text
stringlengths 56
1.16k
|
---|
[2023-09-01 21:50:39,396::train::INFO] [train] Iter 02693 | loss 0.8587 | loss(rot) 0.4831 | loss(pos) 0.2974 | loss(seq) 0.0782 | grad 3.8635 | lr 0.0010 | time_forward 3.8140 | time_backward 5.1880 |
[2023-09-01 21:50:46,395::train::INFO] [train] Iter 02694 | loss 1.3142 | loss(rot) 0.0997 | loss(pos) 1.2054 | loss(seq) 0.0091 | grad 4.4897 | lr 0.0010 | time_forward 2.9500 | time_backward 4.0460 |
[2023-09-01 21:50:56,884::train::INFO] [train] Iter 02695 | loss 2.7469 | loss(rot) 2.4799 | loss(pos) 0.2503 | loss(seq) 0.0167 | grad 2.7635 | lr 0.0010 | time_forward 4.1550 | time_backward 6.3300 |
[2023-09-01 21:51:07,553::train::INFO] [train] Iter 02696 | loss 2.9184 | loss(rot) 2.6022 | loss(pos) 0.2645 | loss(seq) 0.0517 | grad 2.6629 | lr 0.0010 | time_forward 4.2510 | time_backward 6.4130 |
[2023-09-01 21:51:18,014::train::INFO] [train] Iter 02697 | loss 2.9979 | loss(rot) 1.6971 | loss(pos) 0.8899 | loss(seq) 0.4110 | grad 4.5293 | lr 0.0010 | time_forward 4.4700 | time_backward 5.6190 |
[2023-09-01 21:51:29,040::train::INFO] [train] Iter 02698 | loss 1.2142 | loss(rot) 0.3388 | loss(pos) 0.6764 | loss(seq) 0.1989 | grad 3.9338 | lr 0.0010 | time_forward 4.6000 | time_backward 6.4220 |
[2023-09-01 21:51:37,899::train::INFO] [train] Iter 02699 | loss 2.7033 | loss(rot) 2.1105 | loss(pos) 0.2711 | loss(seq) 0.3218 | grad 3.8516 | lr 0.0010 | time_forward 3.6320 | time_backward 5.2250 |
[2023-09-01 21:51:47,745::train::INFO] [train] Iter 02700 | loss 2.7522 | loss(rot) 2.3531 | loss(pos) 0.2847 | loss(seq) 0.1144 | grad 4.6147 | lr 0.0010 | time_forward 4.4010 | time_backward 5.4410 |
[2023-09-01 21:51:50,476::train::INFO] [train] Iter 02701 | loss 1.8099 | loss(rot) 0.5175 | loss(pos) 0.5048 | loss(seq) 0.7876 | grad 5.5560 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4750 |
[2023-09-01 21:51:53,264::train::INFO] [train] Iter 02702 | loss 3.1569 | loss(rot) 2.5792 | loss(pos) 0.5776 | loss(seq) 0.0000 | grad 7.3078 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4450 |
[2023-09-01 21:52:01,654::train::INFO] [train] Iter 02703 | loss 1.7329 | loss(rot) 0.7993 | loss(pos) 0.3676 | loss(seq) 0.5660 | grad 4.3217 | lr 0.0010 | time_forward 3.4890 | time_backward 4.8610 |
[2023-09-01 21:52:03,859::train::INFO] [train] Iter 02704 | loss 2.5645 | loss(rot) 2.2010 | loss(pos) 0.3632 | loss(seq) 0.0003 | grad 4.7579 | lr 0.0010 | time_forward 1.0170 | time_backward 1.1850 |
[2023-09-01 21:52:13,794::train::INFO] [train] Iter 02705 | loss 3.0902 | loss(rot) 2.8159 | loss(pos) 0.2286 | loss(seq) 0.0457 | grad 3.1425 | lr 0.0010 | time_forward 4.1660 | time_backward 5.7660 |
[2023-09-01 21:52:23,680::train::INFO] [train] Iter 02706 | loss 2.9539 | loss(rot) 1.8802 | loss(pos) 0.5780 | loss(seq) 0.4957 | grad 5.3534 | lr 0.0010 | time_forward 4.1610 | time_backward 5.7210 |
[2023-09-01 21:52:34,416::train::INFO] [train] Iter 02707 | loss 3.0450 | loss(rot) 2.8245 | loss(pos) 0.2153 | loss(seq) 0.0052 | grad 4.3716 | lr 0.0010 | time_forward 4.3360 | time_backward 6.3980 |
[2023-09-01 21:52:37,117::train::INFO] [train] Iter 02708 | loss 1.3992 | loss(rot) 0.5988 | loss(pos) 0.3719 | loss(seq) 0.4285 | grad 5.7277 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4510 |
[2023-09-01 21:52:42,069::train::INFO] [train] Iter 02709 | loss 1.9360 | loss(rot) 0.0319 | loss(pos) 1.8979 | loss(seq) 0.0063 | grad 5.7044 | lr 0.0010 | time_forward 2.2130 | time_backward 2.7360 |
[2023-09-01 21:52:44,879::train::INFO] [train] Iter 02710 | loss 2.4013 | loss(rot) 2.0139 | loss(pos) 0.3586 | loss(seq) 0.0288 | grad 7.2157 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4530 |
[2023-09-01 21:52:47,512::train::INFO] [train] Iter 02711 | loss 1.1812 | loss(rot) 0.2364 | loss(pos) 0.9235 | loss(seq) 0.0212 | grad 5.6144 | lr 0.0010 | time_forward 1.2110 | time_backward 1.4200 |
[2023-09-01 21:52:50,297::train::INFO] [train] Iter 02712 | loss 4.1447 | loss(rot) 0.0559 | loss(pos) 4.0889 | loss(seq) 0.0000 | grad 7.6924 | lr 0.0010 | time_forward 1.2250 | time_backward 1.5150 |
[2023-09-01 21:52:53,284::train::INFO] [train] Iter 02713 | loss 2.5663 | loss(rot) 2.4146 | loss(pos) 0.1385 | loss(seq) 0.0132 | grad 4.0652 | lr 0.0010 | time_forward 1.3670 | time_backward 1.6170 |
[2023-09-01 21:53:01,477::train::INFO] [train] Iter 02714 | loss 0.9052 | loss(rot) 0.1115 | loss(pos) 0.7829 | loss(seq) 0.0108 | grad 4.7685 | lr 0.0010 | time_forward 3.3870 | time_backward 4.7690 |
[2023-09-01 21:53:10,394::train::INFO] [train] Iter 02715 | loss 3.4900 | loss(rot) 2.8957 | loss(pos) 0.1802 | loss(seq) 0.4141 | grad 6.0764 | lr 0.0010 | time_forward 3.7460 | time_backward 5.1670 |
[2023-09-01 21:53:18,897::train::INFO] [train] Iter 02716 | loss 2.9969 | loss(rot) 2.7854 | loss(pos) 0.2114 | loss(seq) 0.0000 | grad 3.0805 | lr 0.0010 | time_forward 3.5460 | time_backward 4.9530 |
[2023-09-01 21:53:28,487::train::INFO] [train] Iter 02717 | loss 2.7447 | loss(rot) 2.4571 | loss(pos) 0.2781 | loss(seq) 0.0095 | grad 5.1464 | lr 0.0010 | time_forward 4.0840 | time_backward 5.5020 |
[2023-09-01 21:53:39,528::train::INFO] [train] Iter 02718 | loss 2.0736 | loss(rot) 1.0567 | loss(pos) 0.4242 | loss(seq) 0.5927 | grad 4.6733 | lr 0.0010 | time_forward 4.4910 | time_backward 6.5460 |
[2023-09-01 21:53:50,780::train::INFO] [train] Iter 02719 | loss 0.8185 | loss(rot) 0.1882 | loss(pos) 0.5860 | loss(seq) 0.0443 | grad 4.1127 | lr 0.0010 | time_forward 5.0020 | time_backward 6.2470 |
[2023-09-01 21:54:01,296::train::INFO] [train] Iter 02720 | loss 3.4708 | loss(rot) 2.7119 | loss(pos) 0.2962 | loss(seq) 0.4627 | grad 5.4142 | lr 0.0010 | time_forward 4.2910 | time_backward 6.2220 |
[2023-09-01 21:54:10,530::train::INFO] [train] Iter 02721 | loss 1.0122 | loss(rot) 0.2112 | loss(pos) 0.7669 | loss(seq) 0.0342 | grad 4.5230 | lr 0.0010 | time_forward 3.8810 | time_backward 5.3500 |
[2023-09-01 21:54:14,542::train::INFO] [train] Iter 02722 | loss 1.0994 | loss(rot) 0.4751 | loss(pos) 0.4428 | loss(seq) 0.1815 | grad 3.7488 | lr 0.0010 | time_forward 1.7140 | time_backward 2.2950 |
[2023-09-01 21:54:24,592::train::INFO] [train] Iter 02723 | loss 1.2533 | loss(rot) 0.2789 | loss(pos) 0.8176 | loss(seq) 0.1567 | grad 5.0906 | lr 0.0010 | time_forward 4.0560 | time_backward 5.9780 |
[2023-09-01 21:54:34,773::train::INFO] [train] Iter 02724 | loss 2.5175 | loss(rot) 0.1138 | loss(pos) 2.4032 | loss(seq) 0.0006 | grad 6.8569 | lr 0.0010 | time_forward 4.2010 | time_backward 5.9770 |
[2023-09-01 21:54:43,048::train::INFO] [train] Iter 02725 | loss 3.1872 | loss(rot) 3.0031 | loss(pos) 0.1711 | loss(seq) 0.0130 | grad 3.6057 | lr 0.0010 | time_forward 3.3720 | time_backward 4.8990 |
[2023-09-01 21:54:51,062::train::INFO] [train] Iter 02726 | loss 1.6380 | loss(rot) 0.6426 | loss(pos) 0.3374 | loss(seq) 0.6580 | grad 4.4865 | lr 0.0010 | time_forward 3.4390 | time_backward 4.5730 |
[2023-09-01 21:55:01,112::train::INFO] [train] Iter 02727 | loss 3.2605 | loss(rot) 2.5154 | loss(pos) 0.4808 | loss(seq) 0.2644 | grad 3.4362 | lr 0.0010 | time_forward 4.1360 | time_backward 5.9100 |
[2023-09-01 21:55:03,752::train::INFO] [train] Iter 02728 | loss 2.6076 | loss(rot) 2.2897 | loss(pos) 0.1844 | loss(seq) 0.1334 | grad 4.0040 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4110 |
[2023-09-01 21:55:06,490::train::INFO] [train] Iter 02729 | loss 2.5802 | loss(rot) 1.7818 | loss(pos) 0.3305 | loss(seq) 0.4680 | grad 3.9363 | lr 0.0010 | time_forward 1.3110 | time_backward 1.4230 |
[2023-09-01 21:55:12,411::train::INFO] [train] Iter 02730 | loss 2.9048 | loss(rot) 2.3481 | loss(pos) 0.3451 | loss(seq) 0.2116 | grad 5.7671 | lr 0.0010 | time_forward 2.5190 | time_backward 3.4000 |
[2023-09-01 21:55:22,986::train::INFO] [train] Iter 02731 | loss 1.7706 | loss(rot) 0.1743 | loss(pos) 1.5859 | loss(seq) 0.0104 | grad 5.8061 | lr 0.0010 | time_forward 4.1960 | time_backward 6.3750 |
[2023-09-01 21:55:25,976::train::INFO] [train] Iter 02732 | loss 2.7038 | loss(rot) 2.5620 | loss(pos) 0.1417 | loss(seq) 0.0000 | grad 4.2822 | lr 0.0010 | time_forward 1.3400 | time_backward 1.6470 |
[2023-09-01 21:55:37,244::train::INFO] [train] Iter 02733 | loss 3.0126 | loss(rot) 2.6853 | loss(pos) 0.2920 | loss(seq) 0.0352 | grad 6.0581 | lr 0.0010 | time_forward 4.9780 | time_backward 6.2860 |
[2023-09-01 21:55:47,753::train::INFO] [train] Iter 02734 | loss 1.4274 | loss(rot) 0.3873 | loss(pos) 0.9540 | loss(seq) 0.0861 | grad 5.3036 | lr 0.0010 | time_forward 4.4620 | time_backward 6.0430 |
[2023-09-01 21:55:57,828::train::INFO] [train] Iter 02735 | loss 2.0697 | loss(rot) 0.4083 | loss(pos) 1.3688 | loss(seq) 0.2925 | grad 5.5272 | lr 0.0010 | time_forward 4.0970 | time_backward 5.9750 |
[2023-09-01 21:56:07,913::train::INFO] [train] Iter 02736 | loss 1.2028 | loss(rot) 0.1210 | loss(pos) 1.0590 | loss(seq) 0.0227 | grad 5.1123 | lr 0.0010 | time_forward 4.1080 | time_backward 5.9730 |
[2023-09-01 21:56:10,455::train::INFO] [train] Iter 02737 | loss 2.7787 | loss(rot) 2.1808 | loss(pos) 0.3025 | loss(seq) 0.2954 | grad 5.0244 | lr 0.0010 | time_forward 1.2250 | time_backward 1.3130 |
[2023-09-01 21:56:13,223::train::INFO] [train] Iter 02738 | loss 2.3193 | loss(rot) 1.4927 | loss(pos) 0.3321 | loss(seq) 0.4945 | grad 5.9668 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4520 |
[2023-09-01 21:56:24,130::train::INFO] [train] Iter 02739 | loss 3.2999 | loss(rot) 2.9812 | loss(pos) 0.2936 | loss(seq) 0.0251 | grad 4.9142 | lr 0.0010 | time_forward 4.5870 | time_backward 6.3170 |
[2023-09-01 21:56:34,711::train::INFO] [train] Iter 02740 | loss 1.8886 | loss(rot) 0.2417 | loss(pos) 1.6419 | loss(seq) 0.0051 | grad 3.9907 | lr 0.0010 | time_forward 4.4220 | time_backward 6.1540 |
[2023-09-01 21:56:43,935::train::INFO] [train] Iter 02741 | loss 3.2407 | loss(rot) 2.6853 | loss(pos) 0.4086 | loss(seq) 0.1468 | grad 5.8466 | lr 0.0010 | time_forward 3.8450 | time_backward 5.3760 |
[2023-09-01 21:56:46,790::train::INFO] [train] Iter 02742 | loss 2.9136 | loss(rot) 2.5520 | loss(pos) 0.2530 | loss(seq) 0.1086 | grad 5.7565 | lr 0.0010 | time_forward 1.2750 | time_backward 1.5760 |
[2023-09-01 21:56:50,262::train::INFO] [train] Iter 02743 | loss 1.2184 | loss(rot) 0.0896 | loss(pos) 1.1108 | loss(seq) 0.0179 | grad 4.1594 | lr 0.0010 | time_forward 1.5240 | time_backward 1.9440 |
[2023-09-01 21:56:53,618::train::INFO] [train] Iter 02744 | loss 1.9602 | loss(rot) 1.2639 | loss(pos) 0.3736 | loss(seq) 0.3227 | grad 5.0013 | lr 0.0010 | time_forward 1.5130 | time_backward 1.8390 |
[2023-09-01 21:57:04,552::train::INFO] [train] Iter 02745 | loss 1.6325 | loss(rot) 0.3895 | loss(pos) 0.9710 | loss(seq) 0.2721 | grad 6.1540 | lr 0.0010 | time_forward 4.7180 | time_backward 6.2120 |
[2023-09-01 21:57:15,253::train::INFO] [train] Iter 02746 | loss 0.9892 | loss(rot) 0.2650 | loss(pos) 0.6520 | loss(seq) 0.0722 | grad 4.1041 | lr 0.0010 | time_forward 4.0970 | time_backward 6.6010 |
[2023-09-01 21:57:24,946::train::INFO] [train] Iter 02747 | loss 3.0452 | loss(rot) 2.7570 | loss(pos) 0.2852 | loss(seq) 0.0029 | grad 5.5986 | lr 0.0010 | time_forward 4.1760 | time_backward 5.5140 |
[2023-09-01 21:57:27,994::train::INFO] [train] Iter 02748 | loss 3.1674 | loss(rot) 2.9501 | loss(pos) 0.2049 | loss(seq) 0.0124 | grad 3.3496 | lr 0.0010 | time_forward 1.4440 | time_backward 1.6010 |
[2023-09-01 21:57:37,185::train::INFO] [train] Iter 02749 | loss 2.6687 | loss(rot) 1.5108 | loss(pos) 0.5559 | loss(seq) 0.6020 | grad 5.5540 | lr 0.0010 | time_forward 3.9630 | time_backward 5.1680 |
[2023-09-01 21:57:45,706::train::INFO] [train] Iter 02750 | loss 3.1302 | loss(rot) 2.7296 | loss(pos) 0.3958 | loss(seq) 0.0048 | grad 3.9226 | lr 0.0010 | time_forward 3.6070 | time_backward 4.9110 |
[2023-09-01 21:57:54,554::train::INFO] [train] Iter 02751 | loss 1.7176 | loss(rot) 0.7174 | loss(pos) 0.7086 | loss(seq) 0.2916 | grad 5.0241 | lr 0.0010 | time_forward 3.7010 | time_backward 5.1430 |
[2023-09-01 21:58:03,652::train::INFO] [train] Iter 02752 | loss 1.6551 | loss(rot) 0.6289 | loss(pos) 0.4752 | loss(seq) 0.5510 | grad 4.3975 | lr 0.0010 | time_forward 3.8030 | time_backward 5.2930 |
[2023-09-01 21:58:11,992::train::INFO] [train] Iter 02753 | loss 3.3255 | loss(rot) 2.7919 | loss(pos) 0.4639 | loss(seq) 0.0696 | grad 5.6837 | lr 0.0010 | time_forward 3.4950 | time_backward 4.8410 |
[2023-09-01 21:58:21,257::train::INFO] [train] Iter 02754 | loss 1.4876 | loss(rot) 0.4090 | loss(pos) 0.5876 | loss(seq) 0.4910 | grad 3.4951 | lr 0.0010 | time_forward 3.9680 | time_backward 5.2940 |
[2023-09-01 21:58:31,827::train::INFO] [train] Iter 02755 | loss 1.5637 | loss(rot) 0.3127 | loss(pos) 0.9050 | loss(seq) 0.3459 | grad 4.7368 | lr 0.0010 | time_forward 4.3790 | time_backward 6.1880 |
[2023-09-01 21:58:41,210::train::INFO] [train] Iter 02756 | loss 1.5497 | loss(rot) 0.0208 | loss(pos) 1.5262 | loss(seq) 0.0026 | grad 4.9986 | lr 0.0010 | time_forward 3.9600 | time_backward 5.4200 |
[2023-09-01 21:58:50,337::train::INFO] [train] Iter 02757 | loss 1.4789 | loss(rot) 0.6096 | loss(pos) 0.5205 | loss(seq) 0.3488 | grad 3.3821 | lr 0.0010 | time_forward 3.9190 | time_backward 5.2040 |
[2023-09-01 21:58:58,932::train::INFO] [train] Iter 02758 | loss 1.3074 | loss(rot) 0.3000 | loss(pos) 0.7619 | loss(seq) 0.2456 | grad 4.2991 | lr 0.0010 | time_forward 3.5730 | time_backward 5.0180 |
[2023-09-01 21:59:10,513::train::INFO] [train] Iter 02759 | loss 2.4381 | loss(rot) 2.2075 | loss(pos) 0.1584 | loss(seq) 0.0722 | grad 3.5673 | lr 0.0010 | time_forward 4.9610 | time_backward 6.6170 |
[2023-09-01 21:59:13,197::train::INFO] [train] Iter 02760 | loss 3.6199 | loss(rot) 3.1490 | loss(pos) 0.3875 | loss(seq) 0.0834 | grad 4.5015 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4150 |
[2023-09-01 21:59:16,198::train::INFO] [train] Iter 02761 | loss 3.0535 | loss(rot) 2.6543 | loss(pos) 0.3388 | loss(seq) 0.0603 | grad 4.8481 | lr 0.0010 | time_forward 1.5000 | time_backward 1.4810 |
[2023-09-01 21:59:26,036::train::INFO] [train] Iter 02762 | loss 2.3540 | loss(rot) 1.1617 | loss(pos) 0.6972 | loss(seq) 0.4951 | grad 7.2744 | lr 0.0010 | time_forward 4.2030 | time_backward 5.6310 |
[2023-09-01 21:59:36,772::train::INFO] [train] Iter 02763 | loss 2.8553 | loss(rot) 0.3820 | loss(pos) 2.4626 | loss(seq) 0.0107 | grad 9.1016 | lr 0.0010 | time_forward 4.3010 | time_backward 6.4310 |
[2023-09-01 21:59:40,043::train::INFO] [train] Iter 02764 | loss 2.6580 | loss(rot) 2.3952 | loss(pos) 0.2354 | loss(seq) 0.0275 | grad 3.7560 | lr 0.0010 | time_forward 1.5370 | time_backward 1.7300 |
[2023-09-01 21:59:50,664::train::INFO] [train] Iter 02765 | loss 2.7024 | loss(rot) 2.3661 | loss(pos) 0.2249 | loss(seq) 0.1114 | grad 5.6427 | lr 0.0010 | time_forward 4.5160 | time_backward 6.1030 |
[2023-09-01 21:59:59,482::train::INFO] [train] Iter 02766 | loss 3.2679 | loss(rot) 3.0068 | loss(pos) 0.2604 | loss(seq) 0.0007 | grad 4.2148 | lr 0.0010 | time_forward 3.6610 | time_backward 5.1430 |
[2023-09-01 22:00:02,148::train::INFO] [train] Iter 02767 | loss 1.9037 | loss(rot) 1.1363 | loss(pos) 0.3489 | loss(seq) 0.4185 | grad 6.4227 | lr 0.0010 | time_forward 1.2210 | time_backward 1.4410 |
[2023-09-01 22:00:04,893::train::INFO] [train] Iter 02768 | loss 3.1088 | loss(rot) 2.8005 | loss(pos) 0.3071 | loss(seq) 0.0012 | grad 5.4015 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4560 |
[2023-09-01 22:00:14,650::train::INFO] [train] Iter 02769 | loss 1.8795 | loss(rot) 1.1671 | loss(pos) 0.2060 | loss(seq) 0.5064 | grad 4.0387 | lr 0.0010 | time_forward 4.6800 | time_backward 5.0200 |
[2023-09-01 22:00:17,363::train::INFO] [train] Iter 02770 | loss 2.9627 | loss(rot) 2.4655 | loss(pos) 0.3828 | loss(seq) 0.1145 | grad 4.7082 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4640 |
[2023-09-01 22:00:19,922::train::INFO] [train] Iter 02771 | loss 2.2220 | loss(rot) 1.5686 | loss(pos) 0.3894 | loss(seq) 0.2640 | grad 4.8901 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3010 |
[2023-09-01 22:00:28,762::train::INFO] [train] Iter 02772 | loss 1.8354 | loss(rot) 0.6327 | loss(pos) 0.8822 | loss(seq) 0.3205 | grad 6.0151 | lr 0.0010 | time_forward 3.7050 | time_backward 5.0990 |
[2023-09-01 22:00:31,463::train::INFO] [train] Iter 02773 | loss 1.6337 | loss(rot) 0.9071 | loss(pos) 0.1595 | loss(seq) 0.5671 | grad 4.7801 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4700 |
[2023-09-01 22:00:41,699::train::INFO] [train] Iter 02774 | loss 2.8342 | loss(rot) 0.0697 | loss(pos) 2.7614 | loss(seq) 0.0031 | grad 6.2441 | lr 0.0010 | time_forward 4.3110 | time_backward 5.9210 |
[2023-09-01 22:00:50,999::train::INFO] [train] Iter 02775 | loss 2.3587 | loss(rot) 1.5985 | loss(pos) 0.4967 | loss(seq) 0.2636 | grad 5.2125 | lr 0.0010 | time_forward 3.8830 | time_backward 5.4150 |
[2023-09-01 22:01:01,218::train::INFO] [train] Iter 02776 | loss 2.5639 | loss(rot) 1.3695 | loss(pos) 0.6038 | loss(seq) 0.5906 | grad 4.9515 | lr 0.0010 | time_forward 4.2970 | time_backward 5.9170 |
[2023-09-01 22:01:09,149::train::INFO] [train] Iter 02777 | loss 2.8492 | loss(rot) 2.3522 | loss(pos) 0.3340 | loss(seq) 0.1630 | grad 6.6871 | lr 0.0010 | time_forward 3.3330 | time_backward 4.5940 |
[2023-09-01 22:01:19,225::train::INFO] [train] Iter 02778 | loss 2.0555 | loss(rot) 1.0350 | loss(pos) 0.6138 | loss(seq) 0.4067 | grad 4.7964 | lr 0.0010 | time_forward 4.1750 | time_backward 5.8980 |
[2023-09-01 22:01:22,250::train::INFO] [train] Iter 02779 | loss 2.6264 | loss(rot) 2.0536 | loss(pos) 0.3048 | loss(seq) 0.2679 | grad 5.1810 | lr 0.0010 | time_forward 1.3300 | time_backward 1.6830 |
[2023-09-01 22:01:32,391::train::INFO] [train] Iter 02780 | loss 2.6580 | loss(rot) 2.0726 | loss(pos) 0.2328 | loss(seq) 0.3526 | grad 5.8894 | lr 0.0010 | time_forward 4.4350 | time_backward 5.7020 |
[2023-09-01 22:01:35,100::train::INFO] [train] Iter 02781 | loss 3.1105 | loss(rot) 2.9075 | loss(pos) 0.2030 | loss(seq) 0.0000 | grad 4.5501 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4090 |
[2023-09-01 22:01:41,860::train::INFO] [train] Iter 02782 | loss 1.6102 | loss(rot) 0.1665 | loss(pos) 1.4113 | loss(seq) 0.0323 | grad 4.7554 | lr 0.0010 | time_forward 2.8610 | time_backward 3.8950 |
[2023-09-01 22:01:49,921::train::INFO] [train] Iter 02783 | loss 2.6389 | loss(rot) 1.9746 | loss(pos) 0.2850 | loss(seq) 0.3793 | grad 6.8060 | lr 0.0010 | time_forward 3.3800 | time_backward 4.6790 |
[2023-09-01 22:02:00,089::train::INFO] [train] Iter 02784 | loss 1.3148 | loss(rot) 0.0647 | loss(pos) 1.2469 | loss(seq) 0.0033 | grad 4.8503 | lr 0.0010 | time_forward 4.1890 | time_backward 5.9760 |
[2023-09-01 22:02:08,648::train::INFO] [train] Iter 02785 | loss 2.2470 | loss(rot) 1.4597 | loss(pos) 0.3336 | loss(seq) 0.4537 | grad 6.2967 | lr 0.0010 | time_forward 3.6370 | time_backward 4.9180 |
[2023-09-01 22:02:18,982::train::INFO] [train] Iter 02786 | loss 1.0033 | loss(rot) 0.2467 | loss(pos) 0.5460 | loss(seq) 0.2106 | grad 2.8792 | lr 0.0010 | time_forward 4.2210 | time_backward 6.1100 |
[2023-09-01 22:02:21,664::train::INFO] [train] Iter 02787 | loss 2.1175 | loss(rot) 1.7879 | loss(pos) 0.1696 | loss(seq) 0.1600 | grad 4.6570 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4280 |
[2023-09-01 22:02:31,794::train::INFO] [train] Iter 02788 | loss 1.4456 | loss(rot) 0.1661 | loss(pos) 1.0444 | loss(seq) 0.2350 | grad 4.8632 | lr 0.0010 | time_forward 4.1530 | time_backward 5.9350 |
[2023-09-01 22:02:42,078::train::INFO] [train] Iter 02789 | loss 2.0566 | loss(rot) 1.0994 | loss(pos) 0.6688 | loss(seq) 0.2884 | grad 4.1384 | lr 0.0010 | time_forward 4.1210 | time_backward 6.1600 |
[2023-09-01 22:02:44,869::train::INFO] [train] Iter 02790 | loss 1.9951 | loss(rot) 0.6485 | loss(pos) 0.8229 | loss(seq) 0.5237 | grad 4.6047 | lr 0.0010 | time_forward 1.3310 | time_backward 1.4460 |
[2023-09-01 22:02:54,976::train::INFO] [train] Iter 02791 | loss 2.7720 | loss(rot) 2.5505 | loss(pos) 0.1529 | loss(seq) 0.0686 | grad 3.5411 | lr 0.0010 | time_forward 3.6530 | time_backward 6.4510 |
[2023-09-01 22:03:05,220::train::INFO] [train] Iter 02792 | loss 0.8170 | loss(rot) 0.3218 | loss(pos) 0.4351 | loss(seq) 0.0601 | grad 3.0512 | lr 0.0010 | time_forward 4.8180 | time_backward 5.4220 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.