text
stringlengths 56
1.16k
|
---|
[2023-09-01 21:12:44,030::train::INFO] [train] Iter 02393 | loss 1.8313 | loss(rot) 0.8674 | loss(pos) 0.4719 | loss(seq) 0.4921 | grad 3.5497 | lr 0.0010 | time_forward 1.5040 | time_backward 1.8490 |
[2023-09-01 21:12:46,798::train::INFO] [train] Iter 02394 | loss 3.2705 | loss(rot) 2.5748 | loss(pos) 0.2649 | loss(seq) 0.4307 | grad 4.1670 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4990 |
[2023-09-01 21:12:49,540::train::INFO] [train] Iter 02395 | loss 1.9993 | loss(rot) 1.1750 | loss(pos) 0.4479 | loss(seq) 0.3764 | grad 3.1899 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4710 |
[2023-09-01 21:12:52,399::train::INFO] [train] Iter 02396 | loss 2.5009 | loss(rot) 1.4655 | loss(pos) 0.3200 | loss(seq) 0.7153 | grad 5.1836 | lr 0.0010 | time_forward 1.3070 | time_backward 1.5500 |
[2023-09-01 21:13:03,453::train::INFO] [train] Iter 02397 | loss 3.0789 | loss(rot) 2.8298 | loss(pos) 0.1995 | loss(seq) 0.0496 | grad 3.5270 | lr 0.0010 | time_forward 4.6120 | time_backward 6.4390 |
[2023-09-01 21:13:12,478::train::INFO] [train] Iter 02398 | loss 3.1928 | loss(rot) 2.6623 | loss(pos) 0.2915 | loss(seq) 0.2391 | grad 4.7161 | lr 0.0010 | time_forward 4.0030 | time_backward 5.0180 |
[2023-09-01 21:13:22,754::train::INFO] [train] Iter 02399 | loss 2.4816 | loss(rot) 1.9335 | loss(pos) 0.2344 | loss(seq) 0.3137 | grad 2.7859 | lr 0.0010 | time_forward 4.2880 | time_backward 5.9850 |
[2023-09-01 21:13:33,213::train::INFO] [train] Iter 02400 | loss 1.9580 | loss(rot) 0.3057 | loss(pos) 1.5275 | loss(seq) 0.1247 | grad 4.6911 | lr 0.0010 | time_forward 4.3790 | time_backward 6.0760 |
[2023-09-01 21:13:43,563::train::INFO] [train] Iter 02401 | loss 2.8324 | loss(rot) 2.6349 | loss(pos) 0.1943 | loss(seq) 0.0032 | grad 3.1913 | lr 0.0010 | time_forward 4.5180 | time_backward 5.8280 |
[2023-09-01 21:13:52,774::train::INFO] [train] Iter 02402 | loss 2.5672 | loss(rot) 2.3770 | loss(pos) 0.1902 | loss(seq) 0.0000 | grad 5.2539 | lr 0.0010 | time_forward 4.0450 | time_backward 5.1620 |
[2023-09-01 21:14:03,279::train::INFO] [train] Iter 02403 | loss 2.6060 | loss(rot) 2.1546 | loss(pos) 0.1979 | loss(seq) 0.2535 | grad 3.2205 | lr 0.0010 | time_forward 4.6160 | time_backward 5.8850 |
[2023-09-01 21:14:06,126::train::INFO] [train] Iter 02404 | loss 2.4704 | loss(rot) 1.7049 | loss(pos) 0.3477 | loss(seq) 0.4178 | grad 4.4078 | lr 0.0010 | time_forward 1.4050 | time_backward 1.4390 |
[2023-09-01 21:14:16,452::train::INFO] [train] Iter 02405 | loss 2.9180 | loss(rot) 1.9309 | loss(pos) 0.4122 | loss(seq) 0.5749 | grad 4.5204 | lr 0.0010 | time_forward 5.1180 | time_backward 5.2040 |
[2023-09-01 21:14:26,536::train::INFO] [train] Iter 02406 | loss 2.4257 | loss(rot) 2.0562 | loss(pos) 0.1330 | loss(seq) 0.2366 | grad 3.4568 | lr 0.0010 | time_forward 4.2410 | time_backward 5.8400 |
[2023-09-01 21:14:35,928::train::INFO] [train] Iter 02407 | loss 2.0333 | loss(rot) 0.2100 | loss(pos) 1.8150 | loss(seq) 0.0083 | grad 5.0725 | lr 0.0010 | time_forward 4.0560 | time_backward 5.3330 |
[2023-09-01 21:14:38,690::train::INFO] [train] Iter 02408 | loss 3.1016 | loss(rot) 2.8836 | loss(pos) 0.2179 | loss(seq) 0.0000 | grad 2.9146 | lr 0.0010 | time_forward 1.3530 | time_backward 1.4060 |
[2023-09-01 21:14:46,834::train::INFO] [train] Iter 02409 | loss 0.8019 | loss(rot) 0.1961 | loss(pos) 0.5597 | loss(seq) 0.0461 | grad 3.7866 | lr 0.0010 | time_forward 3.4620 | time_backward 4.6600 |
[2023-09-01 21:14:55,594::train::INFO] [train] Iter 02410 | loss 3.0348 | loss(rot) 2.2244 | loss(pos) 0.4144 | loss(seq) 0.3959 | grad 5.4726 | lr 0.0010 | time_forward 3.7270 | time_backward 5.0300 |
[2023-09-01 21:15:04,258::train::INFO] [train] Iter 02411 | loss 1.5687 | loss(rot) 0.2977 | loss(pos) 1.2654 | loss(seq) 0.0056 | grad 3.8943 | lr 0.0010 | time_forward 3.5970 | time_backward 5.0630 |
[2023-09-01 21:15:13,579::train::INFO] [train] Iter 02412 | loss 0.9730 | loss(rot) 0.3255 | loss(pos) 0.6249 | loss(seq) 0.0226 | grad 4.2387 | lr 0.0010 | time_forward 3.9670 | time_backward 5.3510 |
[2023-09-01 21:15:23,738::train::INFO] [train] Iter 02413 | loss 1.6504 | loss(rot) 0.9238 | loss(pos) 0.5776 | loss(seq) 0.1490 | grad 3.6538 | lr 0.0010 | time_forward 4.3510 | time_backward 5.8050 |
[2023-09-01 21:15:31,952::train::INFO] [train] Iter 02414 | loss 2.9878 | loss(rot) 2.5904 | loss(pos) 0.3908 | loss(seq) 0.0065 | grad 4.7241 | lr 0.0010 | time_forward 3.4970 | time_backward 4.7130 |
[2023-09-01 21:15:39,290::train::INFO] [train] Iter 02415 | loss 3.4249 | loss(rot) 2.8429 | loss(pos) 0.2221 | loss(seq) 0.3600 | grad 5.0466 | lr 0.0010 | time_forward 3.0410 | time_backward 4.2930 |
[2023-09-01 21:15:42,212::train::INFO] [train] Iter 02416 | loss 3.1634 | loss(rot) 2.9189 | loss(pos) 0.2397 | loss(seq) 0.0048 | grad 4.2270 | lr 0.0010 | time_forward 1.4300 | time_backward 1.4900 |
[2023-09-01 21:15:54,864::train::INFO] [train] Iter 02417 | loss 2.9086 | loss(rot) 2.2928 | loss(pos) 0.2149 | loss(seq) 0.4008 | grad 4.0056 | lr 0.0010 | time_forward 5.4810 | time_backward 7.1230 |
[2023-09-01 21:16:01,528::train::INFO] [train] Iter 02418 | loss 1.3722 | loss(rot) 0.5195 | loss(pos) 0.7923 | loss(seq) 0.0604 | grad 6.4509 | lr 0.0010 | time_forward 3.2800 | time_backward 3.3820 |
[2023-09-01 21:16:04,435::train::INFO] [train] Iter 02419 | loss 2.7277 | loss(rot) 1.6376 | loss(pos) 0.4308 | loss(seq) 0.6594 | grad 4.1152 | lr 0.0010 | time_forward 1.4350 | time_backward 1.4690 |
[2023-09-01 21:16:18,824::train::INFO] [train] Iter 02420 | loss 1.8151 | loss(rot) 1.0842 | loss(pos) 0.4112 | loss(seq) 0.3197 | grad 4.2404 | lr 0.0010 | time_forward 5.8540 | time_backward 8.5310 |
[2023-09-01 21:16:35,241::train::INFO] [train] Iter 02421 | loss 2.8646 | loss(rot) 2.3620 | loss(pos) 0.2994 | loss(seq) 0.2032 | grad 3.8195 | lr 0.0010 | time_forward 6.8970 | time_backward 9.5170 |
[2023-09-01 21:16:38,142::train::INFO] [train] Iter 02422 | loss 2.4896 | loss(rot) 2.2987 | loss(pos) 0.1303 | loss(seq) 0.0606 | grad 3.3055 | lr 0.0010 | time_forward 1.3910 | time_backward 1.5060 |
[2023-09-01 21:16:40,935::train::INFO] [train] Iter 02423 | loss 1.1180 | loss(rot) 0.0804 | loss(pos) 1.0315 | loss(seq) 0.0061 | grad 5.2349 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4760 |
[2023-09-01 21:17:01,776::train::INFO] [train] Iter 02424 | loss 3.0502 | loss(rot) 2.6780 | loss(pos) 0.1784 | loss(seq) 0.1938 | grad 3.1631 | lr 0.0010 | time_forward 8.6550 | time_backward 12.1690 |
[2023-09-01 21:17:14,521::train::INFO] [train] Iter 02425 | loss 2.0118 | loss(rot) 0.9988 | loss(pos) 0.4747 | loss(seq) 0.5384 | grad 3.3969 | lr 0.0010 | time_forward 7.1090 | time_backward 5.6320 |
[2023-09-01 21:17:21,693::train::INFO] [train] Iter 02426 | loss 2.5263 | loss(rot) 1.7669 | loss(pos) 0.2149 | loss(seq) 0.5445 | grad 2.6082 | lr 0.0010 | time_forward 4.5130 | time_backward 2.6550 |
[2023-09-01 21:17:30,355::train::INFO] [train] Iter 02427 | loss 2.6101 | loss(rot) 1.6089 | loss(pos) 0.5244 | loss(seq) 0.4768 | grad 5.6784 | lr 0.0010 | time_forward 5.8750 | time_backward 2.7830 |
[2023-09-01 21:17:43,338::train::INFO] [train] Iter 02428 | loss 3.0252 | loss(rot) 1.6746 | loss(pos) 0.9085 | loss(seq) 0.4421 | grad 3.4122 | lr 0.0010 | time_forward 6.9920 | time_backward 5.9870 |
[2023-09-01 21:18:06,117::train::INFO] [train] Iter 02429 | loss 2.7718 | loss(rot) 1.4705 | loss(pos) 0.9719 | loss(seq) 0.3294 | grad 6.7018 | lr 0.0010 | time_forward 9.7900 | time_backward 12.9850 |
[2023-09-01 21:18:25,595::train::INFO] [train] Iter 02430 | loss 2.9783 | loss(rot) 2.7984 | loss(pos) 0.1709 | loss(seq) 0.0090 | grad 3.5402 | lr 0.0010 | time_forward 11.6810 | time_backward 7.7930 |
[2023-09-01 21:18:34,381::train::INFO] [train] Iter 02431 | loss 1.7095 | loss(rot) 1.4747 | loss(pos) 0.1668 | loss(seq) 0.0680 | grad 5.6835 | lr 0.0010 | time_forward 4.0020 | time_backward 4.7780 |
[2023-09-01 21:18:36,691::train::INFO] [train] Iter 02432 | loss 2.7723 | loss(rot) 1.9169 | loss(pos) 0.3886 | loss(seq) 0.4668 | grad 3.9615 | lr 0.0010 | time_forward 1.1030 | time_backward 1.2040 |
[2023-09-01 21:18:46,602::train::INFO] [train] Iter 02433 | loss 2.2426 | loss(rot) 0.7356 | loss(pos) 1.0509 | loss(seq) 0.4560 | grad 6.4724 | lr 0.0010 | time_forward 4.0470 | time_backward 5.8600 |
[2023-09-01 21:18:55,503::train::INFO] [train] Iter 02434 | loss 2.3097 | loss(rot) 2.2322 | loss(pos) 0.0743 | loss(seq) 0.0032 | grad 4.0912 | lr 0.0010 | time_forward 3.7180 | time_backward 5.1790 |
[2023-09-01 21:18:58,335::train::INFO] [train] Iter 02435 | loss 3.1722 | loss(rot) 2.2321 | loss(pos) 0.5255 | loss(seq) 0.4147 | grad 3.8995 | lr 0.0010 | time_forward 1.2830 | time_backward 1.5450 |
[2023-09-01 21:19:08,627::train::INFO] [train] Iter 02436 | loss 2.4784 | loss(rot) 1.6910 | loss(pos) 0.3517 | loss(seq) 0.4357 | grad 3.7056 | lr 0.0010 | time_forward 4.1430 | time_backward 6.1450 |
[2023-09-01 21:19:13,283::train::INFO] [train] Iter 02437 | loss 2.7920 | loss(rot) 2.5704 | loss(pos) 0.2155 | loss(seq) 0.0061 | grad 6.8336 | lr 0.0010 | time_forward 1.9810 | time_backward 2.6710 |
[2023-09-01 21:19:22,029::train::INFO] [train] Iter 02438 | loss 3.4230 | loss(rot) 2.8866 | loss(pos) 0.4381 | loss(seq) 0.0983 | grad 6.3508 | lr 0.0010 | time_forward 3.6640 | time_backward 5.0770 |
[2023-09-01 21:19:32,079::train::INFO] [train] Iter 02439 | loss 4.0793 | loss(rot) 0.2245 | loss(pos) 3.8537 | loss(seq) 0.0010 | grad 12.6934 | lr 0.0010 | time_forward 3.9900 | time_backward 6.0180 |
[2023-09-01 21:19:40,573::train::INFO] [train] Iter 02440 | loss 2.2219 | loss(rot) 1.8139 | loss(pos) 0.4080 | loss(seq) 0.0000 | grad 5.7810 | lr 0.0010 | time_forward 3.5050 | time_backward 4.9860 |
[2023-09-01 21:19:51,176::train::INFO] [train] Iter 02441 | loss 3.2108 | loss(rot) 2.1601 | loss(pos) 0.5258 | loss(seq) 0.5248 | grad 4.2313 | lr 0.0010 | time_forward 4.2980 | time_backward 6.3010 |
[2023-09-01 21:19:53,889::train::INFO] [train] Iter 02442 | loss 2.0681 | loss(rot) 0.3557 | loss(pos) 1.6418 | loss(seq) 0.0706 | grad 6.0642 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4180 |
[2023-09-01 21:20:02,801::train::INFO] [train] Iter 02443 | loss 1.7302 | loss(rot) 0.6411 | loss(pos) 0.8202 | loss(seq) 0.2690 | grad 4.6956 | lr 0.0010 | time_forward 3.6880 | time_backward 5.1840 |
[2023-09-01 21:20:13,167::train::INFO] [train] Iter 02444 | loss 3.0417 | loss(rot) 2.4815 | loss(pos) 0.3636 | loss(seq) 0.1967 | grad 4.5642 | lr 0.0010 | time_forward 4.2280 | time_backward 6.1340 |
[2023-09-01 21:20:21,750::train::INFO] [train] Iter 02445 | loss 1.8662 | loss(rot) 0.3895 | loss(pos) 1.4551 | loss(seq) 0.0216 | grad 6.2471 | lr 0.0010 | time_forward 3.6100 | time_backward 4.9690 |
[2023-09-01 21:20:24,456::train::INFO] [train] Iter 02446 | loss 2.9335 | loss(rot) 2.6555 | loss(pos) 0.2374 | loss(seq) 0.0406 | grad 4.1634 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4570 |
[2023-09-01 21:20:34,502::train::INFO] [train] Iter 02447 | loss 2.9619 | loss(rot) 2.5971 | loss(pos) 0.3279 | loss(seq) 0.0370 | grad 4.4207 | lr 0.0010 | time_forward 3.9990 | time_backward 6.0430 |
[2023-09-01 21:20:42,801::train::INFO] [train] Iter 02448 | loss 2.9785 | loss(rot) 2.2123 | loss(pos) 0.3377 | loss(seq) 0.4285 | grad 4.1503 | lr 0.0010 | time_forward 3.4220 | time_backward 4.8730 |
[2023-09-01 21:20:51,666::train::INFO] [train] Iter 02449 | loss 1.9094 | loss(rot) 0.9647 | loss(pos) 0.4164 | loss(seq) 0.5283 | grad 4.4217 | lr 0.0010 | time_forward 3.6100 | time_backward 5.2520 |
[2023-09-01 21:21:01,567::train::INFO] [train] Iter 02450 | loss 2.8829 | loss(rot) 1.7301 | loss(pos) 0.6622 | loss(seq) 0.4906 | grad 5.6459 | lr 0.0010 | time_forward 3.9990 | time_backward 5.8990 |
[2023-09-01 21:21:09,955::train::INFO] [train] Iter 02451 | loss 2.3441 | loss(rot) 1.9920 | loss(pos) 0.2570 | loss(seq) 0.0950 | grad 4.9182 | lr 0.0010 | time_forward 3.5000 | time_backward 4.8850 |
[2023-09-01 21:21:19,906::train::INFO] [train] Iter 02452 | loss 3.2009 | loss(rot) 3.0380 | loss(pos) 0.1508 | loss(seq) 0.0121 | grad 3.7888 | lr 0.0010 | time_forward 4.0800 | time_backward 5.8670 |
[2023-09-01 21:21:29,248::train::INFO] [train] Iter 02453 | loss 3.5472 | loss(rot) 3.2231 | loss(pos) 0.3241 | loss(seq) 0.0000 | grad 3.7929 | lr 0.0010 | time_forward 4.0140 | time_backward 5.3120 |
[2023-09-01 21:21:39,023::train::INFO] [train] Iter 02454 | loss 2.3963 | loss(rot) 1.8301 | loss(pos) 0.2835 | loss(seq) 0.2827 | grad 5.0213 | lr 0.0010 | time_forward 3.9720 | time_backward 5.7990 |
[2023-09-01 21:21:46,952::train::INFO] [train] Iter 02455 | loss 2.6255 | loss(rot) 2.2918 | loss(pos) 0.1848 | loss(seq) 0.1489 | grad 4.1779 | lr 0.0010 | time_forward 3.3000 | time_backward 4.6250 |
[2023-09-01 21:21:55,566::train::INFO] [train] Iter 02456 | loss 2.6598 | loss(rot) 2.0144 | loss(pos) 0.2561 | loss(seq) 0.3893 | grad 5.4809 | lr 0.0010 | time_forward 3.5450 | time_backward 5.0660 |
[2023-09-01 21:22:05,732::train::INFO] [train] Iter 02457 | loss 2.5827 | loss(rot) 2.2318 | loss(pos) 0.2154 | loss(seq) 0.1355 | grad 6.5793 | lr 0.0010 | time_forward 4.0290 | time_backward 6.1320 |
[2023-09-01 21:22:10,669::train::INFO] [train] Iter 02458 | loss 3.6083 | loss(rot) 3.3521 | loss(pos) 0.1419 | loss(seq) 0.1143 | grad 3.4854 | lr 0.0010 | time_forward 2.1870 | time_backward 2.7460 |
[2023-09-01 21:22:18,812::train::INFO] [train] Iter 02459 | loss 2.9838 | loss(rot) 2.6541 | loss(pos) 0.2457 | loss(seq) 0.0839 | grad 4.9641 | lr 0.0010 | time_forward 3.4580 | time_backward 4.6480 |
[2023-09-01 21:22:28,565::train::INFO] [train] Iter 02460 | loss 1.9432 | loss(rot) 0.7319 | loss(pos) 1.0556 | loss(seq) 0.1557 | grad 6.0744 | lr 0.0010 | time_forward 4.0450 | time_backward 5.7040 |
[2023-09-01 21:22:31,101::train::INFO] [train] Iter 02461 | loss 2.5303 | loss(rot) 1.2834 | loss(pos) 0.8262 | loss(seq) 0.4207 | grad 6.5295 | lr 0.0010 | time_forward 1.2110 | time_backward 1.3210 |
[2023-09-01 21:22:41,166::train::INFO] [train] Iter 02462 | loss 2.9091 | loss(rot) 2.6713 | loss(pos) 0.1732 | loss(seq) 0.0646 | grad 4.2303 | lr 0.0010 | time_forward 4.0400 | time_backward 5.9800 |
[2023-09-01 21:22:51,962::train::INFO] [train] Iter 02463 | loss 2.6355 | loss(rot) 1.5719 | loss(pos) 0.4642 | loss(seq) 0.5994 | grad 4.4102 | lr 0.0010 | time_forward 4.4940 | time_backward 6.2980 |
[2023-09-01 21:23:00,534::train::INFO] [train] Iter 02464 | loss 3.4146 | loss(rot) 2.9992 | loss(pos) 0.2075 | loss(seq) 0.2079 | grad 3.9461 | lr 0.0010 | time_forward 3.6070 | time_backward 4.9620 |
[2023-09-01 21:23:10,658::train::INFO] [train] Iter 02465 | loss 2.0879 | loss(rot) 1.3878 | loss(pos) 0.2309 | loss(seq) 0.4692 | grad 4.7272 | lr 0.0010 | time_forward 4.1230 | time_backward 5.9970 |
[2023-09-01 21:23:20,799::train::INFO] [train] Iter 02466 | loss 2.4127 | loss(rot) 1.4623 | loss(pos) 0.4039 | loss(seq) 0.5464 | grad 3.9884 | lr 0.0010 | time_forward 4.1640 | time_backward 5.9720 |
[2023-09-01 21:23:23,523::train::INFO] [train] Iter 02467 | loss 1.7657 | loss(rot) 0.6592 | loss(pos) 1.0152 | loss(seq) 0.0913 | grad 5.1554 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4690 |
[2023-09-01 21:23:33,718::train::INFO] [train] Iter 02468 | loss 2.3191 | loss(rot) 1.2028 | loss(pos) 0.6598 | loss(seq) 0.4565 | grad 5.0080 | lr 0.0010 | time_forward 4.1280 | time_backward 6.0190 |
[2023-09-01 21:23:36,381::train::INFO] [train] Iter 02469 | loss 1.9287 | loss(rot) 1.2001 | loss(pos) 0.3329 | loss(seq) 0.3957 | grad 6.3904 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4270 |
[2023-09-01 21:23:45,665::train::INFO] [train] Iter 02470 | loss 2.9785 | loss(rot) 2.4392 | loss(pos) 0.2919 | loss(seq) 0.2474 | grad 5.4271 | lr 0.0010 | time_forward 3.8290 | time_backward 5.4180 |
[2023-09-01 21:23:54,746::train::INFO] [train] Iter 02471 | loss 1.0493 | loss(rot) 0.3665 | loss(pos) 0.5200 | loss(seq) 0.1628 | grad 4.1326 | lr 0.0010 | time_forward 3.8310 | time_backward 5.2460 |
[2023-09-01 21:24:04,586::train::INFO] [train] Iter 02472 | loss 2.9901 | loss(rot) 2.6940 | loss(pos) 0.2693 | loss(seq) 0.0268 | grad 4.0554 | lr 0.0010 | time_forward 3.9890 | time_backward 5.8480 |
[2023-09-01 21:24:14,660::train::INFO] [train] Iter 02473 | loss 2.4921 | loss(rot) 1.4364 | loss(pos) 0.6956 | loss(seq) 0.3601 | grad 4.2712 | lr 0.0010 | time_forward 4.1890 | time_backward 5.8810 |
[2023-09-01 21:24:17,426::train::INFO] [train] Iter 02474 | loss 1.4150 | loss(rot) 0.6615 | loss(pos) 0.2330 | loss(seq) 0.5204 | grad 2.9808 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4910 |
[2023-09-01 21:24:26,137::train::INFO] [train] Iter 02475 | loss 1.6059 | loss(rot) 0.4860 | loss(pos) 0.9227 | loss(seq) 0.1973 | grad 4.9611 | lr 0.0010 | time_forward 3.6510 | time_backward 5.0560 |
[2023-09-01 21:24:34,449::train::INFO] [train] Iter 02476 | loss 2.9652 | loss(rot) 2.8138 | loss(pos) 0.1514 | loss(seq) 0.0000 | grad 3.4189 | lr 0.0010 | time_forward 3.5040 | time_backward 4.8050 |
[2023-09-01 21:24:44,682::train::INFO] [train] Iter 02477 | loss 2.9047 | loss(rot) 1.9787 | loss(pos) 0.3101 | loss(seq) 0.6159 | grad 3.7597 | lr 0.0010 | time_forward 4.2390 | time_backward 5.9900 |
[2023-09-01 21:24:54,583::train::INFO] [train] Iter 02478 | loss 2.6345 | loss(rot) 2.0546 | loss(pos) 0.1976 | loss(seq) 0.3823 | grad 3.7138 | lr 0.0010 | time_forward 3.8780 | time_backward 6.0180 |
[2023-09-01 21:25:02,689::train::INFO] [train] Iter 02479 | loss 2.6215 | loss(rot) 1.6020 | loss(pos) 0.4949 | loss(seq) 0.5246 | grad 3.4329 | lr 0.0010 | time_forward 3.3590 | time_backward 4.7300 |
[2023-09-01 21:25:11,194::train::INFO] [train] Iter 02480 | loss 3.5122 | loss(rot) 3.0910 | loss(pos) 0.1258 | loss(seq) 0.2954 | grad 2.4361 | lr 0.0010 | time_forward 3.5530 | time_backward 4.9480 |
[2023-09-01 21:25:21,791::train::INFO] [train] Iter 02481 | loss 1.9850 | loss(rot) 0.5768 | loss(pos) 1.2038 | loss(seq) 0.2044 | grad 5.6276 | lr 0.0010 | time_forward 4.2210 | time_backward 6.3730 |
[2023-09-01 21:25:31,880::train::INFO] [train] Iter 02482 | loss 3.4971 | loss(rot) 3.1297 | loss(pos) 0.3641 | loss(seq) 0.0033 | grad 3.0114 | lr 0.0010 | time_forward 4.0410 | time_backward 6.0450 |
[2023-09-01 21:25:39,342::train::INFO] [train] Iter 02483 | loss 2.2579 | loss(rot) 1.5428 | loss(pos) 0.3729 | loss(seq) 0.3422 | grad 4.2387 | lr 0.0010 | time_forward 3.1450 | time_backward 4.3140 |
[2023-09-01 21:25:49,467::train::INFO] [train] Iter 02484 | loss 1.6450 | loss(rot) 0.7928 | loss(pos) 0.4376 | loss(seq) 0.4146 | grad 5.3659 | lr 0.0010 | time_forward 4.0980 | time_backward 6.0230 |
[2023-09-01 21:25:52,168::train::INFO] [train] Iter 02485 | loss 3.1266 | loss(rot) 2.3438 | loss(pos) 0.3802 | loss(seq) 0.4027 | grad 4.6160 | lr 0.0010 | time_forward 1.2170 | time_backward 1.4810 |
[2023-09-01 21:26:00,725::train::INFO] [train] Iter 02486 | loss 0.5561 | loss(rot) 0.1235 | loss(pos) 0.4077 | loss(seq) 0.0249 | grad 3.5576 | lr 0.0010 | time_forward 3.5000 | time_backward 5.0540 |
[2023-09-01 21:26:03,457::train::INFO] [train] Iter 02487 | loss 2.7303 | loss(rot) 2.1518 | loss(pos) 0.3305 | loss(seq) 0.2480 | grad 5.2378 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4550 |
[2023-09-01 21:26:12,884::train::INFO] [train] Iter 02488 | loss 2.4412 | loss(rot) 1.2893 | loss(pos) 0.5232 | loss(seq) 0.6287 | grad 6.7249 | lr 0.0010 | time_forward 3.9360 | time_backward 5.3940 |
[2023-09-01 21:26:21,458::train::INFO] [train] Iter 02489 | loss 1.7047 | loss(rot) 0.1000 | loss(pos) 1.6038 | loss(seq) 0.0009 | grad 4.5626 | lr 0.0010 | time_forward 3.5500 | time_backward 5.0210 |
[2023-09-01 21:26:31,589::train::INFO] [train] Iter 02490 | loss 1.6503 | loss(rot) 0.7885 | loss(pos) 0.4114 | loss(seq) 0.4504 | grad 2.9973 | lr 0.0010 | time_forward 4.1640 | time_backward 5.9650 |
[2023-09-01 21:26:40,361::train::INFO] [train] Iter 02491 | loss 2.4099 | loss(rot) 1.4393 | loss(pos) 0.3970 | loss(seq) 0.5735 | grad 5.5178 | lr 0.0010 | time_forward 3.2330 | time_backward 5.5350 |
[2023-09-01 21:26:51,583::train::INFO] [train] Iter 02492 | loss 2.1121 | loss(rot) 1.4976 | loss(pos) 0.4207 | loss(seq) 0.1938 | grad 6.6611 | lr 0.0010 | time_forward 4.6140 | time_backward 6.6050 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.