text
stringlengths
56
1.16k
[2023-09-02 18:05:13,160::train::INFO] [train] Iter 12783 | loss 1.2640 | loss(rot) 0.7137 | loss(pos) 0.2214 | loss(seq) 0.3289 | grad 4.1513 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4530
[2023-09-02 18:05:19,925::train::INFO] [train] Iter 12784 | loss 1.1865 | loss(rot) 0.4110 | loss(pos) 0.2774 | loss(seq) 0.4981 | grad 4.0718 | lr 0.0010 | time_forward 2.8330 | time_backward 3.9290
[2023-09-02 18:05:28,624::train::INFO] [train] Iter 12785 | loss 1.0500 | loss(rot) 0.1430 | loss(pos) 0.8749 | loss(seq) 0.0321 | grad 7.8983 | lr 0.0010 | time_forward 3.6970 | time_backward 4.9980
[2023-09-02 18:05:38,848::train::INFO] [train] Iter 12786 | loss 1.6536 | loss(rot) 1.4075 | loss(pos) 0.2249 | loss(seq) 0.0212 | grad 6.1032 | lr 0.0010 | time_forward 4.2140 | time_backward 6.0070
[2023-09-02 18:05:47,006::train::INFO] [train] Iter 12787 | loss 1.3404 | loss(rot) 0.1001 | loss(pos) 1.2286 | loss(seq) 0.0117 | grad 9.5822 | lr 0.0010 | time_forward 3.4600 | time_backward 4.6940
[2023-09-02 18:05:50,375::train::INFO] [train] Iter 12788 | loss 1.9045 | loss(rot) 1.3731 | loss(pos) 0.1715 | loss(seq) 0.3599 | grad 8.7024 | lr 0.0010 | time_forward 1.4210 | time_backward 1.9430
[2023-09-02 18:05:59,333::train::INFO] [train] Iter 12789 | loss 1.4397 | loss(rot) 0.9902 | loss(pos) 0.1460 | loss(seq) 0.3035 | grad 5.1473 | lr 0.0010 | time_forward 3.7190 | time_backward 5.2360
[2023-09-02 18:06:08,740::train::INFO] [train] Iter 12790 | loss 0.9827 | loss(rot) 0.7033 | loss(pos) 0.1140 | loss(seq) 0.1653 | grad 5.6120 | lr 0.0010 | time_forward 3.9260 | time_backward 5.4770
[2023-09-02 18:06:18,909::train::INFO] [train] Iter 12791 | loss 1.0506 | loss(rot) 0.3649 | loss(pos) 0.4330 | loss(seq) 0.2527 | grad 4.6411 | lr 0.0010 | time_forward 4.0780 | time_backward 6.0870
[2023-09-02 18:06:29,001::train::INFO] [train] Iter 12792 | loss 1.4381 | loss(rot) 0.1106 | loss(pos) 1.3221 | loss(seq) 0.0055 | grad 5.4233 | lr 0.0010 | time_forward 4.0170 | time_backward 6.0720
[2023-09-02 18:06:31,639::train::INFO] [train] Iter 12793 | loss 1.3445 | loss(rot) 0.6528 | loss(pos) 0.3870 | loss(seq) 0.3046 | grad 4.6377 | lr 0.0010 | time_forward 1.2520 | time_backward 1.3830
[2023-09-02 18:06:38,056::train::INFO] [train] Iter 12794 | loss 1.8708 | loss(rot) 1.0861 | loss(pos) 0.3345 | loss(seq) 0.4502 | grad 4.5006 | lr 0.0010 | time_forward 2.6700 | time_backward 3.7440
[2023-09-02 18:06:47,814::train::INFO] [train] Iter 12795 | loss 2.0807 | loss(rot) 1.8868 | loss(pos) 0.1938 | loss(seq) 0.0000 | grad 9.4791 | lr 0.0010 | time_forward 4.0200 | time_backward 5.7360
[2023-09-02 18:06:57,896::train::INFO] [train] Iter 12796 | loss 1.8094 | loss(rot) 1.5568 | loss(pos) 0.2272 | loss(seq) 0.0254 | grad 6.3064 | lr 0.0010 | time_forward 4.0530 | time_backward 6.0080
[2023-09-02 18:07:05,868::train::INFO] [train] Iter 12797 | loss 1.6577 | loss(rot) 1.2113 | loss(pos) 0.1526 | loss(seq) 0.2938 | grad 5.1403 | lr 0.0010 | time_forward 3.5050 | time_backward 4.4630
[2023-09-02 18:07:14,550::train::INFO] [train] Iter 12798 | loss 0.8675 | loss(rot) 0.2406 | loss(pos) 0.3488 | loss(seq) 0.2781 | grad 2.7796 | lr 0.0010 | time_forward 3.5660 | time_backward 5.1140
[2023-09-02 18:07:23,922::train::INFO] [train] Iter 12799 | loss 1.3689 | loss(rot) 1.1362 | loss(pos) 0.2325 | loss(seq) 0.0001 | grad 7.3072 | lr 0.0010 | time_forward 3.5980 | time_backward 5.7700
[2023-09-02 18:07:31,618::train::INFO] [train] Iter 12800 | loss 0.9087 | loss(rot) 0.3715 | loss(pos) 0.4343 | loss(seq) 0.1029 | grad 3.9615 | lr 0.0010 | time_forward 3.3270 | time_backward 4.3660
[2023-09-02 18:07:39,051::train::INFO] [train] Iter 12801 | loss 0.8530 | loss(rot) 0.0697 | loss(pos) 0.5645 | loss(seq) 0.2188 | grad 3.4656 | lr 0.0010 | time_forward 3.1520 | time_backward 4.2770
[2023-09-02 18:07:49,232::train::INFO] [train] Iter 12802 | loss 1.7479 | loss(rot) 1.4159 | loss(pos) 0.1270 | loss(seq) 0.2050 | grad 4.7014 | lr 0.0010 | time_forward 4.0350 | time_backward 6.1420
[2023-09-02 18:07:59,316::train::INFO] [train] Iter 12803 | loss 1.8278 | loss(rot) 1.6671 | loss(pos) 0.1379 | loss(seq) 0.0227 | grad 6.4917 | lr 0.0010 | time_forward 4.0450 | time_backward 6.0350
[2023-09-02 18:08:01,562::train::INFO] [train] Iter 12804 | loss 0.2986 | loss(rot) 0.1172 | loss(pos) 0.1183 | loss(seq) 0.0631 | grad 2.0438 | lr 0.0010 | time_forward 1.0470 | time_backward 1.1950
[2023-09-02 18:08:10,216::train::INFO] [train] Iter 12805 | loss 1.4923 | loss(rot) 0.8685 | loss(pos) 0.2098 | loss(seq) 0.4140 | grad 4.9782 | lr 0.0010 | time_forward 3.6440 | time_backward 5.0070
[2023-09-02 18:08:19,007::train::INFO] [train] Iter 12806 | loss 1.6628 | loss(rot) 1.4358 | loss(pos) 0.0940 | loss(seq) 0.1330 | grad 3.8749 | lr 0.0010 | time_forward 3.6300 | time_backward 5.1570
[2023-09-02 18:08:29,148::train::INFO] [train] Iter 12807 | loss 1.7333 | loss(rot) 1.3683 | loss(pos) 0.1581 | loss(seq) 0.2069 | grad 5.9306 | lr 0.0010 | time_forward 4.0370 | time_backward 6.1010
[2023-09-02 18:08:38,210::train::INFO] [train] Iter 12808 | loss 1.8032 | loss(rot) 1.2552 | loss(pos) 0.1125 | loss(seq) 0.4355 | grad 7.1869 | lr 0.0010 | time_forward 3.8570 | time_backward 5.2010
[2023-09-02 18:08:48,672::train::INFO] [train] Iter 12809 | loss 2.8451 | loss(rot) 1.8389 | loss(pos) 0.4976 | loss(seq) 0.5086 | grad 3.5680 | lr 0.0010 | time_forward 4.4550 | time_backward 6.0040
[2023-09-02 18:08:59,080::train::INFO] [train] Iter 12810 | loss 1.1749 | loss(rot) 0.8925 | loss(pos) 0.0759 | loss(seq) 0.2066 | grad 5.0764 | lr 0.0010 | time_forward 4.1650 | time_backward 6.2410
[2023-09-02 18:09:07,656::train::INFO] [train] Iter 12811 | loss 1.0126 | loss(rot) 0.2661 | loss(pos) 0.1508 | loss(seq) 0.5957 | grad 3.1349 | lr 0.0010 | time_forward 3.6280 | time_backward 4.9440
[2023-09-02 18:09:10,275::train::INFO] [train] Iter 12812 | loss 0.8290 | loss(rot) 0.0720 | loss(pos) 0.7420 | loss(seq) 0.0150 | grad 4.0868 | lr 0.0010 | time_forward 1.2340 | time_backward 1.3810
[2023-09-02 18:09:12,999::train::INFO] [train] Iter 12813 | loss 1.3937 | loss(rot) 1.0294 | loss(pos) 0.1692 | loss(seq) 0.1950 | grad 5.6974 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4660
[2023-09-02 18:09:23,057::train::INFO] [train] Iter 12814 | loss 1.0913 | loss(rot) 0.4814 | loss(pos) 0.2504 | loss(seq) 0.3596 | grad 3.6453 | lr 0.0010 | time_forward 4.0390 | time_backward 6.0150
[2023-09-02 18:09:29,510::train::INFO] [train] Iter 12815 | loss 2.1508 | loss(rot) 1.5009 | loss(pos) 0.2098 | loss(seq) 0.4400 | grad 7.5836 | lr 0.0010 | time_forward 2.6980 | time_backward 3.7510
[2023-09-02 18:09:37,561::train::INFO] [train] Iter 12816 | loss 1.0024 | loss(rot) 0.1627 | loss(pos) 0.8333 | loss(seq) 0.0064 | grad 5.0757 | lr 0.0010 | time_forward 3.4050 | time_backward 4.6420
[2023-09-02 18:09:46,362::train::INFO] [train] Iter 12817 | loss 1.9079 | loss(rot) 1.6865 | loss(pos) 0.2213 | loss(seq) 0.0001 | grad 3.7142 | lr 0.0010 | time_forward 3.7280 | time_backward 5.0700
[2023-09-02 18:09:51,061::train::INFO] [train] Iter 12818 | loss 0.8190 | loss(rot) 0.6443 | loss(pos) 0.0768 | loss(seq) 0.0979 | grad 5.3078 | lr 0.0010 | time_forward 2.0320 | time_backward 2.6630
[2023-09-02 18:09:59,823::train::INFO] [train] Iter 12819 | loss 0.9195 | loss(rot) 0.3289 | loss(pos) 0.5014 | loss(seq) 0.0892 | grad 4.7655 | lr 0.0010 | time_forward 3.6640 | time_backward 5.0490
[2023-09-02 18:10:09,918::train::INFO] [train] Iter 12820 | loss 0.9790 | loss(rot) 0.2921 | loss(pos) 0.5601 | loss(seq) 0.1268 | grad 4.1323 | lr 0.0010 | time_forward 4.0660 | time_backward 6.0250
[2023-09-02 18:10:12,624::train::INFO] [train] Iter 12821 | loss 1.3679 | loss(rot) 1.0801 | loss(pos) 0.1060 | loss(seq) 0.1818 | grad 5.4629 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4270
[2023-09-02 18:10:21,686::train::INFO] [train] Iter 12822 | loss 2.7887 | loss(rot) 2.5679 | loss(pos) 0.1878 | loss(seq) 0.0330 | grad 5.0349 | lr 0.0010 | time_forward 3.8750 | time_backward 5.1840
[2023-09-02 18:10:29,348::train::INFO] [train] Iter 12823 | loss 2.0114 | loss(rot) 0.0759 | loss(pos) 1.9322 | loss(seq) 0.0034 | grad 8.0980 | lr 0.0010 | time_forward 3.1800 | time_backward 4.4780
[2023-09-02 18:10:32,072::train::INFO] [train] Iter 12824 | loss 0.9402 | loss(rot) 0.7192 | loss(pos) 0.1936 | loss(seq) 0.0274 | grad 5.2253 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4480
[2023-09-02 18:10:41,236::train::INFO] [train] Iter 12825 | loss 0.5898 | loss(rot) 0.2483 | loss(pos) 0.2314 | loss(seq) 0.1101 | grad 3.1583 | lr 0.0010 | time_forward 3.7560 | time_backward 5.4040
[2023-09-02 18:10:51,323::train::INFO] [train] Iter 12826 | loss 1.6333 | loss(rot) 1.0122 | loss(pos) 0.1301 | loss(seq) 0.4909 | grad 4.9276 | lr 0.0010 | time_forward 4.1280 | time_backward 5.9550
[2023-09-02 18:11:00,831::train::INFO] [train] Iter 12827 | loss 1.6640 | loss(rot) 0.8770 | loss(pos) 0.2200 | loss(seq) 0.5671 | grad 3.6234 | lr 0.0010 | time_forward 3.9350 | time_backward 5.5690
[2023-09-02 18:11:10,274::train::INFO] [train] Iter 12828 | loss 0.7650 | loss(rot) 0.0709 | loss(pos) 0.6780 | loss(seq) 0.0161 | grad 4.3661 | lr 0.0010 | time_forward 3.7100 | time_backward 5.7300
[2023-09-02 18:11:12,979::train::INFO] [train] Iter 12829 | loss 1.3154 | loss(rot) 1.1824 | loss(pos) 0.0790 | loss(seq) 0.0541 | grad 5.0456 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4480
[2023-09-02 18:11:22,892::train::INFO] [train] Iter 12830 | loss 0.8796 | loss(rot) 0.8106 | loss(pos) 0.0642 | loss(seq) 0.0048 | grad 5.6594 | lr 0.0010 | time_forward 3.9960 | time_backward 5.9130
[2023-09-02 18:11:31,650::train::INFO] [train] Iter 12831 | loss 1.2010 | loss(rot) 0.9170 | loss(pos) 0.1354 | loss(seq) 0.1486 | grad 4.8560 | lr 0.0010 | time_forward 3.6580 | time_backward 5.0970
[2023-09-02 18:11:39,833::train::INFO] [train] Iter 12832 | loss 0.9931 | loss(rot) 0.8881 | loss(pos) 0.0964 | loss(seq) 0.0086 | grad 5.2527 | lr 0.0010 | time_forward 3.3910 | time_backward 4.7890
[2023-09-02 18:11:49,793::train::INFO] [train] Iter 12833 | loss 1.6962 | loss(rot) 1.2013 | loss(pos) 0.1565 | loss(seq) 0.3384 | grad 3.2368 | lr 0.0010 | time_forward 4.2340 | time_backward 5.7230
[2023-09-02 18:11:59,124::train::INFO] [train] Iter 12834 | loss 0.8777 | loss(rot) 0.1530 | loss(pos) 0.6922 | loss(seq) 0.0325 | grad 4.5565 | lr 0.0010 | time_forward 3.8740 | time_backward 5.4530
[2023-09-02 18:12:07,427::train::INFO] [train] Iter 12835 | loss 1.9948 | loss(rot) 1.1081 | loss(pos) 0.3594 | loss(seq) 0.5273 | grad 5.1780 | lr 0.0010 | time_forward 3.5320 | time_backward 4.7680
[2023-09-02 18:12:14,578::train::INFO] [train] Iter 12836 | loss 1.4021 | loss(rot) 0.9335 | loss(pos) 0.1437 | loss(seq) 0.3249 | grad 6.6139 | lr 0.0010 | time_forward 2.9840 | time_backward 4.1640
[2023-09-02 18:12:24,650::train::INFO] [train] Iter 12837 | loss 1.8948 | loss(rot) 1.2944 | loss(pos) 0.1998 | loss(seq) 0.4006 | grad 3.9021 | lr 0.0010 | time_forward 4.0900 | time_backward 5.9780
[2023-09-02 18:12:34,785::train::INFO] [train] Iter 12838 | loss 1.6140 | loss(rot) 0.6275 | loss(pos) 0.4638 | loss(seq) 0.5227 | grad 3.9826 | lr 0.0010 | time_forward 4.2080 | time_backward 5.9240
[2023-09-02 18:12:37,484::train::INFO] [train] Iter 12839 | loss 1.6988 | loss(rot) 1.3709 | loss(pos) 0.1342 | loss(seq) 0.1936 | grad 3.9964 | lr 0.0010 | time_forward 1.3010 | time_backward 1.3940
[2023-09-02 18:12:46,624::train::INFO] [train] Iter 12840 | loss 1.1634 | loss(rot) 0.0437 | loss(pos) 1.1113 | loss(seq) 0.0084 | grad 6.9200 | lr 0.0010 | time_forward 3.8710 | time_backward 5.2670
[2023-09-02 18:12:55,187::train::INFO] [train] Iter 12841 | loss 2.5961 | loss(rot) 1.9941 | loss(pos) 0.2233 | loss(seq) 0.3786 | grad 4.9615 | lr 0.0010 | time_forward 3.5770 | time_backward 4.9820
[2023-09-02 18:13:03,880::train::INFO] [train] Iter 12842 | loss 1.7387 | loss(rot) 1.4693 | loss(pos) 0.2664 | loss(seq) 0.0030 | grad 5.3164 | lr 0.0010 | time_forward 3.6340 | time_backward 5.0560
[2023-09-02 18:13:06,527::train::INFO] [train] Iter 12843 | loss 2.4421 | loss(rot) 2.2408 | loss(pos) 0.1372 | loss(seq) 0.0641 | grad 3.7955 | lr 0.0010 | time_forward 1.2080 | time_backward 1.4360
[2023-09-02 18:13:14,697::train::INFO] [train] Iter 12844 | loss 0.6509 | loss(rot) 0.2774 | loss(pos) 0.3459 | loss(seq) 0.0276 | grad 4.4632 | lr 0.0010 | time_forward 3.3680 | time_backward 4.7990
[2023-09-02 18:13:21,763::train::INFO] [train] Iter 12845 | loss 2.3492 | loss(rot) 1.6832 | loss(pos) 0.1782 | loss(seq) 0.4877 | grad 5.8405 | lr 0.0010 | time_forward 3.0210 | time_backward 4.0420
[2023-09-02 18:13:30,952::train::INFO] [train] Iter 12846 | loss 0.6406 | loss(rot) 0.0333 | loss(pos) 0.5979 | loss(seq) 0.0094 | grad 3.0850 | lr 0.0010 | time_forward 3.8920 | time_backward 5.2930
[2023-09-02 18:13:39,683::train::INFO] [train] Iter 12847 | loss 1.2052 | loss(rot) 0.6851 | loss(pos) 0.1061 | loss(seq) 0.4141 | grad 4.1165 | lr 0.0010 | time_forward 3.6990 | time_backward 5.0290
[2023-09-02 18:13:48,357::train::INFO] [train] Iter 12848 | loss 1.7553 | loss(rot) 1.3340 | loss(pos) 0.0705 | loss(seq) 0.3508 | grad 4.0267 | lr 0.0010 | time_forward 3.7030 | time_backward 4.9670
[2023-09-02 18:13:56,337::train::INFO] [train] Iter 12849 | loss 1.9088 | loss(rot) 1.7998 | loss(pos) 0.0874 | loss(seq) 0.0216 | grad 4.2294 | lr 0.0010 | time_forward 3.3550 | time_backward 4.6210
[2023-09-02 18:13:58,706::train::INFO] [train] Iter 12850 | loss 0.9086 | loss(rot) 0.3508 | loss(pos) 0.3471 | loss(seq) 0.2106 | grad 3.2038 | lr 0.0010 | time_forward 1.1240 | time_backward 1.2410
[2023-09-02 18:14:06,949::train::INFO] [train] Iter 12851 | loss 1.9973 | loss(rot) 1.8909 | loss(pos) 0.1063 | loss(seq) 0.0000 | grad 5.4603 | lr 0.0010 | time_forward 3.5540 | time_backward 4.6630
[2023-09-02 18:14:16,225::train::INFO] [train] Iter 12852 | loss 1.2530 | loss(rot) 0.6912 | loss(pos) 0.3332 | loss(seq) 0.2286 | grad 4.0622 | lr 0.0010 | time_forward 3.8600 | time_backward 5.4140
[2023-09-02 18:14:18,902::train::INFO] [train] Iter 12853 | loss 1.3521 | loss(rot) 0.8486 | loss(pos) 0.0636 | loss(seq) 0.4398 | grad 4.4987 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4150
[2023-09-02 18:14:21,573::train::INFO] [train] Iter 12854 | loss 1.8837 | loss(rot) 1.5631 | loss(pos) 0.1295 | loss(seq) 0.1911 | grad 5.1019 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4130
[2023-09-02 18:14:31,440::train::INFO] [train] Iter 12855 | loss 1.6241 | loss(rot) 0.9482 | loss(pos) 0.1617 | loss(seq) 0.5141 | grad 4.5215 | lr 0.0010 | time_forward 4.0940 | time_backward 5.7700
[2023-09-02 18:14:40,565::train::INFO] [train] Iter 12856 | loss 1.3404 | loss(rot) 0.5218 | loss(pos) 0.4115 | loss(seq) 0.4071 | grad 3.8588 | lr 0.0010 | time_forward 3.9040 | time_backward 5.2180
[2023-09-02 18:14:43,952::train::INFO] [train] Iter 12857 | loss 1.5657 | loss(rot) 0.0195 | loss(pos) 1.5446 | loss(seq) 0.0016 | grad 5.8066 | lr 0.0010 | time_forward 1.4300 | time_backward 1.9530
[2023-09-02 18:14:53,928::train::INFO] [train] Iter 12858 | loss 1.0722 | loss(rot) 0.5126 | loss(pos) 0.2042 | loss(seq) 0.3554 | grad 4.8354 | lr 0.0010 | time_forward 4.0030 | time_backward 5.9710
[2023-09-02 18:15:03,883::train::INFO] [train] Iter 12859 | loss 0.8229 | loss(rot) 0.0511 | loss(pos) 0.7626 | loss(seq) 0.0092 | grad 5.8297 | lr 0.0010 | time_forward 4.0290 | time_backward 5.9220
[2023-09-02 18:15:06,572::train::INFO] [train] Iter 12860 | loss 1.0076 | loss(rot) 0.2024 | loss(pos) 0.3111 | loss(seq) 0.4940 | grad 3.9978 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4310
[2023-09-02 18:15:14,403::train::INFO] [train] Iter 12861 | loss 1.3030 | loss(rot) 0.1477 | loss(pos) 0.9882 | loss(seq) 0.1671 | grad 4.2318 | lr 0.0010 | time_forward 3.2670 | time_backward 4.5600
[2023-09-02 18:15:17,083::train::INFO] [train] Iter 12862 | loss 1.8716 | loss(rot) 1.6763 | loss(pos) 0.0313 | loss(seq) 0.1639 | grad 8.5619 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4120
[2023-09-02 18:15:25,451::train::INFO] [train] Iter 12863 | loss 1.7793 | loss(rot) 1.2230 | loss(pos) 0.1157 | loss(seq) 0.4406 | grad 4.9334 | lr 0.0010 | time_forward 3.6900 | time_backward 4.6750
[2023-09-02 18:15:29,944::train::INFO] [train] Iter 12864 | loss 1.7694 | loss(rot) 1.4544 | loss(pos) 0.1327 | loss(seq) 0.1824 | grad 8.9397 | lr 0.0010 | time_forward 2.0260 | time_backward 2.4640
[2023-09-02 18:15:37,738::train::INFO] [train] Iter 12865 | loss 1.5227 | loss(rot) 0.6056 | loss(pos) 0.8354 | loss(seq) 0.0817 | grad 5.2737 | lr 0.0010 | time_forward 3.1510 | time_backward 4.6390
[2023-09-02 18:15:45,456::train::INFO] [train] Iter 12866 | loss 1.2131 | loss(rot) 0.0590 | loss(pos) 1.1435 | loss(seq) 0.0106 | grad 7.0805 | lr 0.0010 | time_forward 3.3470 | time_backward 4.3680
[2023-09-02 18:15:53,562::train::INFO] [train] Iter 12867 | loss 2.3405 | loss(rot) 1.6176 | loss(pos) 0.2951 | loss(seq) 0.4279 | grad 3.8157 | lr 0.0010 | time_forward 3.4660 | time_backward 4.6360
[2023-09-02 18:16:01,758::train::INFO] [train] Iter 12868 | loss 1.2124 | loss(rot) 0.3290 | loss(pos) 0.3673 | loss(seq) 0.5161 | grad 3.6458 | lr 0.0010 | time_forward 3.5430 | time_backward 4.6500
[2023-09-02 18:16:09,769::train::INFO] [train] Iter 12869 | loss 3.1225 | loss(rot) 2.7861 | loss(pos) 0.1862 | loss(seq) 0.1502 | grad 2.9921 | lr 0.0010 | time_forward 3.4770 | time_backward 4.5300
[2023-09-02 18:16:19,588::train::INFO] [train] Iter 12870 | loss 0.6879 | loss(rot) 0.1049 | loss(pos) 0.5536 | loss(seq) 0.0294 | grad 4.5309 | lr 0.0010 | time_forward 3.7490 | time_backward 6.0680
[2023-09-02 18:16:28,099::train::INFO] [train] Iter 12871 | loss 1.0416 | loss(rot) 0.4903 | loss(pos) 0.0916 | loss(seq) 0.4597 | grad 3.3093 | lr 0.0010 | time_forward 3.5710 | time_backward 4.9370
[2023-09-02 18:16:30,752::train::INFO] [train] Iter 12872 | loss 1.7115 | loss(rot) 1.0684 | loss(pos) 0.2102 | loss(seq) 0.4330 | grad 4.6383 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4090
[2023-09-02 18:16:39,762::train::INFO] [train] Iter 12873 | loss 0.6334 | loss(rot) 0.0864 | loss(pos) 0.5325 | loss(seq) 0.0145 | grad 5.1825 | lr 0.0010 | time_forward 3.9560 | time_backward 5.0240
[2023-09-02 18:16:49,308::train::INFO] [train] Iter 12874 | loss 2.1343 | loss(rot) 1.4305 | loss(pos) 0.2010 | loss(seq) 0.5028 | grad 4.6797 | lr 0.0010 | time_forward 3.5950 | time_backward 5.9490
[2023-09-02 18:16:59,191::train::INFO] [train] Iter 12875 | loss 0.7126 | loss(rot) 0.5994 | loss(pos) 0.0899 | loss(seq) 0.0233 | grad 5.4707 | lr 0.0010 | time_forward 4.0580 | time_backward 5.8220
[2023-09-02 18:17:07,766::train::INFO] [train] Iter 12876 | loss 2.2484 | loss(rot) 1.4252 | loss(pos) 0.2858 | loss(seq) 0.5373 | grad 3.2485 | lr 0.0010 | time_forward 3.6050 | time_backward 4.9670
[2023-09-02 18:17:18,164::train::INFO] [train] Iter 12877 | loss 1.0305 | loss(rot) 0.9030 | loss(pos) 0.0698 | loss(seq) 0.0577 | grad 3.8583 | lr 0.0010 | time_forward 4.1300 | time_backward 6.2060
[2023-09-02 18:17:28,038::train::INFO] [train] Iter 12878 | loss 0.7420 | loss(rot) 0.0669 | loss(pos) 0.6601 | loss(seq) 0.0151 | grad 4.2965 | lr 0.0010 | time_forward 4.0300 | time_backward 5.8420
[2023-09-02 18:17:33,752::train::INFO] [train] Iter 12879 | loss 1.1139 | loss(rot) 0.5012 | loss(pos) 0.1851 | loss(seq) 0.4277 | grad 4.1039 | lr 0.0010 | time_forward 2.4340 | time_backward 3.2590
[2023-09-02 18:17:42,182::train::INFO] [train] Iter 12880 | loss 1.6198 | loss(rot) 1.4219 | loss(pos) 0.0673 | loss(seq) 0.1306 | grad 4.4242 | lr 0.0010 | time_forward 3.4470 | time_backward 4.9780
[2023-09-02 18:17:50,979::train::INFO] [train] Iter 12881 | loss 2.3214 | loss(rot) 1.2697 | loss(pos) 0.3406 | loss(seq) 0.7111 | grad 5.0827 | lr 0.0010 | time_forward 3.5750 | time_backward 5.2180
[2023-09-02 18:18:00,974::train::INFO] [train] Iter 12882 | loss 1.1911 | loss(rot) 0.1165 | loss(pos) 0.8929 | loss(seq) 0.1817 | grad 5.3458 | lr 0.0010 | time_forward 4.0810 | time_backward 5.9110