text
stringlengths
56
1.16k
[2023-09-02 18:52:43,043::train::INFO] [train] Iter 13182 | loss 1.1810 | loss(rot) 1.1004 | loss(pos) 0.0794 | loss(seq) 0.0012 | grad 4.8340 | lr 0.0010 | time_forward 3.9600 | time_backward 5.9100
[2023-09-02 18:52:51,053::train::INFO] [train] Iter 13183 | loss 1.7205 | loss(rot) 0.4809 | loss(pos) 0.8499 | loss(seq) 0.3898 | grad 3.7016 | lr 0.0010 | time_forward 3.3520 | time_backward 4.6550
[2023-09-02 18:52:59,106::train::INFO] [train] Iter 13184 | loss 1.7057 | loss(rot) 1.4869 | loss(pos) 0.0861 | loss(seq) 0.1327 | grad 4.2236 | lr 0.0010 | time_forward 3.5160 | time_backward 4.5340
[2023-09-02 18:53:07,884::train::INFO] [train] Iter 13185 | loss 1.4442 | loss(rot) 0.6410 | loss(pos) 0.2065 | loss(seq) 0.5967 | grad 4.7515 | lr 0.0010 | time_forward 3.2770 | time_backward 5.4980
[2023-09-02 18:53:16,962::train::INFO] [train] Iter 13186 | loss 1.8623 | loss(rot) 1.6623 | loss(pos) 0.1733 | loss(seq) 0.0267 | grad 3.8628 | lr 0.0010 | time_forward 3.4110 | time_backward 5.6640
[2023-09-02 18:53:24,438::train::INFO] [train] Iter 13187 | loss 2.3032 | loss(rot) 1.2057 | loss(pos) 0.4925 | loss(seq) 0.6051 | grad 4.5349 | lr 0.0010 | time_forward 2.7330 | time_backward 4.7390
[2023-09-02 18:53:27,155::train::INFO] [train] Iter 13188 | loss 1.2557 | loss(rot) 0.5611 | loss(pos) 0.4298 | loss(seq) 0.2647 | grad 3.5931 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4530
[2023-09-02 18:53:29,875::train::INFO] [train] Iter 13189 | loss 1.5786 | loss(rot) 1.3556 | loss(pos) 0.1975 | loss(seq) 0.0254 | grad 5.1898 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4560
[2023-09-02 18:53:38,202::train::INFO] [train] Iter 13190 | loss 1.2434 | loss(rot) 0.4685 | loss(pos) 0.3055 | loss(seq) 0.4694 | grad 4.2465 | lr 0.0010 | time_forward 3.4730 | time_backward 4.8520
[2023-09-02 18:53:47,873::train::INFO] [train] Iter 13191 | loss 1.3086 | loss(rot) 0.9814 | loss(pos) 0.0824 | loss(seq) 0.2448 | grad 3.6929 | lr 0.0010 | time_forward 3.9960 | time_backward 5.6710
[2023-09-02 18:53:57,457::train::INFO] [train] Iter 13192 | loss 1.2250 | loss(rot) 0.5877 | loss(pos) 0.2500 | loss(seq) 0.3872 | grad 3.2652 | lr 0.0010 | time_forward 3.9500 | time_backward 5.6300
[2023-09-02 18:54:05,657::train::INFO] [train] Iter 13193 | loss 0.9722 | loss(rot) 0.8876 | loss(pos) 0.0621 | loss(seq) 0.0226 | grad 4.0000 | lr 0.0010 | time_forward 3.5840 | time_backward 4.6120
[2023-09-02 18:54:14,230::train::INFO] [train] Iter 13194 | loss 2.1547 | loss(rot) 1.8546 | loss(pos) 0.0705 | loss(seq) 0.2296 | grad 3.9062 | lr 0.0010 | time_forward 3.6450 | time_backward 4.9240
[2023-09-02 18:54:23,459::train::INFO] [train] Iter 13195 | loss 2.9145 | loss(rot) 2.0573 | loss(pos) 0.3741 | loss(seq) 0.4831 | grad 4.9055 | lr 0.0010 | time_forward 3.8380 | time_backward 5.3880
[2023-09-02 18:54:26,163::train::INFO] [train] Iter 13196 | loss 0.9547 | loss(rot) 0.4722 | loss(pos) 0.2546 | loss(seq) 0.2279 | grad 3.3290 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4570
[2023-09-02 18:54:28,778::train::INFO] [train] Iter 13197 | loss 1.6016 | loss(rot) 1.4782 | loss(pos) 0.1203 | loss(seq) 0.0031 | grad 5.6257 | lr 0.0010 | time_forward 1.2070 | time_backward 1.4040
[2023-09-02 18:54:36,549::train::INFO] [train] Iter 13198 | loss 1.8647 | loss(rot) 1.7600 | loss(pos) 0.1043 | loss(seq) 0.0003 | grad 7.3001 | lr 0.0010 | time_forward 3.5170 | time_backward 4.2520
[2023-09-02 18:54:39,150::train::INFO] [train] Iter 13199 | loss 0.7570 | loss(rot) 0.0929 | loss(pos) 0.6191 | loss(seq) 0.0450 | grad 5.3449 | lr 0.0010 | time_forward 1.2100 | time_backward 1.3880
[2023-09-02 18:54:47,822::train::INFO] [train] Iter 13200 | loss 1.1211 | loss(rot) 0.4217 | loss(pos) 0.2843 | loss(seq) 0.4150 | grad 3.1441 | lr 0.0010 | time_forward 3.6710 | time_backward 4.9980
[2023-09-02 18:54:55,750::train::INFO] [train] Iter 13201 | loss 1.7394 | loss(rot) 1.4334 | loss(pos) 0.0621 | loss(seq) 0.2439 | grad 6.3728 | lr 0.0010 | time_forward 3.6510 | time_backward 4.2710
[2023-09-02 18:55:16,350::train::INFO] [train] Iter 13202 | loss 0.6978 | loss(rot) 0.5908 | loss(pos) 0.1036 | loss(seq) 0.0034 | grad 3.2278 | lr 0.0010 | time_forward 13.7980 | time_backward 6.7980
[2023-09-02 18:55:26,368::train::INFO] [train] Iter 13203 | loss 1.3972 | loss(rot) 0.4385 | loss(pos) 0.2057 | loss(seq) 0.7530 | grad 4.8388 | lr 0.0010 | time_forward 4.2000 | time_backward 5.8150
[2023-09-02 18:55:34,473::train::INFO] [train] Iter 13204 | loss 1.4727 | loss(rot) 1.3209 | loss(pos) 0.0755 | loss(seq) 0.0763 | grad 3.8845 | lr 0.0010 | time_forward 3.4180 | time_backward 4.6840
[2023-09-02 18:55:43,575::train::INFO] [train] Iter 13205 | loss 0.9080 | loss(rot) 0.2249 | loss(pos) 0.6225 | loss(seq) 0.0605 | grad 4.6359 | lr 0.0010 | time_forward 3.4230 | time_backward 5.6750
[2023-09-02 18:55:46,321::train::INFO] [train] Iter 13206 | loss 1.2258 | loss(rot) 0.4821 | loss(pos) 0.5026 | loss(seq) 0.2411 | grad 3.9679 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4740
[2023-09-02 18:55:58,968::train::INFO] [train] Iter 13207 | loss 2.4387 | loss(rot) 1.4850 | loss(pos) 0.4110 | loss(seq) 0.5427 | grad 4.5376 | lr 0.0010 | time_forward 3.9250 | time_backward 8.7180
[2023-09-02 18:56:02,265::train::INFO] [train] Iter 13208 | loss 0.9224 | loss(rot) 0.8437 | loss(pos) 0.0671 | loss(seq) 0.0115 | grad 3.8819 | lr 0.0010 | time_forward 1.2650 | time_backward 2.0290
[2023-09-02 18:56:18,370::train::INFO] [train] Iter 13209 | loss 2.5664 | loss(rot) 2.2532 | loss(pos) 0.1739 | loss(seq) 0.1393 | grad 8.6313 | lr 0.0010 | time_forward 13.9190 | time_backward 2.1820
[2023-09-02 18:56:27,553::train::INFO] [train] Iter 13210 | loss 1.4718 | loss(rot) 0.3638 | loss(pos) 0.4552 | loss(seq) 0.6528 | grad 4.7504 | lr 0.0010 | time_forward 4.0270 | time_backward 5.1520
[2023-09-02 18:56:33,798::train::INFO] [train] Iter 13211 | loss 1.7024 | loss(rot) 1.5291 | loss(pos) 0.1711 | loss(seq) 0.0022 | grad 7.3245 | lr 0.0010 | time_forward 2.5980 | time_backward 3.6440
[2023-09-02 18:56:48,524::train::INFO] [train] Iter 13212 | loss 1.6801 | loss(rot) 1.0947 | loss(pos) 0.1626 | loss(seq) 0.4229 | grad 6.0296 | lr 0.0010 | time_forward 13.2210 | time_backward 1.5020
[2023-09-02 18:56:51,949::train::INFO] [train] Iter 13213 | loss 2.1230 | loss(rot) 1.5767 | loss(pos) 0.1439 | loss(seq) 0.4024 | grad 3.0490 | lr 0.0010 | time_forward 1.5410 | time_backward 1.8800
[2023-09-02 18:57:34,449::train::INFO] [train] Iter 13214 | loss 2.2047 | loss(rot) 1.3509 | loss(pos) 0.3069 | loss(seq) 0.5469 | grad 4.5887 | lr 0.0010 | time_forward 35.1230 | time_backward 7.3730
[2023-09-02 18:57:44,954::train::INFO] [train] Iter 13215 | loss 1.9318 | loss(rot) 1.0650 | loss(pos) 0.3575 | loss(seq) 0.5093 | grad 6.9645 | lr 0.0010 | time_forward 5.4560 | time_backward 5.0410
[2023-09-02 18:57:55,727::train::INFO] [train] Iter 13216 | loss 1.3206 | loss(rot) 0.7499 | loss(pos) 0.2404 | loss(seq) 0.3302 | grad 3.0768 | lr 0.0010 | time_forward 4.7610 | time_backward 6.0090
[2023-09-02 18:57:58,697::train::INFO] [train] Iter 13217 | loss 1.2305 | loss(rot) 0.5636 | loss(pos) 0.1490 | loss(seq) 0.5179 | grad 3.7683 | lr 0.0010 | time_forward 1.4880 | time_backward 1.4780
[2023-09-02 18:58:07,878::train::INFO] [train] Iter 13218 | loss 2.3553 | loss(rot) 1.9021 | loss(pos) 0.1157 | loss(seq) 0.3375 | grad 5.9382 | lr 0.0010 | time_forward 3.9110 | time_backward 5.2660
[2023-09-02 18:58:15,365::train::INFO] [train] Iter 13219 | loss 1.0044 | loss(rot) 0.0856 | loss(pos) 0.8939 | loss(seq) 0.0250 | grad 4.5542 | lr 0.0010 | time_forward 3.2690 | time_backward 4.2150
[2023-09-02 18:58:18,902::train::INFO] [train] Iter 13220 | loss 1.7793 | loss(rot) 0.9707 | loss(pos) 0.2719 | loss(seq) 0.5367 | grad 4.7669 | lr 0.0010 | time_forward 1.7010 | time_backward 1.8270
[2023-09-02 18:58:26,461::train::INFO] [train] Iter 13221 | loss 0.5447 | loss(rot) 0.1690 | loss(pos) 0.3094 | loss(seq) 0.0663 | grad 3.8863 | lr 0.0010 | time_forward 3.2180 | time_backward 4.3260
[2023-09-02 18:58:35,213::train::INFO] [train] Iter 13222 | loss 1.2108 | loss(rot) 0.2954 | loss(pos) 0.8442 | loss(seq) 0.0712 | grad 5.3177 | lr 0.0010 | time_forward 3.7470 | time_backward 5.0000
[2023-09-02 18:58:45,131::train::INFO] [train] Iter 13223 | loss 1.6938 | loss(rot) 1.0052 | loss(pos) 0.1636 | loss(seq) 0.5250 | grad 4.0721 | lr 0.0010 | time_forward 4.0090 | time_backward 5.9050
[2023-09-02 18:58:54,808::train::INFO] [train] Iter 13224 | loss 1.6471 | loss(rot) 1.5593 | loss(pos) 0.0791 | loss(seq) 0.0087 | grad 10.2484 | lr 0.0010 | time_forward 3.9950 | time_backward 5.6640
[2023-09-02 18:59:07,819::train::INFO] [train] Iter 13225 | loss 2.5067 | loss(rot) 2.2290 | loss(pos) 0.2775 | loss(seq) 0.0001 | grad 4.7729 | lr 0.0010 | time_forward 6.2620 | time_backward 6.7450
[2023-09-02 18:59:19,485::train::INFO] [train] Iter 13226 | loss 1.2863 | loss(rot) 0.9701 | loss(pos) 0.1811 | loss(seq) 0.1352 | grad 4.9130 | lr 0.0010 | time_forward 4.6830 | time_backward 6.9800
[2023-09-02 18:59:30,691::train::INFO] [train] Iter 13227 | loss 1.4126 | loss(rot) 0.4968 | loss(pos) 0.4695 | loss(seq) 0.4464 | grad 3.7846 | lr 0.0010 | time_forward 4.4010 | time_backward 6.8000
[2023-09-02 18:59:41,000::train::INFO] [train] Iter 13228 | loss 1.6914 | loss(rot) 0.2551 | loss(pos) 1.4347 | loss(seq) 0.0016 | grad 6.5357 | lr 0.0010 | time_forward 4.3620 | time_backward 5.9440
[2023-09-02 18:59:49,578::train::INFO] [train] Iter 13229 | loss 2.1049 | loss(rot) 1.9372 | loss(pos) 0.1489 | loss(seq) 0.0188 | grad 6.6512 | lr 0.0010 | time_forward 3.6900 | time_backward 4.8840
[2023-09-02 19:00:02,335::train::INFO] [train] Iter 13230 | loss 1.1507 | loss(rot) 0.5528 | loss(pos) 0.3495 | loss(seq) 0.2483 | grad 4.0071 | lr 0.0010 | time_forward 6.5460 | time_backward 6.2080
[2023-09-02 19:00:11,240::train::INFO] [train] Iter 13231 | loss 1.2611 | loss(rot) 0.6861 | loss(pos) 0.1017 | loss(seq) 0.4733 | grad 4.5108 | lr 0.0010 | time_forward 3.7560 | time_backward 5.1460
[2023-09-02 19:00:20,161::train::INFO] [train] Iter 13232 | loss 1.3640 | loss(rot) 0.0303 | loss(pos) 1.3307 | loss(seq) 0.0031 | grad 7.8847 | lr 0.0010 | time_forward 3.7050 | time_backward 5.2110
[2023-09-02 19:00:23,164::train::INFO] [train] Iter 13233 | loss 1.0436 | loss(rot) 0.2923 | loss(pos) 0.1867 | loss(seq) 0.5645 | grad 3.1607 | lr 0.0010 | time_forward 1.5070 | time_backward 1.4920
[2023-09-02 19:00:32,044::train::INFO] [train] Iter 13234 | loss 1.4787 | loss(rot) 1.3015 | loss(pos) 0.1742 | loss(seq) 0.0030 | grad 7.7685 | lr 0.0010 | time_forward 3.7320 | time_backward 5.1440
[2023-09-02 19:00:34,635::train::INFO] [train] Iter 13235 | loss 1.8220 | loss(rot) 1.2118 | loss(pos) 0.2514 | loss(seq) 0.3588 | grad 5.4473 | lr 0.0010 | time_forward 1.2270 | time_backward 1.3610
[2023-09-02 19:00:44,599::train::INFO] [train] Iter 13236 | loss 1.3597 | loss(rot) 0.6953 | loss(pos) 0.2191 | loss(seq) 0.4453 | grad 4.8346 | lr 0.0010 | time_forward 3.9960 | time_backward 5.9640
[2023-09-02 19:00:52,239::train::INFO] [train] Iter 13237 | loss 1.1726 | loss(rot) 0.2843 | loss(pos) 0.8370 | loss(seq) 0.0513 | grad 4.5385 | lr 0.0010 | time_forward 3.2220 | time_backward 4.4150
[2023-09-02 19:01:00,606::train::INFO] [train] Iter 13238 | loss 2.6542 | loss(rot) 2.3374 | loss(pos) 0.1518 | loss(seq) 0.1650 | grad 5.0109 | lr 0.0010 | time_forward 3.5000 | time_backward 4.8630
[2023-09-02 19:01:03,304::train::INFO] [train] Iter 13239 | loss 1.6252 | loss(rot) 1.3597 | loss(pos) 0.1793 | loss(seq) 0.0862 | grad 5.9209 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4270
[2023-09-02 19:01:06,056::train::INFO] [train] Iter 13240 | loss 2.2576 | loss(rot) 1.3085 | loss(pos) 0.5904 | loss(seq) 0.3587 | grad 6.7239 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4540
[2023-09-02 19:01:14,614::train::INFO] [train] Iter 13241 | loss 1.2195 | loss(rot) 0.5187 | loss(pos) 0.3108 | loss(seq) 0.3900 | grad 4.6992 | lr 0.0010 | time_forward 3.6130 | time_backward 4.9420
[2023-09-02 19:01:24,702::train::INFO] [train] Iter 13242 | loss 1.1094 | loss(rot) 0.2438 | loss(pos) 0.6497 | loss(seq) 0.2158 | grad 3.7747 | lr 0.0010 | time_forward 3.9170 | time_backward 6.1670
[2023-09-02 19:01:32,808::train::INFO] [train] Iter 13243 | loss 1.9205 | loss(rot) 1.8224 | loss(pos) 0.0935 | loss(seq) 0.0046 | grad 4.4276 | lr 0.0010 | time_forward 3.3780 | time_backward 4.7250
[2023-09-02 19:01:39,493::train::INFO] [train] Iter 13244 | loss 1.3853 | loss(rot) 0.5179 | loss(pos) 0.3951 | loss(seq) 0.4723 | grad 5.1771 | lr 0.0010 | time_forward 2.8740 | time_backward 3.8070
[2023-09-02 19:01:53,210::train::INFO] [train] Iter 13245 | loss 0.6395 | loss(rot) 0.0773 | loss(pos) 0.5308 | loss(seq) 0.0314 | grad 5.4697 | lr 0.0010 | time_forward 5.6020 | time_backward 8.1110
[2023-09-02 19:02:03,199::train::INFO] [train] Iter 13246 | loss 2.2245 | loss(rot) 1.8360 | loss(pos) 0.1126 | loss(seq) 0.2759 | grad 4.9496 | lr 0.0010 | time_forward 4.2770 | time_backward 5.7080
[2023-09-02 19:02:06,079::train::INFO] [train] Iter 13247 | loss 2.6672 | loss(rot) 2.5327 | loss(pos) 0.0874 | loss(seq) 0.0471 | grad 16.9376 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5350
[2023-09-02 19:02:15,654::train::INFO] [train] Iter 13248 | loss 2.2088 | loss(rot) 1.6953 | loss(pos) 0.1412 | loss(seq) 0.3723 | grad 5.3222 | lr 0.0010 | time_forward 3.9750 | time_backward 5.5970
[2023-09-02 19:02:18,503::train::INFO] [train] Iter 13249 | loss 2.3653 | loss(rot) 1.2080 | loss(pos) 0.6422 | loss(seq) 0.5151 | grad 3.4620 | lr 0.0010 | time_forward 1.3150 | time_backward 1.5300
[2023-09-02 19:02:20,911::train::INFO] [train] Iter 13250 | loss 1.3468 | loss(rot) 0.4249 | loss(pos) 0.4382 | loss(seq) 0.4837 | grad 4.5042 | lr 0.0010 | time_forward 1.1030 | time_backward 1.3010
[2023-09-02 19:02:23,929::train::INFO] [train] Iter 13251 | loss 1.7333 | loss(rot) 1.5140 | loss(pos) 0.2186 | loss(seq) 0.0007 | grad 8.0895 | lr 0.0010 | time_forward 1.3630 | time_backward 1.5420
[2023-09-02 19:02:33,330::train::INFO] [train] Iter 13252 | loss 1.3250 | loss(rot) 1.0781 | loss(pos) 0.2165 | loss(seq) 0.0304 | grad 5.3628 | lr 0.0010 | time_forward 3.8830 | time_backward 5.5140
[2023-09-02 19:02:43,594::train::INFO] [train] Iter 13253 | loss 0.9619 | loss(rot) 0.0917 | loss(pos) 0.8535 | loss(seq) 0.0167 | grad 4.1965 | lr 0.0010 | time_forward 4.1450 | time_backward 6.1150
[2023-09-02 19:02:46,479::train::INFO] [train] Iter 13254 | loss 1.3007 | loss(rot) 1.0653 | loss(pos) 0.0984 | loss(seq) 0.1370 | grad 4.5335 | lr 0.0010 | time_forward 1.3390 | time_backward 1.5430
[2023-09-02 19:02:55,731::train::INFO] [train] Iter 13255 | loss 1.2411 | loss(rot) 1.0748 | loss(pos) 0.1434 | loss(seq) 0.0229 | grad 5.6584 | lr 0.0010 | time_forward 3.9200 | time_backward 5.3280
[2023-09-02 19:03:04,564::train::INFO] [train] Iter 13256 | loss 2.3755 | loss(rot) 1.5780 | loss(pos) 0.3173 | loss(seq) 0.4801 | grad 5.5853 | lr 0.0010 | time_forward 3.6670 | time_backward 5.1620
[2023-09-02 19:03:13,077::train::INFO] [train] Iter 13257 | loss 1.3296 | loss(rot) 1.1630 | loss(pos) 0.1645 | loss(seq) 0.0020 | grad 5.1745 | lr 0.0010 | time_forward 3.5280 | time_backward 4.9820
[2023-09-02 19:03:21,901::train::INFO] [train] Iter 13258 | loss 1.3317 | loss(rot) 0.2643 | loss(pos) 0.5331 | loss(seq) 0.5343 | grad 5.7058 | lr 0.0010 | time_forward 3.7240 | time_backward 5.0980
[2023-09-02 19:03:24,604::train::INFO] [train] Iter 13259 | loss 1.5351 | loss(rot) 1.4332 | loss(pos) 0.1019 | loss(seq) 0.0000 | grad 6.0541 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4210
[2023-09-02 19:03:27,314::train::INFO] [train] Iter 13260 | loss 1.2275 | loss(rot) 0.0428 | loss(pos) 1.1805 | loss(seq) 0.0042 | grad 8.2872 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4400
[2023-09-02 19:03:35,347::train::INFO] [train] Iter 13261 | loss 1.6000 | loss(rot) 0.9347 | loss(pos) 0.3035 | loss(seq) 0.3618 | grad 5.6901 | lr 0.0010 | time_forward 3.4620 | time_backward 4.5670
[2023-09-02 19:03:38,026::train::INFO] [train] Iter 13262 | loss 1.4908 | loss(rot) 0.3424 | loss(pos) 1.1217 | loss(seq) 0.0267 | grad 6.2675 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4180
[2023-09-02 19:03:40,274::train::INFO] [train] Iter 13263 | loss 2.0218 | loss(rot) 1.8304 | loss(pos) 0.1248 | loss(seq) 0.0665 | grad 4.8556 | lr 0.0010 | time_forward 1.0400 | time_backward 1.2040
[2023-09-02 19:03:48,680::train::INFO] [train] Iter 13264 | loss 0.9723 | loss(rot) 0.0369 | loss(pos) 0.9278 | loss(seq) 0.0077 | grad 3.9478 | lr 0.0010 | time_forward 3.5810 | time_backward 4.8220
[2023-09-02 19:03:51,368::train::INFO] [train] Iter 13265 | loss 1.4296 | loss(rot) 1.2884 | loss(pos) 0.1060 | loss(seq) 0.0352 | grad 4.8265 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4330
[2023-09-02 19:03:53,579::train::INFO] [train] Iter 13266 | loss 1.5438 | loss(rot) 0.5979 | loss(pos) 0.3217 | loss(seq) 0.6243 | grad 5.7004 | lr 0.0010 | time_forward 1.0490 | time_backward 1.1590
[2023-09-02 19:03:56,224::train::INFO] [train] Iter 13267 | loss 0.8159 | loss(rot) 0.1281 | loss(pos) 0.6522 | loss(seq) 0.0356 | grad 3.3087 | lr 0.0010 | time_forward 1.2580 | time_backward 1.3830
[2023-09-02 19:03:59,313::train::INFO] [train] Iter 13268 | loss 1.7883 | loss(rot) 1.4783 | loss(pos) 0.3100 | loss(seq) 0.0000 | grad 6.5252 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4250
[2023-09-02 19:04:07,571::train::INFO] [train] Iter 13269 | loss 1.5788 | loss(rot) 1.2886 | loss(pos) 0.1664 | loss(seq) 0.1238 | grad 3.1380 | lr 0.0010 | time_forward 3.4410 | time_backward 4.8150
[2023-09-02 19:04:14,915::train::INFO] [train] Iter 13270 | loss 1.9640 | loss(rot) 0.0713 | loss(pos) 1.8912 | loss(seq) 0.0015 | grad 9.0519 | lr 0.0010 | time_forward 3.0390 | time_backward 4.3010
[2023-09-02 19:04:17,762::train::INFO] [train] Iter 13271 | loss 2.1098 | loss(rot) 0.9185 | loss(pos) 0.7423 | loss(seq) 0.4489 | grad 6.8057 | lr 0.0010 | time_forward 1.3020 | time_backward 1.5420
[2023-09-02 19:04:26,498::train::INFO] [train] Iter 13272 | loss 1.9589 | loss(rot) 0.8721 | loss(pos) 0.7998 | loss(seq) 0.2870 | grad 6.2920 | lr 0.0010 | time_forward 3.6240 | time_backward 5.1090
[2023-09-02 19:04:35,128::train::INFO] [train] Iter 13273 | loss 0.9733 | loss(rot) 0.2939 | loss(pos) 0.0810 | loss(seq) 0.5984 | grad 4.6582 | lr 0.0010 | time_forward 3.5590 | time_backward 5.0670
[2023-09-02 19:04:43,525::train::INFO] [train] Iter 13274 | loss 0.9028 | loss(rot) 0.4587 | loss(pos) 0.2483 | loss(seq) 0.1957 | grad 4.9224 | lr 0.0010 | time_forward 3.4670 | time_backward 4.9270
[2023-09-02 19:04:53,579::train::INFO] [train] Iter 13275 | loss 1.8996 | loss(rot) 1.0934 | loss(pos) 0.1808 | loss(seq) 0.6254 | grad 3.4323 | lr 0.0010 | time_forward 4.0150 | time_backward 6.0360
[2023-09-02 19:04:55,874::train::INFO] [train] Iter 13276 | loss 1.9375 | loss(rot) 1.4616 | loss(pos) 0.1597 | loss(seq) 0.3162 | grad 4.0435 | lr 0.0010 | time_forward 1.0360 | time_backward 1.2560
[2023-09-02 19:04:58,535::train::INFO] [train] Iter 13277 | loss 2.2664 | loss(rot) 1.8935 | loss(pos) 0.1801 | loss(seq) 0.1928 | grad 5.4296 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4180
[2023-09-02 19:05:07,430::train::INFO] [train] Iter 13278 | loss 1.9447 | loss(rot) 1.7773 | loss(pos) 0.1522 | loss(seq) 0.0153 | grad 5.6676 | lr 0.0010 | time_forward 3.7430 | time_backward 5.1480
[2023-09-02 19:05:10,099::train::INFO] [train] Iter 13279 | loss 1.2705 | loss(rot) 0.8111 | loss(pos) 0.2435 | loss(seq) 0.2159 | grad 6.4402 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4050
[2023-09-02 19:05:19,391::train::INFO] [train] Iter 13280 | loss 1.8113 | loss(rot) 1.2648 | loss(pos) 0.1341 | loss(seq) 0.4124 | grad 4.8078 | lr 0.0010 | time_forward 3.7250 | time_backward 5.0490
[2023-09-02 19:05:27,996::train::INFO] [train] Iter 13281 | loss 3.2273 | loss(rot) 2.8702 | loss(pos) 0.3564 | loss(seq) 0.0006 | grad 6.6357 | lr 0.0010 | time_forward 3.6620 | time_backward 4.9400