text
stringlengths 56
1.16k
|
---|
[2023-09-02 20:03:05,449::train::INFO] [train] Iter 13782 | loss 1.0913 | loss(rot) 0.2767 | loss(pos) 0.7938 | loss(seq) 0.0208 | grad 5.5710 | lr 0.0010 | time_forward 2.9780 | time_backward 3.9190 |
[2023-09-02 20:03:15,430::train::INFO] [train] Iter 13783 | loss 1.7813 | loss(rot) 1.1875 | loss(pos) 0.1568 | loss(seq) 0.4370 | grad 3.0826 | lr 0.0010 | time_forward 4.2170 | time_backward 5.7600 |
[2023-09-02 20:03:23,792::train::INFO] [train] Iter 13784 | loss 2.3284 | loss(rot) 1.3086 | loss(pos) 0.3599 | loss(seq) 0.6599 | grad 5.1228 | lr 0.0010 | time_forward 3.5370 | time_backward 4.8200 |
[2023-09-02 20:03:32,539::train::INFO] [train] Iter 13785 | loss 1.0502 | loss(rot) 0.9877 | loss(pos) 0.0499 | loss(seq) 0.0126 | grad 9.1852 | lr 0.0010 | time_forward 3.4840 | time_backward 5.2600 |
[2023-09-02 20:03:40,703::train::INFO] [train] Iter 13786 | loss 2.5337 | loss(rot) 2.4047 | loss(pos) 0.1283 | loss(seq) 0.0007 | grad 16.2262 | lr 0.0010 | time_forward 3.2100 | time_backward 4.9510 |
[2023-09-02 20:03:44,090::train::INFO] [train] Iter 13787 | loss 2.2738 | loss(rot) 1.3746 | loss(pos) 0.3170 | loss(seq) 0.5822 | grad 8.0216 | lr 0.0010 | time_forward 1.4330 | time_backward 1.9510 |
[2023-09-02 20:03:54,175::train::INFO] [train] Iter 13788 | loss 0.9250 | loss(rot) 0.1492 | loss(pos) 0.7370 | loss(seq) 0.0388 | grad 6.1844 | lr 0.0010 | time_forward 3.8690 | time_backward 6.2130 |
[2023-09-02 20:04:03,514::train::INFO] [train] Iter 13789 | loss 1.3757 | loss(rot) 1.2099 | loss(pos) 0.1652 | loss(seq) 0.0007 | grad 5.3116 | lr 0.0010 | time_forward 3.7330 | time_backward 5.6020 |
[2023-09-02 20:04:12,132::train::INFO] [train] Iter 13790 | loss 3.2650 | loss(rot) 1.7273 | loss(pos) 0.8883 | loss(seq) 0.6495 | grad 7.4267 | lr 0.0010 | time_forward 3.5770 | time_backward 5.0370 |
[2023-09-02 20:04:21,019::train::INFO] [train] Iter 13791 | loss 1.5797 | loss(rot) 1.3847 | loss(pos) 0.1636 | loss(seq) 0.0315 | grad 4.7133 | lr 0.0010 | time_forward 3.9120 | time_backward 4.9720 |
[2023-09-02 20:04:29,816::train::INFO] [train] Iter 13792 | loss 2.7912 | loss(rot) 2.0638 | loss(pos) 0.2994 | loss(seq) 0.4279 | grad 23.0966 | lr 0.0010 | time_forward 3.6710 | time_backward 5.1220 |
[2023-09-02 20:04:39,930::train::INFO] [train] Iter 13793 | loss 2.0047 | loss(rot) 1.0515 | loss(pos) 0.3539 | loss(seq) 0.5993 | grad 4.5134 | lr 0.0010 | time_forward 3.8860 | time_backward 6.2240 |
[2023-09-02 20:04:49,681::train::INFO] [train] Iter 13794 | loss 1.5299 | loss(rot) 1.3825 | loss(pos) 0.1096 | loss(seq) 0.0377 | grad 5.0210 | lr 0.0010 | time_forward 3.9910 | time_backward 5.7570 |
[2023-09-02 20:04:52,112::train::INFO] [train] Iter 13795 | loss 1.9779 | loss(rot) 1.7342 | loss(pos) 0.0950 | loss(seq) 0.1487 | grad 5.8218 | lr 0.0010 | time_forward 1.1350 | time_backward 1.2930 |
[2023-09-02 20:04:54,582::train::INFO] [train] Iter 13796 | loss 1.8932 | loss(rot) 1.0318 | loss(pos) 0.3977 | loss(seq) 0.4637 | grad 4.7769 | lr 0.0010 | time_forward 1.1710 | time_backward 1.2840 |
[2023-09-02 20:04:57,370::train::INFO] [train] Iter 13797 | loss 1.6278 | loss(rot) 1.4409 | loss(pos) 0.1131 | loss(seq) 0.0738 | grad 8.0632 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4690 |
[2023-09-02 20:05:07,409::train::INFO] [train] Iter 13798 | loss 1.1862 | loss(rot) 1.1089 | loss(pos) 0.0761 | loss(seq) 0.0012 | grad 4.6254 | lr 0.0010 | time_forward 4.1040 | time_backward 5.9310 |
[2023-09-02 20:05:17,704::train::INFO] [train] Iter 13799 | loss 0.6980 | loss(rot) 0.1387 | loss(pos) 0.5259 | loss(seq) 0.0334 | grad 4.3026 | lr 0.0010 | time_forward 4.1690 | time_backward 6.1210 |
[2023-09-02 20:05:20,527::train::INFO] [train] Iter 13800 | loss 1.0914 | loss(rot) 0.0584 | loss(pos) 1.0233 | loss(seq) 0.0096 | grad 5.1607 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4990 |
[2023-09-02 20:05:30,893::train::INFO] [train] Iter 13801 | loss 2.0587 | loss(rot) 0.0464 | loss(pos) 2.0094 | loss(seq) 0.0029 | grad 5.3148 | lr 0.0010 | time_forward 4.1420 | time_backward 6.1870 |
[2023-09-02 20:05:40,986::train::INFO] [train] Iter 13802 | loss 2.4503 | loss(rot) 2.0422 | loss(pos) 0.1672 | loss(seq) 0.2409 | grad 4.6701 | lr 0.0010 | time_forward 3.8260 | time_backward 6.2640 |
[2023-09-02 20:05:44,520::train::INFO] [train] Iter 13803 | loss 2.5143 | loss(rot) 1.6647 | loss(pos) 0.3065 | loss(seq) 0.5430 | grad 4.5619 | lr 0.0010 | time_forward 1.4790 | time_backward 2.0510 |
[2023-09-02 20:05:52,828::train::INFO] [train] Iter 13804 | loss 2.9719 | loss(rot) 2.2705 | loss(pos) 0.1809 | loss(seq) 0.5205 | grad 5.8141 | lr 0.0010 | time_forward 3.3640 | time_backward 4.9420 |
[2023-09-02 20:06:01,265::train::INFO] [train] Iter 13805 | loss 1.4698 | loss(rot) 1.0934 | loss(pos) 0.0889 | loss(seq) 0.2875 | grad 4.8128 | lr 0.0010 | time_forward 3.6790 | time_backward 4.7540 |
[2023-09-02 20:06:10,852::train::INFO] [train] Iter 13806 | loss 1.2552 | loss(rot) 0.2901 | loss(pos) 0.7400 | loss(seq) 0.2252 | grad 3.8769 | lr 0.0010 | time_forward 3.9760 | time_backward 5.6070 |
[2023-09-02 20:06:18,993::train::INFO] [train] Iter 13807 | loss 1.2985 | loss(rot) 0.5724 | loss(pos) 0.2241 | loss(seq) 0.5020 | grad 4.3138 | lr 0.0010 | time_forward 3.1700 | time_backward 4.9680 |
[2023-09-02 20:06:21,775::train::INFO] [train] Iter 13808 | loss 1.5684 | loss(rot) 0.6135 | loss(pos) 0.3421 | loss(seq) 0.6128 | grad 5.8249 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4790 |
[2023-09-02 20:06:24,570::train::INFO] [train] Iter 13809 | loss 1.0711 | loss(rot) 0.5826 | loss(pos) 0.2086 | loss(seq) 0.2799 | grad 5.1675 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4720 |
[2023-09-02 20:06:27,370::train::INFO] [train] Iter 13810 | loss 1.6683 | loss(rot) 0.0514 | loss(pos) 1.6119 | loss(seq) 0.0051 | grad 5.6755 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4860 |
[2023-09-02 20:06:36,371::train::INFO] [train] Iter 13811 | loss 1.5222 | loss(rot) 0.7130 | loss(pos) 0.2608 | loss(seq) 0.5484 | grad 4.2438 | lr 0.0010 | time_forward 3.7590 | time_backward 5.2390 |
[2023-09-02 20:06:45,004::train::INFO] [train] Iter 13812 | loss 1.5153 | loss(rot) 1.4105 | loss(pos) 0.0891 | loss(seq) 0.0157 | grad 6.0547 | lr 0.0010 | time_forward 3.4070 | time_backward 5.2220 |
[2023-09-02 20:06:47,777::train::INFO] [train] Iter 13813 | loss 1.8960 | loss(rot) 0.6672 | loss(pos) 0.7470 | loss(seq) 0.4818 | grad 9.2437 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4870 |
[2023-09-02 20:06:58,121::train::INFO] [train] Iter 13814 | loss 1.3174 | loss(rot) 0.7156 | loss(pos) 0.1979 | loss(seq) 0.4039 | grad 5.4334 | lr 0.0010 | time_forward 3.9370 | time_backward 6.4030 |
[2023-09-02 20:07:05,736::train::INFO] [train] Iter 13815 | loss 2.1818 | loss(rot) 1.9728 | loss(pos) 0.1010 | loss(seq) 0.1080 | grad 5.2297 | lr 0.0010 | time_forward 2.9790 | time_backward 4.6330 |
[2023-09-02 20:07:16,099::train::INFO] [train] Iter 13816 | loss 1.4730 | loss(rot) 0.2800 | loss(pos) 0.8434 | loss(seq) 0.3496 | grad 4.4429 | lr 0.0010 | time_forward 4.1940 | time_backward 6.1650 |
[2023-09-02 20:07:25,819::train::INFO] [train] Iter 13817 | loss 1.7245 | loss(rot) 1.4883 | loss(pos) 0.2342 | loss(seq) 0.0020 | grad 9.1032 | lr 0.0010 | time_forward 3.9880 | time_backward 5.7200 |
[2023-09-02 20:07:34,801::train::INFO] [train] Iter 13818 | loss 2.1278 | loss(rot) 1.7805 | loss(pos) 0.2663 | loss(seq) 0.0811 | grad 7.2555 | lr 0.0010 | time_forward 3.6270 | time_backward 5.3520 |
[2023-09-02 20:07:43,977::train::INFO] [train] Iter 13819 | loss 1.7004 | loss(rot) 0.8316 | loss(pos) 0.2006 | loss(seq) 0.6683 | grad 4.0303 | lr 0.0010 | time_forward 3.8570 | time_backward 5.3140 |
[2023-09-02 20:07:51,839::train::INFO] [train] Iter 13820 | loss 1.8576 | loss(rot) 1.4664 | loss(pos) 0.1676 | loss(seq) 0.2236 | grad 6.2613 | lr 0.0010 | time_forward 3.3020 | time_backward 4.5570 |
[2023-09-02 20:07:54,649::train::INFO] [train] Iter 13821 | loss 1.0168 | loss(rot) 0.0831 | loss(pos) 0.9129 | loss(seq) 0.0208 | grad 7.0144 | lr 0.0010 | time_forward 1.2960 | time_backward 1.5100 |
[2023-09-02 20:08:05,050::train::INFO] [train] Iter 13822 | loss 1.4565 | loss(rot) 0.0303 | loss(pos) 1.4222 | loss(seq) 0.0040 | grad 7.5941 | lr 0.0010 | time_forward 4.1700 | time_backward 6.2280 |
[2023-09-02 20:08:15,405::train::INFO] [train] Iter 13823 | loss 1.2511 | loss(rot) 0.5287 | loss(pos) 0.2972 | loss(seq) 0.4252 | grad 3.7442 | lr 0.0010 | time_forward 4.1650 | time_backward 6.1860 |
[2023-09-02 20:08:18,156::train::INFO] [train] Iter 13824 | loss 1.6879 | loss(rot) 0.9753 | loss(pos) 0.3613 | loss(seq) 0.3512 | grad 4.7191 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4760 |
[2023-09-02 20:08:21,055::train::INFO] [train] Iter 13825 | loss 0.6295 | loss(rot) 0.1387 | loss(pos) 0.4671 | loss(seq) 0.0236 | grad 3.6105 | lr 0.0010 | time_forward 1.4170 | time_backward 1.4780 |
[2023-09-02 20:08:31,279::train::INFO] [train] Iter 13826 | loss 0.7185 | loss(rot) 0.1185 | loss(pos) 0.5825 | loss(seq) 0.0175 | grad 3.9369 | lr 0.0010 | time_forward 4.2570 | time_backward 5.9640 |
[2023-09-02 20:08:40,921::train::INFO] [train] Iter 13827 | loss 2.3364 | loss(rot) 1.9916 | loss(pos) 0.0847 | loss(seq) 0.2601 | grad 6.0496 | lr 0.0010 | time_forward 4.0860 | time_backward 5.5520 |
[2023-09-02 20:08:49,316::train::INFO] [train] Iter 13828 | loss 2.0104 | loss(rot) 1.7617 | loss(pos) 0.2487 | loss(seq) 0.0000 | grad 9.2308 | lr 0.0010 | time_forward 3.5370 | time_backward 4.8550 |
[2023-09-02 20:08:57,999::train::INFO] [train] Iter 13829 | loss 2.4085 | loss(rot) 1.8364 | loss(pos) 0.2428 | loss(seq) 0.3293 | grad 4.2577 | lr 0.0010 | time_forward 3.8680 | time_backward 4.8120 |
[2023-09-02 20:09:08,333::train::INFO] [train] Iter 13830 | loss 1.1737 | loss(rot) 0.0210 | loss(pos) 1.1492 | loss(seq) 0.0036 | grad 7.1408 | lr 0.0010 | time_forward 4.2770 | time_backward 6.0540 |
[2023-09-02 20:09:11,114::train::INFO] [train] Iter 13831 | loss 2.8292 | loss(rot) 2.2140 | loss(pos) 0.2362 | loss(seq) 0.3790 | grad 5.6788 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4880 |
[2023-09-02 20:09:19,021::train::INFO] [train] Iter 13832 | loss 1.2011 | loss(rot) 0.2415 | loss(pos) 0.4710 | loss(seq) 0.4886 | grad 5.9451 | lr 0.0010 | time_forward 3.2840 | time_backward 4.6190 |
[2023-09-02 20:09:28,942::train::INFO] [train] Iter 13833 | loss 2.0133 | loss(rot) 1.8906 | loss(pos) 0.1221 | loss(seq) 0.0006 | grad 8.3448 | lr 0.0010 | time_forward 4.3280 | time_backward 5.5900 |
[2023-09-02 20:09:31,803::train::INFO] [train] Iter 13834 | loss 1.2306 | loss(rot) 0.0563 | loss(pos) 1.1654 | loss(seq) 0.0089 | grad 8.1441 | lr 0.0010 | time_forward 1.3120 | time_backward 1.5460 |
[2023-09-02 20:09:42,283::train::INFO] [train] Iter 13835 | loss 1.9297 | loss(rot) 1.7747 | loss(pos) 0.1484 | loss(seq) 0.0066 | grad 5.2417 | lr 0.0010 | time_forward 4.1570 | time_backward 6.3200 |
[2023-09-02 20:09:52,403::train::INFO] [train] Iter 13836 | loss 1.3107 | loss(rot) 1.2214 | loss(pos) 0.0872 | loss(seq) 0.0021 | grad 4.7119 | lr 0.0010 | time_forward 4.0420 | time_backward 6.0750 |
[2023-09-02 20:10:01,875::train::INFO] [train] Iter 13837 | loss 1.5086 | loss(rot) 0.2733 | loss(pos) 0.6440 | loss(seq) 0.5914 | grad 4.9032 | lr 0.0010 | time_forward 3.7330 | time_backward 5.7240 |
[2023-09-02 20:10:11,343::train::INFO] [train] Iter 13838 | loss 1.2042 | loss(rot) 1.0497 | loss(pos) 0.1011 | loss(seq) 0.0534 | grad 4.4311 | lr 0.0010 | time_forward 3.6870 | time_backward 5.7770 |
[2023-09-02 20:10:13,650::train::INFO] [train] Iter 13839 | loss 1.0521 | loss(rot) 0.1970 | loss(pos) 0.8169 | loss(seq) 0.0382 | grad 6.6818 | lr 0.0010 | time_forward 1.0730 | time_backward 1.2300 |
[2023-09-02 20:10:23,561::train::INFO] [train] Iter 13840 | loss 2.2426 | loss(rot) 0.5788 | loss(pos) 1.6404 | loss(seq) 0.0234 | grad 7.3382 | lr 0.0010 | time_forward 4.0470 | time_backward 5.8460 |
[2023-09-02 20:10:33,839::train::INFO] [train] Iter 13841 | loss 1.5253 | loss(rot) 0.2087 | loss(pos) 1.2771 | loss(seq) 0.0395 | grad 7.7405 | lr 0.0010 | time_forward 4.3080 | time_backward 5.9670 |
[2023-09-02 20:10:43,955::train::INFO] [train] Iter 13842 | loss 0.8424 | loss(rot) 0.7080 | loss(pos) 0.0820 | loss(seq) 0.0524 | grad 6.4233 | lr 0.0010 | time_forward 4.2290 | time_backward 5.8840 |
[2023-09-02 20:10:54,355::train::INFO] [train] Iter 13843 | loss 1.6027 | loss(rot) 1.2099 | loss(pos) 0.1145 | loss(seq) 0.2784 | grad 5.5948 | lr 0.0010 | time_forward 4.2790 | time_backward 6.1170 |
[2023-09-02 20:11:02,980::train::INFO] [train] Iter 13844 | loss 1.6163 | loss(rot) 1.2909 | loss(pos) 0.3247 | loss(seq) 0.0007 | grad 7.4426 | lr 0.0010 | time_forward 3.7500 | time_backward 4.8720 |
[2023-09-02 20:11:12,488::train::INFO] [train] Iter 13845 | loss 1.2329 | loss(rot) 0.5841 | loss(pos) 0.2685 | loss(seq) 0.3803 | grad 4.3941 | lr 0.0010 | time_forward 4.1300 | time_backward 5.3750 |
[2023-09-02 20:11:21,136::train::INFO] [train] Iter 13846 | loss 1.2688 | loss(rot) 0.3433 | loss(pos) 0.8532 | loss(seq) 0.0724 | grad 5.5053 | lr 0.0010 | time_forward 3.7310 | time_backward 4.9130 |
[2023-09-02 20:11:23,935::train::INFO] [train] Iter 13847 | loss 1.4717 | loss(rot) 0.7286 | loss(pos) 0.2564 | loss(seq) 0.4866 | grad 4.6082 | lr 0.0010 | time_forward 1.3110 | time_backward 1.4840 |
[2023-09-02 20:11:34,037::train::INFO] [train] Iter 13848 | loss 1.2323 | loss(rot) 1.1079 | loss(pos) 0.1093 | loss(seq) 0.0152 | grad 4.3574 | lr 0.0010 | time_forward 4.1390 | time_backward 5.9600 |
[2023-09-02 20:11:45,780::train::INFO] [train] Iter 13849 | loss 1.4322 | loss(rot) 0.4715 | loss(pos) 0.5118 | loss(seq) 0.4490 | grad 3.0490 | lr 0.0010 | time_forward 6.1910 | time_backward 5.5480 |
[2023-09-02 20:11:55,871::train::INFO] [train] Iter 13850 | loss 1.3893 | loss(rot) 0.3276 | loss(pos) 0.5046 | loss(seq) 0.5571 | grad 5.2040 | lr 0.0010 | time_forward 4.2050 | time_backward 5.8830 |
[2023-09-02 20:11:59,344::train::INFO] [train] Iter 13851 | loss 2.4391 | loss(rot) 1.7805 | loss(pos) 0.1787 | loss(seq) 0.4799 | grad 4.2454 | lr 0.0010 | time_forward 1.4740 | time_backward 1.9960 |
[2023-09-02 20:12:08,671::train::INFO] [train] Iter 13852 | loss 0.7877 | loss(rot) 0.1865 | loss(pos) 0.5510 | loss(seq) 0.0502 | grad 3.6101 | lr 0.0010 | time_forward 3.7130 | time_backward 5.6100 |
[2023-09-02 20:12:18,403::train::INFO] [train] Iter 13853 | loss 1.5968 | loss(rot) 0.9512 | loss(pos) 0.3215 | loss(seq) 0.3241 | grad 4.9687 | lr 0.0010 | time_forward 3.7900 | time_backward 5.9390 |
[2023-09-02 20:12:26,715::train::INFO] [train] Iter 13854 | loss 0.7591 | loss(rot) 0.0707 | loss(pos) 0.6677 | loss(seq) 0.0207 | grad 5.0332 | lr 0.0010 | time_forward 3.2150 | time_backward 5.0930 |
[2023-09-02 20:12:29,235::train::INFO] [train] Iter 13855 | loss 1.5029 | loss(rot) 0.2145 | loss(pos) 0.9053 | loss(seq) 0.3831 | grad 7.4016 | lr 0.0010 | time_forward 1.1680 | time_backward 1.3490 |
[2023-09-02 20:12:32,163::train::INFO] [train] Iter 13856 | loss 2.2929 | loss(rot) 1.8512 | loss(pos) 0.2542 | loss(seq) 0.1875 | grad 4.9579 | lr 0.0010 | time_forward 1.3800 | time_backward 1.5320 |
[2023-09-02 20:12:40,719::train::INFO] [train] Iter 13857 | loss 2.9053 | loss(rot) 2.5323 | loss(pos) 0.3019 | loss(seq) 0.0712 | grad 6.9945 | lr 0.0010 | time_forward 3.5210 | time_backward 5.0310 |
[2023-09-02 20:12:48,243::train::INFO] [train] Iter 13858 | loss 1.9121 | loss(rot) 1.6848 | loss(pos) 0.2184 | loss(seq) 0.0088 | grad 6.4467 | lr 0.0010 | time_forward 3.2070 | time_backward 4.3140 |
[2023-09-02 20:12:58,237::train::INFO] [train] Iter 13859 | loss 1.9691 | loss(rot) 1.3639 | loss(pos) 0.2434 | loss(seq) 0.3618 | grad 4.4340 | lr 0.0010 | time_forward 4.0070 | time_backward 5.9840 |
[2023-09-02 20:13:00,956::train::INFO] [train] Iter 13860 | loss 0.7807 | loss(rot) 0.0657 | loss(pos) 0.7092 | loss(seq) 0.0058 | grad 5.4639 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4750 |
[2023-09-02 20:13:09,664::train::INFO] [train] Iter 13861 | loss 1.6217 | loss(rot) 1.4819 | loss(pos) 0.1329 | loss(seq) 0.0069 | grad 9.6010 | lr 0.0010 | time_forward 3.8250 | time_backward 4.8790 |
[2023-09-02 20:13:19,548::train::INFO] [train] Iter 13862 | loss 1.2693 | loss(rot) 0.6240 | loss(pos) 0.1858 | loss(seq) 0.4595 | grad 5.2631 | lr 0.0010 | time_forward 4.1660 | time_backward 5.7150 |
[2023-09-02 20:13:28,242::train::INFO] [train] Iter 13863 | loss 1.2232 | loss(rot) 0.6321 | loss(pos) 0.1078 | loss(seq) 0.4833 | grad 6.3414 | lr 0.0010 | time_forward 3.6850 | time_backward 4.9920 |
[2023-09-02 20:13:37,820::train::INFO] [train] Iter 13864 | loss 2.1392 | loss(rot) 1.9043 | loss(pos) 0.1446 | loss(seq) 0.0903 | grad 5.6649 | lr 0.0010 | time_forward 3.9340 | time_backward 5.6420 |
[2023-09-02 20:13:47,618::train::INFO] [train] Iter 13865 | loss 0.7103 | loss(rot) 0.1138 | loss(pos) 0.4383 | loss(seq) 0.1583 | grad 3.8512 | lr 0.0010 | time_forward 3.9340 | time_backward 5.8600 |
[2023-09-02 20:13:57,362::train::INFO] [train] Iter 13866 | loss 0.9578 | loss(rot) 0.2680 | loss(pos) 0.3992 | loss(seq) 0.2906 | grad 3.6381 | lr 0.0010 | time_forward 4.0370 | time_backward 5.7030 |
[2023-09-02 20:14:07,396::train::INFO] [train] Iter 13867 | loss 2.2475 | loss(rot) 2.0903 | loss(pos) 0.1524 | loss(seq) 0.0048 | grad 3.7865 | lr 0.0010 | time_forward 4.1230 | time_backward 5.8980 |
[2023-09-02 20:14:15,911::train::INFO] [train] Iter 13868 | loss 1.1881 | loss(rot) 0.3120 | loss(pos) 0.2057 | loss(seq) 0.6704 | grad 4.1183 | lr 0.0010 | time_forward 3.6400 | time_backward 4.8710 |
[2023-09-02 20:14:25,298::train::INFO] [train] Iter 13869 | loss 1.3715 | loss(rot) 0.7425 | loss(pos) 0.3075 | loss(seq) 0.3215 | grad 2.6250 | lr 0.0010 | time_forward 3.8320 | time_backward 5.5510 |
[2023-09-02 20:14:33,774::train::INFO] [train] Iter 13870 | loss 1.0898 | loss(rot) 0.5808 | loss(pos) 0.4423 | loss(seq) 0.0667 | grad 3.3087 | lr 0.0010 | time_forward 3.3990 | time_backward 5.0730 |
[2023-09-02 20:14:43,767::train::INFO] [train] Iter 13871 | loss 0.8664 | loss(rot) 0.0368 | loss(pos) 0.8209 | loss(seq) 0.0087 | grad 5.1082 | lr 0.0010 | time_forward 4.0330 | time_backward 5.9580 |
[2023-09-02 20:14:46,193::train::INFO] [train] Iter 13872 | loss 2.1809 | loss(rot) 2.0440 | loss(pos) 0.1369 | loss(seq) 0.0000 | grad 12.0489 | lr 0.0010 | time_forward 1.1240 | time_backward 1.2990 |
[2023-09-02 20:14:57,120::train::INFO] [train] Iter 13873 | loss 2.2089 | loss(rot) 1.8453 | loss(pos) 0.1183 | loss(seq) 0.2453 | grad 6.1898 | lr 0.0010 | time_forward 4.4250 | time_backward 6.4990 |
[2023-09-02 20:15:06,720::train::INFO] [train] Iter 13874 | loss 0.8445 | loss(rot) 0.6347 | loss(pos) 0.0962 | loss(seq) 0.1136 | grad 4.5443 | lr 0.0010 | time_forward 3.9110 | time_backward 5.6700 |
[2023-09-02 20:15:09,664::train::INFO] [train] Iter 13875 | loss 0.7125 | loss(rot) 0.2238 | loss(pos) 0.3248 | loss(seq) 0.1639 | grad 4.5179 | lr 0.0010 | time_forward 1.3690 | time_backward 1.5700 |
[2023-09-02 20:15:12,665::train::INFO] [train] Iter 13876 | loss 4.3305 | loss(rot) 2.5604 | loss(pos) 1.7681 | loss(seq) 0.0020 | grad 13.4367 | lr 0.0010 | time_forward 1.4230 | time_backward 1.5750 |
[2023-09-02 20:15:17,148::train::INFO] [train] Iter 13877 | loss 1.0203 | loss(rot) 0.3110 | loss(pos) 0.3057 | loss(seq) 0.4037 | grad 3.9945 | lr 0.0010 | time_forward 1.9160 | time_backward 2.5630 |
[2023-09-02 20:15:25,399::train::INFO] [train] Iter 13878 | loss 1.0066 | loss(rot) 0.3791 | loss(pos) 0.1794 | loss(seq) 0.4481 | grad 4.8291 | lr 0.0010 | time_forward 3.5290 | time_backward 4.7180 |
[2023-09-02 20:15:35,413::train::INFO] [train] Iter 13879 | loss 1.9285 | loss(rot) 1.3785 | loss(pos) 0.2216 | loss(seq) 0.3284 | grad 4.3837 | lr 0.0010 | time_forward 3.8450 | time_backward 6.1660 |
[2023-09-02 20:15:38,162::train::INFO] [train] Iter 13880 | loss 1.7692 | loss(rot) 1.0781 | loss(pos) 0.5852 | loss(seq) 0.1059 | grad 5.8491 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4600 |
[2023-09-02 20:15:46,497::train::INFO] [train] Iter 13881 | loss 2.9399 | loss(rot) 2.7202 | loss(pos) 0.1657 | loss(seq) 0.0541 | grad 4.8673 | lr 0.0010 | time_forward 3.5930 | time_backward 4.7400 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.