text
stringlengths 56
1.16k
|
---|
[2023-09-01 21:39:08,218::train::INFO] [train] Iter 02593 | loss 2.7259 | loss(rot) 2.4665 | loss(pos) 0.2462 | loss(seq) 0.0132 | grad 3.4747 | lr 0.0010 | time_forward 4.1130 | time_backward 5.1050 |
[2023-09-01 21:39:10,864::train::INFO] [train] Iter 02594 | loss 2.7590 | loss(rot) 1.6172 | loss(pos) 0.6601 | loss(seq) 0.4818 | grad 5.1188 | lr 0.0010 | time_forward 1.2130 | time_backward 1.4290 |
[2023-09-01 21:39:13,688::train::INFO] [train] Iter 02595 | loss 2.7024 | loss(rot) 2.3913 | loss(pos) 0.2258 | loss(seq) 0.0852 | grad 6.2023 | lr 0.0010 | time_forward 1.3830 | time_backward 1.4360 |
[2023-09-01 21:39:22,395::train::INFO] [train] Iter 02596 | loss 2.9582 | loss(rot) 2.7748 | loss(pos) 0.1612 | loss(seq) 0.0222 | grad 2.7404 | lr 0.0010 | time_forward 3.7110 | time_backward 4.9920 |
[2023-09-01 21:39:24,994::train::INFO] [train] Iter 02597 | loss 3.8794 | loss(rot) 3.1802 | loss(pos) 0.2791 | loss(seq) 0.4201 | grad 3.0936 | lr 0.0010 | time_forward 1.2160 | time_backward 1.3800 |
[2023-09-01 21:39:35,115::train::INFO] [train] Iter 02598 | loss 2.5360 | loss(rot) 1.3529 | loss(pos) 0.5961 | loss(seq) 0.5870 | grad 3.5513 | lr 0.0010 | time_forward 4.2110 | time_backward 5.9060 |
[2023-09-01 21:39:43,386::train::INFO] [train] Iter 02599 | loss 2.3403 | loss(rot) 1.6334 | loss(pos) 0.2558 | loss(seq) 0.4511 | grad 3.1950 | lr 0.0010 | time_forward 3.4820 | time_backward 4.7720 |
[2023-09-01 21:39:51,721::train::INFO] [train] Iter 02600 | loss 2.6220 | loss(rot) 0.0547 | loss(pos) 2.5673 | loss(seq) 0.0000 | grad 6.5652 | lr 0.0010 | time_forward 3.4730 | time_backward 4.8590 |
[2023-09-01 21:40:00,396::train::INFO] [train] Iter 02601 | loss 3.3670 | loss(rot) 2.9843 | loss(pos) 0.2159 | loss(seq) 0.1668 | grad 2.6668 | lr 0.0010 | time_forward 3.5200 | time_backward 5.1520 |
[2023-09-01 21:40:09,063::train::INFO] [train] Iter 02602 | loss 2.6836 | loss(rot) 2.5289 | loss(pos) 0.1466 | loss(seq) 0.0081 | grad 3.6496 | lr 0.0010 | time_forward 3.6610 | time_backward 5.0030 |
[2023-09-01 21:40:18,984::train::INFO] [train] Iter 02603 | loss 2.1603 | loss(rot) 1.3484 | loss(pos) 0.3491 | loss(seq) 0.4628 | grad 5.2436 | lr 0.0010 | time_forward 3.9980 | time_backward 5.9200 |
[2023-09-01 21:40:21,704::train::INFO] [train] Iter 02604 | loss 2.7904 | loss(rot) 2.6747 | loss(pos) 0.1157 | loss(seq) 0.0001 | grad 3.2082 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4570 |
[2023-09-01 21:40:24,552::train::INFO] [train] Iter 02605 | loss 1.6578 | loss(rot) 0.2212 | loss(pos) 1.0097 | loss(seq) 0.4270 | grad 4.3694 | lr 0.0010 | time_forward 1.3630 | time_backward 1.4820 |
[2023-09-01 21:40:33,398::train::INFO] [train] Iter 02606 | loss 1.4722 | loss(rot) 0.5473 | loss(pos) 0.5227 | loss(seq) 0.4022 | grad 6.3857 | lr 0.0010 | time_forward 3.7210 | time_backward 5.1220 |
[2023-09-01 21:40:41,048::train::INFO] [train] Iter 02607 | loss 2.1365 | loss(rot) 1.4425 | loss(pos) 0.1580 | loss(seq) 0.5360 | grad 3.3546 | lr 0.0010 | time_forward 3.1610 | time_backward 4.4860 |
[2023-09-01 21:40:43,882::train::INFO] [train] Iter 02608 | loss 3.1208 | loss(rot) 2.5460 | loss(pos) 0.4047 | loss(seq) 0.1701 | grad 4.2226 | lr 0.0010 | time_forward 1.3920 | time_backward 1.4390 |
[2023-09-01 21:40:53,093::train::INFO] [train] Iter 02609 | loss 2.9015 | loss(rot) 2.1724 | loss(pos) 0.2163 | loss(seq) 0.5128 | grad 3.1446 | lr 0.0010 | time_forward 3.9100 | time_backward 5.2950 |
[2023-09-01 21:41:02,167::train::INFO] [train] Iter 02610 | loss 1.7735 | loss(rot) 0.7680 | loss(pos) 0.5938 | loss(seq) 0.4116 | grad 5.3897 | lr 0.0010 | time_forward 3.4370 | time_backward 5.6340 |
[2023-09-01 21:41:11,586::train::INFO] [train] Iter 02611 | loss 3.0827 | loss(rot) 2.4348 | loss(pos) 0.2800 | loss(seq) 0.3679 | grad 3.3041 | lr 0.0010 | time_forward 3.8270 | time_backward 5.5900 |
[2023-09-01 21:41:21,102::train::INFO] [train] Iter 02612 | loss 2.5081 | loss(rot) 2.0163 | loss(pos) 0.1746 | loss(seq) 0.3173 | grad 3.9111 | lr 0.0010 | time_forward 4.0940 | time_backward 5.4180 |
[2023-09-01 21:41:30,577::train::INFO] [train] Iter 02613 | loss 2.6681 | loss(rot) 2.1532 | loss(pos) 0.1838 | loss(seq) 0.3311 | grad 4.7913 | lr 0.0010 | time_forward 4.0880 | time_backward 5.3830 |
[2023-09-01 21:41:41,201::train::INFO] [train] Iter 02614 | loss 2.9267 | loss(rot) 0.2134 | loss(pos) 2.7056 | loss(seq) 0.0078 | grad 8.1449 | lr 0.0010 | time_forward 4.4850 | time_backward 6.1340 |
[2023-09-01 21:41:49,383::train::INFO] [train] Iter 02615 | loss 3.4118 | loss(rot) 3.1437 | loss(pos) 0.2681 | loss(seq) 0.0000 | grad 2.5524 | lr 0.0010 | time_forward 3.5170 | time_backward 4.6610 |
[2023-09-01 21:41:59,956::train::INFO] [train] Iter 02616 | loss 2.0303 | loss(rot) 1.1052 | loss(pos) 0.6729 | loss(seq) 0.2522 | grad 5.2175 | lr 0.0010 | time_forward 4.3250 | time_backward 6.2430 |
[2023-09-01 21:42:02,127::train::INFO] [train] Iter 02617 | loss 2.7214 | loss(rot) 1.3929 | loss(pos) 0.6921 | loss(seq) 0.6364 | grad 5.7090 | lr 0.0010 | time_forward 0.9990 | time_backward 1.1680 |
[2023-09-01 21:42:04,842::train::INFO] [train] Iter 02618 | loss 2.6630 | loss(rot) 1.1748 | loss(pos) 0.7899 | loss(seq) 0.6983 | grad 6.9659 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4420 |
[2023-09-01 21:42:11,989::train::INFO] [train] Iter 02619 | loss 2.2655 | loss(rot) 1.5309 | loss(pos) 0.3440 | loss(seq) 0.3905 | grad 3.6596 | lr 0.0010 | time_forward 3.0360 | time_backward 4.1070 |
[2023-09-01 21:42:17,947::train::INFO] [train] Iter 02620 | loss 2.8396 | loss(rot) 2.1746 | loss(pos) 0.2464 | loss(seq) 0.4186 | grad 4.0300 | lr 0.0010 | time_forward 2.5000 | time_backward 3.4550 |
[2023-09-01 21:42:26,595::train::INFO] [train] Iter 02621 | loss 1.8912 | loss(rot) 0.3613 | loss(pos) 1.2726 | loss(seq) 0.2573 | grad 7.3866 | lr 0.0010 | time_forward 3.6470 | time_backward 4.9970 |
[2023-09-01 21:42:29,661::train::INFO] [train] Iter 02622 | loss 2.6976 | loss(rot) 2.4804 | loss(pos) 0.2166 | loss(seq) 0.0007 | grad 4.4506 | lr 0.0010 | time_forward 1.3990 | time_backward 1.6630 |
[2023-09-01 21:42:38,443::train::INFO] [train] Iter 02623 | loss 1.9026 | loss(rot) 1.1557 | loss(pos) 0.3653 | loss(seq) 0.3815 | grad 3.5325 | lr 0.0010 | time_forward 3.6360 | time_backward 5.1430 |
[2023-09-01 21:42:41,262::train::INFO] [train] Iter 02624 | loss 2.3998 | loss(rot) 1.6748 | loss(pos) 0.2799 | loss(seq) 0.4451 | grad 6.0148 | lr 0.0010 | time_forward 1.3480 | time_backward 1.4670 |
[2023-09-01 21:42:51,260::train::INFO] [train] Iter 02625 | loss 2.0995 | loss(rot) 1.1162 | loss(pos) 0.5381 | loss(seq) 0.4452 | grad 3.7000 | lr 0.0010 | time_forward 4.2030 | time_backward 5.7920 |
[2023-09-01 21:42:53,973::train::INFO] [train] Iter 02626 | loss 3.2136 | loss(rot) 2.7720 | loss(pos) 0.4412 | loss(seq) 0.0003 | grad 7.4640 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4610 |
[2023-09-01 21:43:03,938::train::INFO] [train] Iter 02627 | loss 1.6322 | loss(rot) 0.1283 | loss(pos) 1.2407 | loss(seq) 0.2631 | grad 5.2954 | lr 0.0010 | time_forward 4.2160 | time_backward 5.7450 |
[2023-09-01 21:43:06,579::train::INFO] [train] Iter 02628 | loss 1.6253 | loss(rot) 0.4734 | loss(pos) 0.8448 | loss(seq) 0.3071 | grad 3.6552 | lr 0.0010 | time_forward 1.2390 | time_backward 1.3990 |
[2023-09-01 21:43:15,724::train::INFO] [train] Iter 02629 | loss 1.3968 | loss(rot) 0.1968 | loss(pos) 1.1677 | loss(seq) 0.0323 | grad 4.6531 | lr 0.0010 | time_forward 3.8710 | time_backward 5.2710 |
[2023-09-01 21:43:18,544::train::INFO] [train] Iter 02630 | loss 3.1491 | loss(rot) 2.4348 | loss(pos) 0.2239 | loss(seq) 0.4903 | grad 4.0953 | lr 0.0010 | time_forward 1.2830 | time_backward 1.5330 |
[2023-09-01 21:43:28,653::train::INFO] [train] Iter 02631 | loss 1.5887 | loss(rot) 0.3635 | loss(pos) 1.1667 | loss(seq) 0.0584 | grad 5.4347 | lr 0.0010 | time_forward 4.1560 | time_backward 5.9500 |
[2023-09-01 21:43:31,534::train::INFO] [train] Iter 02632 | loss 3.1079 | loss(rot) 1.7805 | loss(pos) 0.5381 | loss(seq) 0.7892 | grad 7.0020 | lr 0.0010 | time_forward 1.3460 | time_backward 1.5310 |
[2023-09-01 21:43:34,086::train::INFO] [train] Iter 02633 | loss 2.1500 | loss(rot) 1.3572 | loss(pos) 0.2052 | loss(seq) 0.5876 | grad 9.2386 | lr 0.0010 | time_forward 1.2180 | time_backward 1.3310 |
[2023-09-01 21:43:36,943::train::INFO] [train] Iter 02634 | loss 1.5678 | loss(rot) 0.9589 | loss(pos) 0.4145 | loss(seq) 0.1944 | grad 4.5231 | lr 0.0010 | time_forward 1.2890 | time_backward 1.5320 |
[2023-09-01 21:43:46,302::train::INFO] [train] Iter 02635 | loss 2.7888 | loss(rot) 1.9473 | loss(pos) 0.3314 | loss(seq) 0.5101 | grad 6.6627 | lr 0.0010 | time_forward 3.9580 | time_backward 5.3980 |
[2023-09-01 21:43:48,584::train::INFO] [train] Iter 02636 | loss 2.6550 | loss(rot) 1.8750 | loss(pos) 0.3249 | loss(seq) 0.4552 | grad 7.5905 | lr 0.0010 | time_forward 1.1100 | time_backward 1.1680 |
[2023-09-01 21:43:55,708::train::INFO] [train] Iter 02637 | loss 2.6242 | loss(rot) 0.6101 | loss(pos) 1.7837 | loss(seq) 0.2303 | grad 6.5896 | lr 0.0010 | time_forward 3.0040 | time_backward 4.1170 |
[2023-09-01 21:43:58,376::train::INFO] [train] Iter 02638 | loss 1.5849 | loss(rot) 0.8054 | loss(pos) 0.2725 | loss(seq) 0.5070 | grad 3.2688 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4240 |
[2023-09-01 21:44:01,680::train::INFO] [train] Iter 02639 | loss 3.2503 | loss(rot) 2.8078 | loss(pos) 0.2755 | loss(seq) 0.1671 | grad 4.1981 | lr 0.0010 | time_forward 1.4750 | time_backward 1.8260 |
[2023-09-01 21:44:06,278::train::INFO] [train] Iter 02640 | loss 1.6863 | loss(rot) 0.4893 | loss(pos) 0.7631 | loss(seq) 0.4339 | grad 5.7558 | lr 0.0010 | time_forward 1.9140 | time_backward 2.6800 |
[2023-09-01 21:44:09,047::train::INFO] [train] Iter 02641 | loss 1.2161 | loss(rot) 0.5760 | loss(pos) 0.3976 | loss(seq) 0.2425 | grad 4.0022 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4550 |
[2023-09-01 21:44:16,665::train::INFO] [train] Iter 02642 | loss 2.5676 | loss(rot) 2.2349 | loss(pos) 0.1362 | loss(seq) 0.1965 | grad 5.6207 | lr 0.0010 | time_forward 3.3010 | time_backward 4.2680 |
[2023-09-01 21:44:25,163::train::INFO] [train] Iter 02643 | loss 4.9211 | loss(rot) 0.0144 | loss(pos) 4.9061 | loss(seq) 0.0006 | grad 10.8057 | lr 0.0010 | time_forward 3.6450 | time_backward 4.8500 |
[2023-09-01 21:44:35,274::train::INFO] [train] Iter 02644 | loss 3.1683 | loss(rot) 2.8397 | loss(pos) 0.0978 | loss(seq) 0.2309 | grad 3.9161 | lr 0.0010 | time_forward 4.1020 | time_backward 6.0050 |
[2023-09-01 21:44:44,226::train::INFO] [train] Iter 02645 | loss 1.2244 | loss(rot) 0.1445 | loss(pos) 1.0612 | loss(seq) 0.0188 | grad 3.4114 | lr 0.0010 | time_forward 3.7720 | time_backward 5.1640 |
[2023-09-01 21:44:52,230::train::INFO] [train] Iter 02646 | loss 1.9480 | loss(rot) 1.7938 | loss(pos) 0.0900 | loss(seq) 0.0642 | grad 3.0928 | lr 0.0010 | time_forward 3.3380 | time_backward 4.6620 |
[2023-09-01 21:45:02,225::train::INFO] [train] Iter 02647 | loss 3.1409 | loss(rot) 1.7676 | loss(pos) 0.6644 | loss(seq) 0.7090 | grad 5.7556 | lr 0.0010 | time_forward 4.0600 | time_backward 5.9320 |
[2023-09-01 21:45:12,199::train::INFO] [train] Iter 02648 | loss 3.6406 | loss(rot) 3.2172 | loss(pos) 0.1889 | loss(seq) 0.2344 | grad 3.9466 | lr 0.0010 | time_forward 4.0190 | time_backward 5.9520 |
[2023-09-01 21:45:17,000::train::INFO] [train] Iter 02649 | loss 2.6483 | loss(rot) 1.4777 | loss(pos) 0.6339 | loss(seq) 0.5367 | grad 5.6982 | lr 0.0010 | time_forward 2.1180 | time_backward 2.6800 |
[2023-09-01 21:45:25,727::train::INFO] [train] Iter 02650 | loss 3.1725 | loss(rot) 2.9532 | loss(pos) 0.1286 | loss(seq) 0.0906 | grad 3.6980 | lr 0.0010 | time_forward 3.6870 | time_backward 5.0370 |
[2023-09-01 21:45:35,704::train::INFO] [train] Iter 02651 | loss 1.8135 | loss(rot) 0.2505 | loss(pos) 1.5282 | loss(seq) 0.0348 | grad 4.3121 | lr 0.0010 | time_forward 4.1310 | time_backward 5.7940 |
[2023-09-01 21:45:38,426::train::INFO] [train] Iter 02652 | loss 2.3417 | loss(rot) 0.9684 | loss(pos) 1.0409 | loss(seq) 0.3323 | grad 5.5243 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4440 |
[2023-09-01 21:45:41,210::train::INFO] [train] Iter 02653 | loss 2.4542 | loss(rot) 2.2628 | loss(pos) 0.1441 | loss(seq) 0.0473 | grad 4.3875 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4880 |
[2023-09-01 21:45:47,080::train::INFO] [train] Iter 02654 | loss 1.1227 | loss(rot) 0.2048 | loss(pos) 0.8863 | loss(seq) 0.0316 | grad 3.7769 | lr 0.0010 | time_forward 2.4130 | time_backward 3.4400 |
[2023-09-01 21:45:55,937::train::INFO] [train] Iter 02655 | loss 1.9792 | loss(rot) 1.8270 | loss(pos) 0.1381 | loss(seq) 0.0141 | grad 3.7580 | lr 0.0010 | time_forward 3.7510 | time_backward 5.1020 |
[2023-09-01 21:46:04,725::train::INFO] [train] Iter 02656 | loss 2.4605 | loss(rot) 1.3865 | loss(pos) 0.4082 | loss(seq) 0.6659 | grad 5.6249 | lr 0.0010 | time_forward 3.7200 | time_backward 5.0650 |
[2023-09-01 21:46:13,101::train::INFO] [train] Iter 02657 | loss 3.6491 | loss(rot) 3.2934 | loss(pos) 0.3349 | loss(seq) 0.0207 | grad 4.6022 | lr 0.0010 | time_forward 3.5130 | time_backward 4.8580 |
[2023-09-01 21:46:15,860::train::INFO] [train] Iter 02658 | loss 2.9722 | loss(rot) 2.7247 | loss(pos) 0.2149 | loss(seq) 0.0327 | grad 4.2817 | lr 0.0010 | time_forward 1.2500 | time_backward 1.5060 |
[2023-09-01 21:46:25,629::train::INFO] [train] Iter 02659 | loss 1.9383 | loss(rot) 1.2101 | loss(pos) 0.2406 | loss(seq) 0.4876 | grad 4.9564 | lr 0.0010 | time_forward 4.2440 | time_backward 5.5200 |
[2023-09-01 21:46:34,273::train::INFO] [train] Iter 02660 | loss 2.6029 | loss(rot) 2.4341 | loss(pos) 0.1001 | loss(seq) 0.0687 | grad 4.8846 | lr 0.0010 | time_forward 3.5530 | time_backward 5.0880 |
[2023-09-01 21:46:43,804::train::INFO] [train] Iter 02661 | loss 1.8656 | loss(rot) 0.9452 | loss(pos) 0.4047 | loss(seq) 0.5157 | grad 4.4163 | lr 0.0010 | time_forward 3.8940 | time_backward 5.6330 |
[2023-09-01 21:46:55,228::train::INFO] [train] Iter 02662 | loss 3.2601 | loss(rot) 3.0392 | loss(pos) 0.2043 | loss(seq) 0.0166 | grad 3.6251 | lr 0.0010 | time_forward 4.8310 | time_backward 6.5890 |
[2023-09-01 21:47:04,228::train::INFO] [train] Iter 02663 | loss 2.3335 | loss(rot) 2.0499 | loss(pos) 0.2093 | loss(seq) 0.0744 | grad 4.8467 | lr 0.0010 | time_forward 3.9820 | time_backward 5.0150 |
[2023-09-01 21:47:14,321::train::INFO] [train] Iter 02664 | loss 1.4950 | loss(rot) 0.4250 | loss(pos) 1.0049 | loss(seq) 0.0651 | grad 4.7865 | lr 0.0010 | time_forward 4.1420 | time_backward 5.9470 |
[2023-09-01 21:47:17,065::train::INFO] [train] Iter 02665 | loss 1.0182 | loss(rot) 0.4202 | loss(pos) 0.5231 | loss(seq) 0.0748 | grad 3.8193 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4940 |
[2023-09-01 21:47:26,729::train::INFO] [train] Iter 02666 | loss 1.1918 | loss(rot) 0.5843 | loss(pos) 0.5216 | loss(seq) 0.0858 | grad 2.7579 | lr 0.0010 | time_forward 3.9070 | time_backward 5.7530 |
[2023-09-01 21:47:28,924::train::INFO] [train] Iter 02667 | loss 1.2656 | loss(rot) 0.5635 | loss(pos) 0.6092 | loss(seq) 0.0929 | grad 4.1717 | lr 0.0010 | time_forward 1.0080 | time_backward 1.1840 |
[2023-09-01 21:47:31,631::train::INFO] [train] Iter 02668 | loss 1.4868 | loss(rot) 0.5414 | loss(pos) 0.5667 | loss(seq) 0.3788 | grad 3.3154 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4690 |
[2023-09-01 21:47:41,542::train::INFO] [train] Iter 02669 | loss 2.9820 | loss(rot) 2.2510 | loss(pos) 0.3726 | loss(seq) 0.3583 | grad 4.2452 | lr 0.0010 | time_forward 4.0930 | time_backward 5.8130 |
[2023-09-01 21:47:44,752::train::INFO] [train] Iter 02670 | loss 3.0455 | loss(rot) 2.1041 | loss(pos) 0.3591 | loss(seq) 0.5823 | grad 4.6376 | lr 0.0010 | time_forward 1.4370 | time_backward 1.7710 |
[2023-09-01 21:47:53,997::train::INFO] [train] Iter 02671 | loss 2.4255 | loss(rot) 2.0600 | loss(pos) 0.3032 | loss(seq) 0.0622 | grad 4.2260 | lr 0.0010 | time_forward 3.9570 | time_backward 5.2840 |
[2023-09-01 21:48:03,298::train::INFO] [train] Iter 02672 | loss 1.3667 | loss(rot) 0.4824 | loss(pos) 0.6584 | loss(seq) 0.2259 | grad 3.2934 | lr 0.0010 | time_forward 4.0260 | time_backward 5.2720 |
[2023-09-01 21:48:10,994::train::INFO] [train] Iter 02673 | loss 1.9458 | loss(rot) 1.0191 | loss(pos) 0.3824 | loss(seq) 0.5443 | grad 4.2843 | lr 0.0010 | time_forward 3.1490 | time_backward 4.5430 |
[2023-09-01 21:48:13,638::train::INFO] [train] Iter 02674 | loss 3.2619 | loss(rot) 2.5097 | loss(pos) 0.3364 | loss(seq) 0.4158 | grad 6.6040 | lr 0.0010 | time_forward 1.2130 | time_backward 1.4270 |
[2023-09-01 21:48:16,341::train::INFO] [train] Iter 02675 | loss 2.6531 | loss(rot) 2.0316 | loss(pos) 0.2552 | loss(seq) 0.3663 | grad 4.4836 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4150 |
[2023-09-01 21:48:26,510::train::INFO] [train] Iter 02676 | loss 1.9748 | loss(rot) 1.2919 | loss(pos) 0.2282 | loss(seq) 0.4546 | grad 4.1774 | lr 0.0010 | time_forward 4.2100 | time_backward 5.9530 |
[2023-09-01 21:48:35,415::train::INFO] [train] Iter 02677 | loss 1.9308 | loss(rot) 1.4078 | loss(pos) 0.1938 | loss(seq) 0.3292 | grad 3.2244 | lr 0.0010 | time_forward 3.8170 | time_backward 5.0860 |
[2023-09-01 21:48:43,899::train::INFO] [train] Iter 02678 | loss 3.3772 | loss(rot) 3.0418 | loss(pos) 0.3353 | loss(seq) 0.0000 | grad 3.7483 | lr 0.0010 | time_forward 3.4670 | time_backward 5.0130 |
[2023-09-01 21:48:55,156::train::INFO] [train] Iter 02679 | loss 2.7093 | loss(rot) 2.0775 | loss(pos) 0.1493 | loss(seq) 0.4824 | grad 4.2479 | lr 0.0010 | time_forward 4.6880 | time_backward 6.5650 |
[2023-09-01 21:49:04,666::train::INFO] [train] Iter 02680 | loss 1.1223 | loss(rot) 0.0919 | loss(pos) 1.0112 | loss(seq) 0.0191 | grad 3.7295 | lr 0.0010 | time_forward 4.0370 | time_backward 5.4700 |
[2023-09-01 21:49:12,787::train::INFO] [train] Iter 02681 | loss 2.5293 | loss(rot) 0.0808 | loss(pos) 2.4446 | loss(seq) 0.0038 | grad 4.9669 | lr 0.0010 | time_forward 3.3020 | time_backward 4.8150 |
[2023-09-01 21:49:20,765::train::INFO] [train] Iter 02682 | loss 3.1083 | loss(rot) 0.2528 | loss(pos) 2.8260 | loss(seq) 0.0296 | grad 9.2910 | lr 0.0010 | time_forward 3.4070 | time_backward 4.5670 |
[2023-09-01 21:49:31,009::train::INFO] [train] Iter 02683 | loss 1.9071 | loss(rot) 1.0126 | loss(pos) 0.5070 | loss(seq) 0.3875 | grad 4.9500 | lr 0.0010 | time_forward 4.1680 | time_backward 6.0730 |
[2023-09-01 21:49:39,672::train::INFO] [train] Iter 02684 | loss 2.0799 | loss(rot) 0.8094 | loss(pos) 1.1908 | loss(seq) 0.0797 | grad 6.8128 | lr 0.0010 | time_forward 3.7260 | time_backward 4.9310 |
[2023-09-01 21:49:48,726::train::INFO] [train] Iter 02685 | loss 2.0385 | loss(rot) 0.7386 | loss(pos) 0.6740 | loss(seq) 0.6259 | grad 3.7993 | lr 0.0010 | time_forward 3.8570 | time_backward 5.1950 |
[2023-09-01 21:49:57,041::train::INFO] [train] Iter 02686 | loss 1.6016 | loss(rot) 1.0747 | loss(pos) 0.3478 | loss(seq) 0.1791 | grad 3.7893 | lr 0.0010 | time_forward 3.5370 | time_backward 4.7750 |
[2023-09-01 21:50:05,119::train::INFO] [train] Iter 02687 | loss 2.4570 | loss(rot) 1.3362 | loss(pos) 0.6728 | loss(seq) 0.4480 | grad 7.2373 | lr 0.0010 | time_forward 3.2850 | time_backward 4.7900 |
[2023-09-01 21:50:13,705::train::INFO] [train] Iter 02688 | loss 1.1970 | loss(rot) 0.4235 | loss(pos) 0.3109 | loss(seq) 0.4626 | grad 4.4851 | lr 0.0010 | time_forward 3.6310 | time_backward 4.9510 |
[2023-09-01 21:50:16,399::train::INFO] [train] Iter 02689 | loss 3.5633 | loss(rot) 3.0666 | loss(pos) 0.4933 | loss(seq) 0.0034 | grad 6.0984 | lr 0.0010 | time_forward 1.2110 | time_backward 1.4800 |
[2023-09-01 21:50:24,474::train::INFO] [train] Iter 02690 | loss 3.5067 | loss(rot) 2.7993 | loss(pos) 0.4919 | loss(seq) 0.2155 | grad 6.9830 | lr 0.0010 | time_forward 3.3150 | time_backward 4.7570 |
[2023-09-01 21:50:27,178::train::INFO] [train] Iter 02691 | loss 2.1245 | loss(rot) 1.3856 | loss(pos) 0.2815 | loss(seq) 0.4573 | grad 4.1780 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4290 |
[2023-09-01 21:50:30,390::train::INFO] [train] Iter 02692 | loss 1.9359 | loss(rot) 1.3656 | loss(pos) 0.2065 | loss(seq) 0.3638 | grad 4.1142 | lr 0.0010 | time_forward 1.4110 | time_backward 1.7980 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.