
[2023-09-02 16:57:27,130::train::INFO] [train] Iter 12200 | loss 3.0016 | loss(rot) 0.9917 | loss(pos) 1.6121 | loss(seq) 0.3978 | grad 11.2316 | lr 0.0010 | time_forward 0.7250 | time_backward 0.9120 |
[2023-09-02 16:57:29,337::train::INFO] [train] Iter 12201 | loss 1.7409 | loss(rot) 1.4392 | loss(pos) 0.1814 | loss(seq) 0.1202 | grad 6.5090 | lr 0.0010 | time_forward 1.0200 | time_backward 1.1840 |
[2023-09-02 16:57:31,936::train::INFO] [train] Iter 12202 | loss 0.5030 | loss(rot) 0.0493 | loss(pos) 0.4397 | loss(seq) 0.0140 | grad 3.9947 | lr 0.0010 | time_forward 1.2190 | time_backward 1.3760 |
[2023-09-02 16:57:40,285::train::INFO] [train] Iter 12203 | loss 1.5261 | loss(rot) 0.7240 | loss(pos) 0.4666 | loss(seq) 0.3356 | grad 2.8688 | lr 0.0010 | time_forward 3.3300 | time_backward 5.0160 |
[2023-09-02 16:57:43,380::train::INFO] [train] Iter 12204 | loss 2.5159 | loss(rot) 2.3546 | loss(pos) 0.1521 | loss(seq) 0.0092 | grad 3.8757 | lr 0.0010 | time_forward 1.3280 | time_backward 1.7640 |
[2023-09-02 16:57:50,826::train::INFO] [train] Iter 12205 | loss 1.3158 | loss(rot) 0.8209 | loss(pos) 0.0970 | loss(seq) 0.3979 | grad 5.2458 | lr 0.0010 | time_forward 3.0130 | time_backward 4.4290 |
[2023-09-02 16:57:53,359::train::INFO] [train] Iter 12206 | loss 1.9025 | loss(rot) 1.2132 | loss(pos) 0.2416 | loss(seq) 0.4477 | grad 3.9456 | lr 0.0010 | time_forward 1.1350 | time_backward 1.3940 |
[2023-09-02 16:58:01,589::train::INFO] [train] Iter 12207 | loss 2.3112 | loss(rot) 1.5983 | loss(pos) 0.2785 | loss(seq) 0.4345 | grad 3.8931 | lr 0.0010 | time_forward 3.3430 | time_backward 4.8830 |
[2023-09-02 16:58:04,213::train::INFO] [train] Iter 12208 | loss 1.0092 | loss(rot) 0.8455 | loss(pos) 0.1226 | loss(seq) 0.0410 | grad 4.7709 | lr 0.0010 | time_forward 1.2300 | time_backward 1.3900 |
[2023-09-02 16:58:11,075::train::INFO] [train] Iter 12209 | loss 1.9650 | loss(rot) 1.7915 | loss(pos) 0.1417 | loss(seq) 0.0318 | grad 8.2275 | lr 0.0010 | time_forward 2.9560 | time_backward 3.9020 |
[2023-09-02 16:58:18,364::train::INFO] [train] Iter 12210 | loss 1.5689 | loss(rot) 1.3822 | loss(pos) 0.1856 | loss(seq) 0.0012 | grad 5.2816 | lr 0.0010 | time_forward 3.0980 | time_backward 4.1880 |
[2023-09-02 16:58:26,596::train::INFO] [train] Iter 12211 | loss 1.1833 | loss(rot) 0.3231 | loss(pos) 0.2627 | loss(seq) 0.5975 | grad 2.9891 | lr 0.0010 | time_forward 3.3620 | time_backward 4.8670 |
[2023-09-02 16:58:34,600::train::INFO] [train] Iter 12212 | loss 1.0792 | loss(rot) 0.5883 | loss(pos) 0.3334 | loss(seq) 0.1575 | grad 4.3831 | lr 0.0010 | time_forward 3.2690 | time_backward 4.7310 |
[2023-09-02 16:58:41,617::train::INFO] [train] Iter 12213 | loss 1.3021 | loss(rot) 1.1270 | loss(pos) 0.1188 | loss(seq) 0.0564 | grad 5.5975 | lr 0.0010 | time_forward 2.9260 | time_backward 4.0880 |
[2023-09-02 16:58:44,232::train::INFO] [train] Iter 12214 | loss 0.8963 | loss(rot) 0.1734 | loss(pos) 0.7054 | loss(seq) 0.0175 | grad 4.7931 | lr 0.0010 | time_forward 1.2120 | time_backward 1.3990 |
[2023-09-02 16:58:46,758::train::INFO] [train] Iter 12215 | loss 0.8784 | loss(rot) 0.2923 | loss(pos) 0.2870 | loss(seq) 0.2991 | grad 3.5843 | lr 0.0010 | time_forward 1.1480 | time_backward 1.3750 |
[2023-09-02 16:58:49,339::train::INFO] [train] Iter 12216 | loss 1.4105 | loss(rot) 1.1926 | loss(pos) 0.0797 | loss(seq) 0.1382 | grad 4.9529 | lr 0.0010 | time_forward 1.1870 | time_backward 1.3920 |
[2023-09-02 16:58:51,941::train::INFO] [train] Iter 12217 | loss 1.8521 | loss(rot) 1.5675 | loss(pos) 0.1235 | loss(seq) 0.1611 | grad 5.1849 | lr 0.0010 | time_forward 1.1900 | time_backward 1.4090 |
[2023-09-02 16:58:59,076::train::INFO] [train] Iter 12218 | loss 1.6909 | loss(rot) 1.0157 | loss(pos) 0.2290 | loss(seq) 0.4462 | grad 5.8194 | lr 0.0010 | time_forward 3.0330 | time_backward 4.0990 |
[2023-09-02 16:59:06,584::train::INFO] [train] Iter 12219 | loss 1.7343 | loss(rot) 0.0374 | loss(pos) 1.6939 | loss(seq) 0.0030 | grad 6.4328 | lr 0.0010 | time_forward 3.1380 | time_backward 4.3660 |
[2023-09-02 16:59:13,468::train::INFO] [train] Iter 12220 | loss 1.9146 | loss(rot) 1.1387 | loss(pos) 0.3118 | loss(seq) 0.4640 | grad 5.9195 | lr 0.0010 | time_forward 2.8500 | time_backward 4.0310 |
[2023-09-02 16:59:20,291::train::INFO] [train] Iter 12221 | loss 1.4470 | loss(rot) 1.1485 | loss(pos) 0.1569 | loss(seq) 0.1415 | grad 4.7311 | lr 0.0010 | time_forward 2.8720 | time_backward 3.9480 |
[2023-09-02 16:59:27,217::train::INFO] [train] Iter 12222 | loss 1.0114 | loss(rot) 0.8337 | loss(pos) 0.1596 | loss(seq) 0.0182 | grad 10.3889 | lr 0.0010 | time_forward 2.8650 | time_backward 4.0580 |
[2023-09-02 16:59:34,877::train::INFO] [train] Iter 12223 | loss 2.2234 | loss(rot) 2.0241 | loss(pos) 0.1515 | loss(seq) 0.0479 | grad 6.8026 | lr 0.0010 | time_forward 3.3420 | time_backward 4.3140 |
[2023-09-02 16:59:42,215::train::INFO] [train] Iter 12224 | loss 1.0091 | loss(rot) 0.3652 | loss(pos) 0.1822 | loss(seq) 0.4617 | grad 3.5724 | lr 0.0010 | time_forward 3.0020 | time_backward 4.3330 |
[2023-09-02 16:59:49,568::train::INFO] [train] Iter 12225 | loss 0.7714 | loss(rot) 0.1012 | loss(pos) 0.6457 | loss(seq) 0.0244 | grad 3.7185 | lr 0.0010 | time_forward 2.8580 | time_backward 4.4920 |
[2023-09-02 16:59:57,105::train::INFO] [train] Iter 12226 | loss 1.7044 | loss(rot) 0.9455 | loss(pos) 0.6109 | loss(seq) 0.1479 | grad 6.0968 | lr 0.0010 | time_forward 3.0160 | time_backward 4.5180 |
[2023-09-02 16:59:59,573::train::INFO] [train] Iter 12227 | loss 1.0278 | loss(rot) 0.5252 | loss(pos) 0.3304 | loss(seq) 0.1721 | grad 6.5782 | lr 0.0010 | time_forward 1.1470 | time_backward 1.3170 |
[2023-09-02 17:00:07,958::train::INFO] [train] Iter 12228 | loss 3.9706 | loss(rot) 0.0349 | loss(pos) 3.9356 | loss(seq) 0.0000 | grad 13.0294 | lr 0.0010 | time_forward 3.2480 | time_backward 5.1190 |
[2023-09-02 17:00:16,241::train::INFO] [train] Iter 12229 | loss 1.7721 | loss(rot) 1.5984 | loss(pos) 0.1733 | loss(seq) 0.0003 | grad 5.4367 | lr 0.0010 | time_forward 3.3470 | time_backward 4.9320 |
[2023-09-02 17:00:23,292::train::INFO] [train] Iter 12230 | loss 2.4195 | loss(rot) 1.9557 | loss(pos) 0.0804 | loss(seq) 0.3834 | grad 6.5956 | lr 0.0010 | time_forward 2.8890 | time_backward 4.1580 |
[2023-09-02 17:00:25,922::train::INFO] [train] Iter 12231 | loss 0.8807 | loss(rot) 0.8024 | loss(pos) 0.0780 | loss(seq) 0.0003 | grad 5.8696 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4150 |
[2023-09-02 17:00:28,546::train::INFO] [train] Iter 12232 | loss 1.6909 | loss(rot) 0.7632 | loss(pos) 0.4468 | loss(seq) 0.4809 | grad 5.1838 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4020 |
[2023-09-02 17:00:36,693::train::INFO] [train] Iter 12233 | loss 1.7029 | loss(rot) 0.5360 | loss(pos) 0.7803 | loss(seq) 0.3867 | grad 5.4503 | lr 0.0010 | time_forward 3.3120 | time_backward 4.8320 |
[2023-09-02 17:00:39,335::train::INFO] [train] Iter 12234 | loss 1.9730 | loss(rot) 1.8098 | loss(pos) 0.1382 | loss(seq) 0.0251 | grad 3.3833 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4130 |
[2023-09-02 17:00:45,459::train::INFO] [train] Iter 12235 | loss 0.9466 | loss(rot) 0.3131 | loss(pos) 0.3583 | loss(seq) 0.2752 | grad 2.6226 | lr 0.0010 | time_forward 2.5370 | time_backward 3.5850 |
[2023-09-02 17:00:53,180::train::INFO] [train] Iter 12236 | loss 1.8792 | loss(rot) 1.0024 | loss(pos) 0.3421 | loss(seq) 0.5348 | grad 2.9830 | lr 0.0010 | time_forward 3.2750 | time_backward 4.4420 |
[2023-09-02 17:01:00,265::train::INFO] [train] Iter 12237 | loss 1.7391 | loss(rot) 1.3786 | loss(pos) 0.2426 | loss(seq) 0.1179 | grad 5.6962 | lr 0.0010 | time_forward 3.0560 | time_backward 4.0250 |
[2023-09-02 17:01:02,495::train::INFO] [train] Iter 12238 | loss 1.3347 | loss(rot) 0.2915 | loss(pos) 0.3887 | loss(seq) 0.6545 | grad 3.2054 | lr 0.0010 | time_forward 1.0320 | time_backward 1.1950 |
[2023-09-02 17:01:05,149::train::INFO] [train] Iter 12239 | loss 0.8708 | loss(rot) 0.0945 | loss(pos) 0.7579 | loss(seq) 0.0184 | grad 7.8892 | lr 0.0010 | time_forward 1.2540 | time_backward 1.3970 |
[2023-09-02 17:01:12,989::train::INFO] [train] Iter 12240 | loss 0.8835 | loss(rot) 0.1744 | loss(pos) 0.6700 | loss(seq) 0.0392 | grad 5.8776 | lr 0.0010 | time_forward 3.1780 | time_backward 4.6590 |
[2023-09-02 17:01:20,523::train::INFO] [train] Iter 12241 | loss 1.1773 | loss(rot) 0.8726 | loss(pos) 0.1932 | loss(seq) 0.1114 | grad 5.1088 | lr 0.0010 | time_forward 3.0140 | time_backward 4.5160 |
[2023-09-02 17:01:27,461::train::INFO] [train] Iter 12242 | loss 0.6069 | loss(rot) 0.1169 | loss(pos) 0.4594 | loss(seq) 0.0306 | grad 4.3481 | lr 0.0010 | time_forward 2.9820 | time_backward 3.9540 |
[2023-09-02 17:01:34,256::train::INFO] [train] Iter 12243 | loss 1.7678 | loss(rot) 0.9356 | loss(pos) 0.4716 | loss(seq) 0.3606 | grad 6.8764 | lr 0.0010 | time_forward 2.8390 | time_backward 3.9520 |
[2023-09-02 17:01:40,221::train::INFO] [train] Iter 12244 | loss 1.7578 | loss(rot) 1.2985 | loss(pos) 0.1750 | loss(seq) 0.2843 | grad 3.3447 | lr 0.0010 | time_forward 2.5720 | time_backward 3.3910 |
[2023-09-02 17:01:48,032::train::INFO] [train] Iter 12245 | loss 1.0708 | loss(rot) 0.8078 | loss(pos) 0.1374 | loss(seq) 0.1255 | grad 4.8050 | lr 0.0010 | time_forward 3.1940 | time_backward 4.6130 |
[2023-09-02 17:01:55,120::train::INFO] [train] Iter 12246 | loss 1.0229 | loss(rot) 0.3250 | loss(pos) 0.3539 | loss(seq) 0.3439 | grad 3.8739 | lr 0.0010 | time_forward 2.9030 | time_backward 4.1820 |
[2023-09-02 17:01:57,905::train::INFO] [train] Iter 12247 | loss 1.9175 | loss(rot) 1.6573 | loss(pos) 0.2602 | loss(seq) 0.0001 | grad 5.7175 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4630 |
[2023-09-02 17:02:05,214::train::INFO] [train] Iter 12248 | loss 1.2449 | loss(rot) 1.0372 | loss(pos) 0.1776 | loss(seq) 0.0301 | grad 5.3522 | lr 0.0010 | time_forward 2.9590 | time_backward 4.3480 |
[2023-09-02 17:02:10,274::train::INFO] [train] Iter 12249 | loss 1.7641 | loss(rot) 1.6324 | loss(pos) 0.1200 | loss(seq) 0.0117 | grad 5.4043 | lr 0.0010 | time_forward 2.2280 | time_backward 2.8280 |
[2023-09-02 17:02:18,322::train::INFO] [train] Iter 12250 | loss 1.8239 | loss(rot) 1.5848 | loss(pos) 0.1507 | loss(seq) 0.0884 | grad 4.8485 | lr 0.0010 | time_forward 3.3380 | time_backward 4.7060 |
[2023-09-02 17:02:26,774::train::INFO] [train] Iter 12251 | loss 1.0935 | loss(rot) 0.2413 | loss(pos) 0.6107 | loss(seq) 0.2416 | grad 3.9438 | lr 0.0010 | time_forward 3.4700 | time_backward 4.9790 |
[2023-09-02 17:02:34,983::train::INFO] [train] Iter 12252 | loss 1.0440 | loss(rot) 0.2289 | loss(pos) 0.7665 | loss(seq) 0.0485 | grad 4.5033 | lr 0.0010 | time_forward 3.3700 | time_backward 4.8360 |
[2023-09-02 17:02:37,217::train::INFO] [train] Iter 12253 | loss 1.5164 | loss(rot) 1.4033 | loss(pos) 0.1129 | loss(seq) 0.0001 | grad 5.4282 | lr 0.0010 | time_forward 1.0370 | time_backward 1.1940 |
[2023-09-02 17:02:45,589::train::INFO] [train] Iter 12254 | loss 0.7347 | loss(rot) 0.0683 | loss(pos) 0.6405 | loss(seq) 0.0259 | grad 3.7441 | lr 0.0010 | time_forward 3.3540 | time_backward 5.0150 |
[2023-09-02 17:02:52,631::train::INFO] [train] Iter 12255 | loss 1.9023 | loss(rot) 0.9932 | loss(pos) 0.4868 | loss(seq) 0.4224 | grad 7.3519 | lr 0.0010 | time_forward 3.0730 | time_backward 3.9650 |
[2023-09-02 17:02:55,238::train::INFO] [train] Iter 12256 | loss 1.2944 | loss(rot) 0.1489 | loss(pos) 1.1091 | loss(seq) 0.0365 | grad 5.8267 | lr 0.0010 | time_forward 1.1870 | time_backward 1.4160 |
[2023-09-02 17:03:02,945::train::INFO] [train] Iter 12257 | loss 1.4803 | loss(rot) 0.9244 | loss(pos) 0.1106 | loss(seq) 0.4453 | grad 6.7032 | lr 0.0010 | time_forward 3.2670 | time_backward 4.4360 |
[2023-09-02 17:03:05,670::train::INFO] [train] Iter 12258 | loss 1.0490 | loss(rot) 0.3254 | loss(pos) 0.2255 | loss(seq) 0.4980 | grad 3.9205 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4680 |
[2023-09-02 17:03:13,478::train::INFO] [train] Iter 12259 | loss 2.6670 | loss(rot) 2.4093 | loss(pos) 0.2578 | loss(seq) 0.0000 | grad 4.1440 | lr 0.0010 | time_forward 3.2900 | time_backward 4.5140 |
[2023-09-02 17:03:20,907::train::INFO] [train] Iter 12260 | loss 1.7083 | loss(rot) 0.7754 | loss(pos) 0.3370 | loss(seq) 0.5959 | grad 3.9576 | lr 0.0010 | time_forward 3.2280 | time_backward 4.1980 |
[2023-09-02 17:03:27,838::train::INFO] [train] Iter 12261 | loss 1.7386 | loss(rot) 1.5220 | loss(pos) 0.1784 | loss(seq) 0.0382 | grad 5.9608 | lr 0.0010 | time_forward 2.9600 | time_backward 3.9670 |
[2023-09-02 17:03:30,377::train::INFO] [train] Iter 12262 | loss 1.3546 | loss(rot) 1.1727 | loss(pos) 0.1817 | loss(seq) 0.0001 | grad 3.9396 | lr 0.0010 | time_forward 1.1720 | time_backward 1.3640 |
[2023-09-02 17:03:37,799::train::INFO] [train] Iter 12263 | loss 2.0782 | loss(rot) 1.1558 | loss(pos) 0.2689 | loss(seq) 0.6535 | grad 5.6993 | lr 0.0010 | time_forward 3.1660 | time_backward 4.2530 |
[2023-09-02 17:03:40,937::train::INFO] [train] Iter 12264 | loss 2.4744 | loss(rot) 2.2016 | loss(pos) 0.2195 | loss(seq) 0.0533 | grad 3.9105 | lr 0.0010 | time_forward 1.3510 | time_backward 1.7830 |
[2023-09-02 17:03:43,482::train::INFO] [train] Iter 12265 | loss 1.4231 | loss(rot) 0.3040 | loss(pos) 0.6866 | loss(seq) 0.4325 | grad 6.6567 | lr 0.0010 | time_forward 1.1770 | time_backward 1.3660 |
[2023-09-02 17:03:50,028::train::INFO] [train] Iter 12266 | loss 1.8550 | loss(rot) 0.0786 | loss(pos) 1.7733 | loss(seq) 0.0031 | grad 9.6994 | lr 0.0010 | time_forward 2.6480 | time_backward 3.8940 |
[2023-09-02 17:03:58,130::train::INFO] [train] Iter 12267 | loss 1.8705 | loss(rot) 1.6104 | loss(pos) 0.1108 | loss(seq) 0.1493 | grad 4.9401 | lr 0.0010 | time_forward 3.2830 | time_backward 4.8150 |
[2023-09-02 17:04:05,427::train::INFO] [train] Iter 12268 | loss 1.0531 | loss(rot) 0.3814 | loss(pos) 0.3229 | loss(seq) 0.3487 | grad 4.9751 | lr 0.0010 | time_forward 3.0320 | time_backward 4.2630 |
[2023-09-02 17:04:12,372::train::INFO] [train] Iter 12269 | loss 1.1167 | loss(rot) 0.4078 | loss(pos) 0.2936 | loss(seq) 0.4153 | grad 4.0710 | lr 0.0010 | time_forward 3.0580 | time_backward 3.8840 |
[2023-09-02 17:04:14,558::train::INFO] [train] Iter 12270 | loss 1.1811 | loss(rot) 1.0286 | loss(pos) 0.1525 | loss(seq) 0.0000 | grad 4.6217 | lr 0.0010 | time_forward 1.0230 | time_backward 1.1590 |
[2023-09-02 17:04:22,728::train::INFO] [train] Iter 12271 | loss 1.5560 | loss(rot) 0.6438 | loss(pos) 0.6825 | loss(seq) 0.2298 | grad 4.5495 | lr 0.0010 | time_forward 3.5220 | time_backward 4.6460 |
[2023-09-02 17:04:25,294::train::INFO] [train] Iter 12272 | loss 1.7488 | loss(rot) 0.7005 | loss(pos) 0.5632 | loss(seq) 0.4852 | grad 5.2964 | lr 0.0010 | time_forward 1.1820 | time_backward 1.3810 |
[2023-09-02 17:04:32,466::train::INFO] [train] Iter 12273 | loss 1.9269 | loss(rot) 0.8155 | loss(pos) 0.4674 | loss(seq) 0.6441 | grad 4.4015 | lr 0.0010 | time_forward 3.0860 | time_backward 4.0820 |
[2023-09-02 17:04:40,764::train::INFO] [train] Iter 12274 | loss 2.1906 | loss(rot) 1.8011 | loss(pos) 0.2329 | loss(seq) 0.1566 | grad 10.3429 | lr 0.0010 | time_forward 3.3950 | time_backward 4.9000 |
[2023-09-02 17:04:43,334::train::INFO] [train] Iter 12275 | loss 1.2541 | loss(rot) 0.5441 | loss(pos) 0.1789 | loss(seq) 0.5311 | grad 4.4929 | lr 0.0010 | time_forward 1.1830 | time_backward 1.3850 |
[2023-09-02 17:04:45,920::train::INFO] [train] Iter 12276 | loss 1.7366 | loss(rot) 1.2396 | loss(pos) 0.1296 | loss(seq) 0.3674 | grad 4.2559 | lr 0.0010 | time_forward 1.4320 | time_backward 1.1500 |
[2023-09-02 17:04:48,427::train::INFO] [train] Iter 12277 | loss 1.8461 | loss(rot) 1.4707 | loss(pos) 0.1120 | loss(seq) 0.2634 | grad 4.1277 | lr 0.0010 | time_forward 1.1500 | time_backward 1.3550 |
[2023-09-02 17:04:56,707::train::INFO] [train] Iter 12278 | loss 1.8380 | loss(rot) 1.6219 | loss(pos) 0.1717 | loss(seq) 0.0444 | grad 4.9590 | lr 0.0010 | time_forward 3.3420 | time_backward 4.9340 |
[2023-09-02 17:05:04,701::train::INFO] [train] Iter 12279 | loss 2.3133 | loss(rot) 1.3136 | loss(pos) 0.4970 | loss(seq) 0.5027 | grad 4.2762 | lr 0.0010 | time_forward 3.8280 | time_backward 4.1620 |
[2023-09-02 17:05:13,597::train::INFO] [train] Iter 12280 | loss 1.5289 | loss(rot) 0.8113 | loss(pos) 0.2207 | loss(seq) 0.4970 | grad 5.3280 | lr 0.0010 | time_forward 3.4120 | time_backward 3.6890 |
[2023-09-02 17:05:23,079::train::INFO] [train] Iter 12281 | loss 1.8857 | loss(rot) 1.1691 | loss(pos) 0.2198 | loss(seq) 0.4968 | grad 2.6802 | lr 0.0010 | time_forward 4.9880 | time_backward 4.4910 |
[2023-09-02 17:05:25,577::train::INFO] [train] Iter 12282 | loss 1.6356 | loss(rot) 1.0319 | loss(pos) 0.1274 | loss(seq) 0.4763 | grad 4.7397 | lr 0.0010 | time_forward 1.1380 | time_backward 1.3560 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.