text
stringlengths 56
1.16k
|
---|
[2023-09-03 00:33:17,789::train::INFO] [train] Iter 15880 | loss 2.1009 | loss(rot) 0.6790 | loss(pos) 0.7813 | loss(seq) 0.6406 | grad 3.7863 | lr 0.0010 | time_forward 3.5350 | time_backward 5.5750 |
[2023-09-03 00:33:26,887::train::INFO] [train] Iter 15881 | loss 0.8797 | loss(rot) 0.0793 | loss(pos) 0.7955 | loss(seq) 0.0049 | grad 6.5851 | lr 0.0010 | time_forward 3.7480 | time_backward 5.3440 |
[2023-09-03 00:33:33,485::train::INFO] [train] Iter 15882 | loss 0.9112 | loss(rot) 0.3888 | loss(pos) 0.3237 | loss(seq) 0.1988 | grad 3.2732 | lr 0.0010 | time_forward 2.8000 | time_backward 3.7940 |
[2023-09-03 00:33:41,821::train::INFO] [train] Iter 15883 | loss 1.0366 | loss(rot) 0.8372 | loss(pos) 0.1435 | loss(seq) 0.0559 | grad 5.8474 | lr 0.0010 | time_forward 3.6070 | time_backward 4.7220 |
[2023-09-03 00:33:51,242::train::INFO] [train] Iter 15884 | loss 0.7242 | loss(rot) 0.3629 | loss(pos) 0.0436 | loss(seq) 0.3177 | grad 3.1338 | lr 0.0010 | time_forward 3.8150 | time_backward 5.6020 |
[2023-09-03 00:33:54,262::train::INFO] [train] Iter 15885 | loss 0.5896 | loss(rot) 0.0737 | loss(pos) 0.5081 | loss(seq) 0.0077 | grad 4.6263 | lr 0.0010 | time_forward 1.3850 | time_backward 1.6300 |
[2023-09-03 00:34:02,836::train::INFO] [train] Iter 15886 | loss 3.1788 | loss(rot) 3.0478 | loss(pos) 0.1310 | loss(seq) 0.0000 | grad 6.3778 | lr 0.0010 | time_forward 3.5570 | time_backward 5.0130 |
[2023-09-03 00:34:11,370::train::INFO] [train] Iter 15887 | loss 2.1135 | loss(rot) 1.8585 | loss(pos) 0.1427 | loss(seq) 0.1124 | grad 4.5358 | lr 0.0010 | time_forward 3.6200 | time_backward 4.9110 |
[2023-09-03 00:34:21,740::train::INFO] [train] Iter 15888 | loss 1.6181 | loss(rot) 1.2843 | loss(pos) 0.1687 | loss(seq) 0.1651 | grad 4.4946 | lr 0.0010 | time_forward 4.2120 | time_backward 6.1530 |
[2023-09-03 00:34:24,664::train::INFO] [train] Iter 15889 | loss 1.6224 | loss(rot) 1.5019 | loss(pos) 0.0464 | loss(seq) 0.0741 | grad 3.8032 | lr 0.0010 | time_forward 1.4000 | time_backward 1.5200 |
[2023-09-03 00:34:33,818::train::INFO] [train] Iter 15890 | loss 1.3717 | loss(rot) 0.7016 | loss(pos) 0.2553 | loss(seq) 0.4149 | grad 2.7914 | lr 0.0010 | time_forward 3.8580 | time_backward 5.2590 |
[2023-09-03 00:34:44,065::train::INFO] [train] Iter 15891 | loss 0.7964 | loss(rot) 0.1689 | loss(pos) 0.3682 | loss(seq) 0.2593 | grad 3.1822 | lr 0.0010 | time_forward 4.4520 | time_backward 5.7900 |
[2023-09-03 00:34:53,403::train::INFO] [train] Iter 15892 | loss 1.0074 | loss(rot) 0.7933 | loss(pos) 0.1725 | loss(seq) 0.0416 | grad 5.0554 | lr 0.0010 | time_forward 3.8490 | time_backward 5.4850 |
[2023-09-03 00:35:02,630::train::INFO] [train] Iter 15893 | loss 1.7330 | loss(rot) 1.3986 | loss(pos) 0.3343 | loss(seq) 0.0001 | grad 5.7293 | lr 0.0010 | time_forward 3.9130 | time_backward 5.3110 |
[2023-09-03 00:35:05,402::train::INFO] [train] Iter 15894 | loss 0.4833 | loss(rot) 0.2487 | loss(pos) 0.1651 | loss(seq) 0.0694 | grad 3.2892 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4290 |
[2023-09-03 00:35:13,052::train::INFO] [train] Iter 15895 | loss 1.6499 | loss(rot) 1.4938 | loss(pos) 0.1561 | loss(seq) 0.0000 | grad 7.7595 | lr 0.0010 | time_forward 3.0990 | time_backward 4.5180 |
[2023-09-03 00:35:15,906::train::INFO] [train] Iter 15896 | loss 0.6861 | loss(rot) 0.1063 | loss(pos) 0.2812 | loss(seq) 0.2987 | grad 3.3874 | lr 0.0010 | time_forward 1.3170 | time_backward 1.5330 |
[2023-09-03 00:35:18,765::train::INFO] [train] Iter 15897 | loss 1.5111 | loss(rot) 1.3782 | loss(pos) 0.1199 | loss(seq) 0.0130 | grad 4.4119 | lr 0.0010 | time_forward 1.3540 | time_backward 1.5000 |
[2023-09-03 00:35:25,874::train::INFO] [train] Iter 15898 | loss 1.2119 | loss(rot) 0.8724 | loss(pos) 0.0823 | loss(seq) 0.2572 | grad 4.0339 | lr 0.0010 | time_forward 2.8690 | time_backward 4.2340 |
[2023-09-03 00:35:28,655::train::INFO] [train] Iter 15899 | loss 1.9612 | loss(rot) 1.4619 | loss(pos) 0.1063 | loss(seq) 0.3930 | grad 5.3328 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4870 |
[2023-09-03 00:35:37,278::train::INFO] [train] Iter 15900 | loss 1.5563 | loss(rot) 1.4121 | loss(pos) 0.1438 | loss(seq) 0.0003 | grad 5.8392 | lr 0.0010 | time_forward 3.6790 | time_backward 4.9390 |
[2023-09-03 00:35:45,702::train::INFO] [train] Iter 15901 | loss 1.0761 | loss(rot) 0.1706 | loss(pos) 0.1843 | loss(seq) 0.7211 | grad 3.7196 | lr 0.0010 | time_forward 3.5160 | time_backward 4.9040 |
[2023-09-03 00:35:51,623::train::INFO] [train] Iter 15902 | loss 1.5707 | loss(rot) 0.6977 | loss(pos) 0.3337 | loss(seq) 0.5394 | grad 4.2032 | lr 0.0010 | time_forward 2.3690 | time_backward 3.5470 |
[2023-09-03 00:36:00,594::train::INFO] [train] Iter 15903 | loss 1.4604 | loss(rot) 1.0815 | loss(pos) 0.0626 | loss(seq) 0.3163 | grad 4.6072 | lr 0.0010 | time_forward 3.8140 | time_backward 5.1530 |
[2023-09-03 00:36:10,818::train::INFO] [train] Iter 15904 | loss 1.4011 | loss(rot) 1.1428 | loss(pos) 0.0782 | loss(seq) 0.1801 | grad 3.0500 | lr 0.0010 | time_forward 4.1190 | time_backward 6.1010 |
[2023-09-03 00:36:13,649::train::INFO] [train] Iter 15905 | loss 1.1071 | loss(rot) 0.4183 | loss(pos) 0.2029 | loss(seq) 0.4860 | grad 3.4657 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4930 |
[2023-09-03 00:36:23,014::train::INFO] [train] Iter 15906 | loss 1.0054 | loss(rot) 0.4250 | loss(pos) 0.1445 | loss(seq) 0.4359 | grad 3.4212 | lr 0.0010 | time_forward 3.6310 | time_backward 5.7300 |
[2023-09-03 00:36:32,842::train::INFO] [train] Iter 15907 | loss 1.3547 | loss(rot) 0.3032 | loss(pos) 0.9696 | loss(seq) 0.0820 | grad 5.4964 | lr 0.0010 | time_forward 3.7640 | time_backward 6.0600 |
[2023-09-03 00:36:41,741::train::INFO] [train] Iter 15908 | loss 2.2810 | loss(rot) 1.5925 | loss(pos) 0.2018 | loss(seq) 0.4867 | grad 11.2208 | lr 0.0010 | time_forward 3.5440 | time_backward 5.3510 |
[2023-09-03 00:36:50,148::train::INFO] [train] Iter 15909 | loss 0.9420 | loss(rot) 0.3392 | loss(pos) 0.1934 | loss(seq) 0.4094 | grad 3.3224 | lr 0.0010 | time_forward 3.3280 | time_backward 5.0760 |
[2023-09-03 00:36:59,917::train::INFO] [train] Iter 15910 | loss 0.5739 | loss(rot) 0.1571 | loss(pos) 0.3465 | loss(seq) 0.0704 | grad 2.6180 | lr 0.0010 | time_forward 3.9450 | time_backward 5.8190 |
[2023-09-03 00:37:06,377::train::INFO] [train] Iter 15911 | loss 1.1135 | loss(rot) 0.1764 | loss(pos) 0.8953 | loss(seq) 0.0418 | grad 6.2011 | lr 0.0010 | time_forward 2.6130 | time_backward 3.8430 |
[2023-09-03 00:37:13,649::train::INFO] [train] Iter 15912 | loss 1.3749 | loss(rot) 1.0506 | loss(pos) 0.0901 | loss(seq) 0.2343 | grad 5.2715 | lr 0.0010 | time_forward 3.0740 | time_backward 4.1940 |
[2023-09-03 00:37:20,630::train::INFO] [train] Iter 15913 | loss 1.5905 | loss(rot) 1.2294 | loss(pos) 0.0798 | loss(seq) 0.2812 | grad 9.3831 | lr 0.0010 | time_forward 3.1300 | time_backward 3.8490 |
[2023-09-03 00:37:22,854::train::INFO] [train] Iter 15914 | loss 1.5111 | loss(rot) 0.7117 | loss(pos) 0.2958 | loss(seq) 0.5035 | grad 4.2572 | lr 0.0010 | time_forward 1.0320 | time_backward 1.1890 |
[2023-09-03 00:37:30,904::train::INFO] [train] Iter 15915 | loss 0.8598 | loss(rot) 0.3694 | loss(pos) 0.1887 | loss(seq) 0.3017 | grad 2.8705 | lr 0.0010 | time_forward 3.4000 | time_backward 4.6460 |
[2023-09-03 00:37:38,905::train::INFO] [train] Iter 15916 | loss 1.8262 | loss(rot) 1.0672 | loss(pos) 0.3245 | loss(seq) 0.4345 | grad 5.6220 | lr 0.0010 | time_forward 3.1820 | time_backward 4.8170 |
[2023-09-03 00:37:48,281::train::INFO] [train] Iter 15917 | loss 1.5205 | loss(rot) 1.1576 | loss(pos) 0.1256 | loss(seq) 0.2373 | grad 3.7522 | lr 0.0010 | time_forward 3.8140 | time_backward 5.5590 |
[2023-09-03 00:37:50,735::train::INFO] [train] Iter 15918 | loss 1.8852 | loss(rot) 0.0208 | loss(pos) 1.8636 | loss(seq) 0.0008 | grad 6.9321 | lr 0.0010 | time_forward 1.1750 | time_backward 1.2750 |
[2023-09-03 00:37:59,140::train::INFO] [train] Iter 15919 | loss 1.2648 | loss(rot) 0.7753 | loss(pos) 0.4087 | loss(seq) 0.0808 | grad 6.7816 | lr 0.0010 | time_forward 3.4570 | time_backward 4.9450 |
[2023-09-03 00:38:07,304::train::INFO] [train] Iter 15920 | loss 0.7348 | loss(rot) 0.3463 | loss(pos) 0.1129 | loss(seq) 0.2757 | grad 4.1822 | lr 0.0010 | time_forward 3.4910 | time_backward 4.6690 |
[2023-09-03 00:38:15,196::train::INFO] [train] Iter 15921 | loss 1.2818 | loss(rot) 0.2015 | loss(pos) 0.8669 | loss(seq) 0.2135 | grad 7.6085 | lr 0.0010 | time_forward 3.2390 | time_backward 4.6480 |
[2023-09-03 00:38:24,718::train::INFO] [train] Iter 15922 | loss 1.3768 | loss(rot) 1.1437 | loss(pos) 0.2331 | loss(seq) 0.0000 | grad 6.5919 | lr 0.0010 | time_forward 3.5820 | time_backward 5.9370 |
[2023-09-03 00:38:33,214::train::INFO] [train] Iter 15923 | loss 1.1469 | loss(rot) 0.3761 | loss(pos) 0.3576 | loss(seq) 0.4132 | grad 4.5507 | lr 0.0010 | time_forward 3.5630 | time_backward 4.9140 |
[2023-09-03 00:38:43,105::train::INFO] [train] Iter 15924 | loss 0.9267 | loss(rot) 0.2233 | loss(pos) 0.5339 | loss(seq) 0.1695 | grad 2.5922 | lr 0.0010 | time_forward 4.0540 | time_backward 5.8340 |
[2023-09-03 00:38:51,467::train::INFO] [train] Iter 15925 | loss 2.2071 | loss(rot) 1.4606 | loss(pos) 0.2353 | loss(seq) 0.5112 | grad 5.9390 | lr 0.0010 | time_forward 3.5360 | time_backward 4.8220 |
[2023-09-03 00:39:01,126::train::INFO] [train] Iter 15926 | loss 2.1237 | loss(rot) 1.8072 | loss(pos) 0.3146 | loss(seq) 0.0019 | grad 3.9531 | lr 0.0010 | time_forward 3.7510 | time_backward 5.9040 |
[2023-09-03 00:39:03,889::train::INFO] [train] Iter 15927 | loss 1.0867 | loss(rot) 0.5545 | loss(pos) 0.1485 | loss(seq) 0.3838 | grad 4.1829 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4650 |
[2023-09-03 00:39:13,498::train::INFO] [train] Iter 15928 | loss 1.5614 | loss(rot) 1.0332 | loss(pos) 0.1578 | loss(seq) 0.3704 | grad 4.6168 | lr 0.0010 | time_forward 3.7810 | time_backward 5.8230 |
[2023-09-03 00:39:16,295::train::INFO] [train] Iter 15929 | loss 1.0884 | loss(rot) 0.2750 | loss(pos) 0.3755 | loss(seq) 0.4380 | grad 4.4241 | lr 0.0010 | time_forward 1.2900 | time_backward 1.5040 |
[2023-09-03 00:39:25,923::train::INFO] [train] Iter 15930 | loss 2.0133 | loss(rot) 0.7808 | loss(pos) 0.6755 | loss(seq) 0.5570 | grad 5.1250 | lr 0.0010 | time_forward 3.6650 | time_backward 5.9590 |
[2023-09-03 00:39:34,018::train::INFO] [train] Iter 15931 | loss 1.4630 | loss(rot) 1.2072 | loss(pos) 0.1717 | loss(seq) 0.0841 | grad 6.8666 | lr 0.0010 | time_forward 3.3670 | time_backward 4.7040 |
[2023-09-03 00:39:36,814::train::INFO] [train] Iter 15932 | loss 1.7025 | loss(rot) 1.3406 | loss(pos) 0.1100 | loss(seq) 0.2518 | grad 8.9495 | lr 0.0010 | time_forward 1.2730 | time_backward 1.5200 |
[2023-09-03 00:39:39,608::train::INFO] [train] Iter 15933 | loss 1.6386 | loss(rot) 1.3158 | loss(pos) 0.0848 | loss(seq) 0.2380 | grad 5.9066 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4800 |
[2023-09-03 00:39:49,615::train::INFO] [train] Iter 15934 | loss 2.0268 | loss(rot) 1.2952 | loss(pos) 0.2900 | loss(seq) 0.4416 | grad 4.9999 | lr 0.0010 | time_forward 3.8560 | time_backward 6.1450 |
[2023-09-03 00:39:52,410::train::INFO] [train] Iter 15935 | loss 2.1431 | loss(rot) 2.0024 | loss(pos) 0.1220 | loss(seq) 0.0188 | grad 6.0722 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4860 |
[2023-09-03 00:39:55,180::train::INFO] [train] Iter 15936 | loss 1.3482 | loss(rot) 0.2534 | loss(pos) 1.0879 | loss(seq) 0.0069 | grad 5.0495 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4750 |
[2023-09-03 00:40:02,743::train::INFO] [train] Iter 15937 | loss 0.9836 | loss(rot) 0.4792 | loss(pos) 0.4629 | loss(seq) 0.0415 | grad 3.5067 | lr 0.0010 | time_forward 3.3390 | time_backward 4.2220 |
[2023-09-03 00:40:05,475::train::INFO] [train] Iter 15938 | loss 1.0823 | loss(rot) 0.1546 | loss(pos) 0.6377 | loss(seq) 0.2900 | grad 3.6601 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4740 |
[2023-09-03 00:40:07,791::train::INFO] [train] Iter 15939 | loss 1.1331 | loss(rot) 0.3153 | loss(pos) 0.4622 | loss(seq) 0.3556 | grad 4.8777 | lr 0.0010 | time_forward 1.0880 | time_backward 1.2240 |
[2023-09-03 00:40:17,848::train::INFO] [train] Iter 15940 | loss 1.4581 | loss(rot) 0.9175 | loss(pos) 0.0742 | loss(seq) 0.4665 | grad 5.2979 | lr 0.0010 | time_forward 4.1670 | time_backward 5.8700 |
[2023-09-03 00:40:26,248::train::INFO] [train] Iter 15941 | loss 2.3115 | loss(rot) 1.5211 | loss(pos) 0.3734 | loss(seq) 0.4169 | grad 2.9982 | lr 0.0010 | time_forward 3.5050 | time_backward 4.8910 |
[2023-09-03 00:40:35,122::train::INFO] [train] Iter 15942 | loss 1.6710 | loss(rot) 1.3923 | loss(pos) 0.1469 | loss(seq) 0.1319 | grad 5.7058 | lr 0.0010 | time_forward 3.7920 | time_backward 5.0800 |
[2023-09-03 00:40:45,068::train::INFO] [train] Iter 15943 | loss 1.7323 | loss(rot) 1.2849 | loss(pos) 0.1434 | loss(seq) 0.3040 | grad 7.7849 | lr 0.0010 | time_forward 4.3560 | time_backward 5.5860 |
[2023-09-03 00:40:47,842::train::INFO] [train] Iter 15944 | loss 0.7724 | loss(rot) 0.2987 | loss(pos) 0.3962 | loss(seq) 0.0776 | grad 4.2835 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4920 |
[2023-09-03 00:40:50,682::train::INFO] [train] Iter 15945 | loss 0.9350 | loss(rot) 0.0462 | loss(pos) 0.8601 | loss(seq) 0.0287 | grad 6.1206 | lr 0.0010 | time_forward 1.3240 | time_backward 1.5130 |
[2023-09-03 00:41:00,464::train::INFO] [train] Iter 15946 | loss 0.7943 | loss(rot) 0.6126 | loss(pos) 0.1713 | loss(seq) 0.0104 | grad 4.2161 | lr 0.0010 | time_forward 4.0480 | time_backward 5.7310 |
[2023-09-03 00:41:03,370::train::INFO] [train] Iter 15947 | loss 0.9673 | loss(rot) 0.0464 | loss(pos) 0.8914 | loss(seq) 0.0295 | grad 5.5718 | lr 0.0010 | time_forward 1.3270 | time_backward 1.5760 |
[2023-09-03 00:41:11,846::train::INFO] [train] Iter 15948 | loss 1.0900 | loss(rot) 0.1870 | loss(pos) 0.7244 | loss(seq) 0.1786 | grad 4.9861 | lr 0.0010 | time_forward 3.4990 | time_backward 4.9720 |
[2023-09-03 00:41:20,121::train::INFO] [train] Iter 15949 | loss 1.5308 | loss(rot) 1.4359 | loss(pos) 0.0949 | loss(seq) 0.0000 | grad 6.4586 | lr 0.0010 | time_forward 3.3920 | time_backward 4.8790 |
[2023-09-03 00:41:22,907::train::INFO] [train] Iter 15950 | loss 1.3501 | loss(rot) 0.6568 | loss(pos) 0.3218 | loss(seq) 0.3714 | grad 5.2253 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4840 |
[2023-09-03 00:41:32,315::train::INFO] [train] Iter 15951 | loss 1.6292 | loss(rot) 1.3044 | loss(pos) 0.1001 | loss(seq) 0.2247 | grad 6.1696 | lr 0.0010 | time_forward 3.7170 | time_backward 5.6880 |
[2023-09-03 00:41:41,686::train::INFO] [train] Iter 15952 | loss 2.1836 | loss(rot) 1.9162 | loss(pos) 0.2622 | loss(seq) 0.0052 | grad 6.1607 | lr 0.0010 | time_forward 3.8470 | time_backward 5.5190 |
[2023-09-03 00:41:44,455::train::INFO] [train] Iter 15953 | loss 1.4610 | loss(rot) 1.2934 | loss(pos) 0.1111 | loss(seq) 0.0565 | grad 5.7290 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4980 |
[2023-09-03 00:41:47,272::train::INFO] [train] Iter 15954 | loss 0.8611 | loss(rot) 0.7253 | loss(pos) 0.1351 | loss(seq) 0.0007 | grad 5.0435 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4890 |
[2023-09-03 00:41:57,309::train::INFO] [train] Iter 15955 | loss 1.8515 | loss(rot) 1.2852 | loss(pos) 0.1462 | loss(seq) 0.4201 | grad 4.4842 | lr 0.0010 | time_forward 4.1380 | time_backward 5.8960 |
[2023-09-03 00:42:00,036::train::INFO] [train] Iter 15956 | loss 1.3685 | loss(rot) 0.4984 | loss(pos) 0.3659 | loss(seq) 0.5043 | grad 4.5643 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4610 |
[2023-09-03 00:42:09,827::train::INFO] [train] Iter 15957 | loss 2.0453 | loss(rot) 1.7544 | loss(pos) 0.2662 | loss(seq) 0.0247 | grad 7.5814 | lr 0.0010 | time_forward 3.8070 | time_backward 5.9790 |
[2023-09-03 00:42:19,570::train::INFO] [train] Iter 15958 | loss 2.4261 | loss(rot) 1.7777 | loss(pos) 0.1670 | loss(seq) 0.4814 | grad 4.5323 | lr 0.0010 | time_forward 3.8260 | time_backward 5.9110 |
[2023-09-03 00:42:22,323::train::INFO] [train] Iter 15959 | loss 2.8090 | loss(rot) 2.5471 | loss(pos) 0.0742 | loss(seq) 0.1876 | grad 4.7938 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4640 |
[2023-09-03 00:42:30,315::train::INFO] [train] Iter 15960 | loss 1.2766 | loss(rot) 0.9248 | loss(pos) 0.1817 | loss(seq) 0.1701 | grad 5.6403 | lr 0.0010 | time_forward 3.1690 | time_backward 4.8160 |
[2023-09-03 00:42:40,041::train::INFO] [train] Iter 15961 | loss 0.4921 | loss(rot) 0.2460 | loss(pos) 0.1377 | loss(seq) 0.1084 | grad 3.0996 | lr 0.0010 | time_forward 3.9610 | time_backward 5.7610 |
[2023-09-03 00:42:49,327::train::INFO] [train] Iter 15962 | loss 1.7219 | loss(rot) 1.5400 | loss(pos) 0.1658 | loss(seq) 0.0161 | grad 3.6311 | lr 0.0010 | time_forward 3.9470 | time_backward 5.3340 |
[2023-09-03 00:42:57,668::train::INFO] [train] Iter 15963 | loss 1.7736 | loss(rot) 1.5066 | loss(pos) 0.0709 | loss(seq) 0.1961 | grad 6.8234 | lr 0.0010 | time_forward 3.4570 | time_backward 4.8790 |
[2023-09-03 00:43:00,034::train::INFO] [train] Iter 15964 | loss 1.4307 | loss(rot) 1.0587 | loss(pos) 0.0700 | loss(seq) 0.3020 | grad 6.7960 | lr 0.0010 | time_forward 1.1010 | time_backward 1.2610 |
[2023-09-03 00:43:09,269::train::INFO] [train] Iter 15965 | loss 2.1946 | loss(rot) 1.9208 | loss(pos) 0.1381 | loss(seq) 0.1357 | grad 6.0824 | lr 0.0010 | time_forward 3.8680 | time_backward 5.3640 |
[2023-09-03 00:43:11,698::train::INFO] [train] Iter 15966 | loss 0.8062 | loss(rot) 0.1951 | loss(pos) 0.1864 | loss(seq) 0.4247 | grad 3.6917 | lr 0.0010 | time_forward 1.1260 | time_backward 1.2990 |
[2023-09-03 00:43:20,407::train::INFO] [train] Iter 15967 | loss 1.4669 | loss(rot) 1.0996 | loss(pos) 0.0552 | loss(seq) 0.3121 | grad 4.9799 | lr 0.0010 | time_forward 3.4020 | time_backward 5.2830 |
[2023-09-03 00:43:22,831::train::INFO] [train] Iter 15968 | loss 1.2016 | loss(rot) 0.7380 | loss(pos) 0.2388 | loss(seq) 0.2249 | grad 5.1374 | lr 0.0010 | time_forward 1.1230 | time_backward 1.2970 |
[2023-09-03 00:43:25,629::train::INFO] [train] Iter 15969 | loss 0.6254 | loss(rot) 0.5432 | loss(pos) 0.0618 | loss(seq) 0.0204 | grad 3.7336 | lr 0.0010 | time_forward 1.2560 | time_backward 1.5190 |
[2023-09-03 00:43:34,479::train::INFO] [train] Iter 15970 | loss 1.2358 | loss(rot) 0.5585 | loss(pos) 0.5766 | loss(seq) 0.1006 | grad 4.3442 | lr 0.0010 | time_forward 3.5900 | time_backward 5.2560 |
[2023-09-03 00:43:42,658::train::INFO] [train] Iter 15971 | loss 2.5023 | loss(rot) 2.1163 | loss(pos) 0.1396 | loss(seq) 0.2464 | grad 5.0556 | lr 0.0010 | time_forward 3.4430 | time_backward 4.7330 |
[2023-09-03 00:43:49,381::train::INFO] [train] Iter 15972 | loss 0.8909 | loss(rot) 0.1940 | loss(pos) 0.4533 | loss(seq) 0.2436 | grad 5.0327 | lr 0.0010 | time_forward 2.9620 | time_backward 3.7570 |
[2023-09-03 00:43:52,209::train::INFO] [train] Iter 15973 | loss 2.2875 | loss(rot) 1.9179 | loss(pos) 0.1484 | loss(seq) 0.2212 | grad 4.6940 | lr 0.0010 | time_forward 1.2770 | time_backward 1.5480 |
[2023-09-03 00:44:01,593::train::INFO] [train] Iter 15974 | loss 1.6269 | loss(rot) 0.8217 | loss(pos) 0.3217 | loss(seq) 0.4835 | grad 3.5743 | lr 0.0010 | time_forward 4.0040 | time_backward 5.3760 |
[2023-09-03 00:44:11,686::train::INFO] [train] Iter 15975 | loss 1.4674 | loss(rot) 0.6161 | loss(pos) 0.7690 | loss(seq) 0.0822 | grad 4.2973 | lr 0.0010 | time_forward 4.1670 | time_backward 5.9230 |
[2023-09-03 00:44:15,201::train::INFO] [train] Iter 15976 | loss 1.7423 | loss(rot) 0.6269 | loss(pos) 0.6583 | loss(seq) 0.4571 | grad 4.7019 | lr 0.0010 | time_forward 1.5120 | time_backward 1.9980 |
[2023-09-03 00:44:25,251::train::INFO] [train] Iter 15977 | loss 1.6721 | loss(rot) 1.0970 | loss(pos) 0.1867 | loss(seq) 0.3884 | grad 6.6873 | lr 0.0010 | time_forward 4.0120 | time_backward 6.0340 |
[2023-09-03 00:44:33,939::train::INFO] [train] Iter 15978 | loss 0.9449 | loss(rot) 0.8235 | loss(pos) 0.1202 | loss(seq) 0.0012 | grad 5.3987 | lr 0.0010 | time_forward 3.4890 | time_backward 5.1950 |
[2023-09-03 00:44:36,417::train::INFO] [train] Iter 15979 | loss 1.0107 | loss(rot) 0.4312 | loss(pos) 0.1737 | loss(seq) 0.4058 | grad 3.7939 | lr 0.0010 | time_forward 1.1380 | time_backward 1.3370 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.