text
stringlengths 56
1.16k
|
---|
[2023-09-01 22:14:57,048::train::INFO] [train] Iter 02893 | loss 3.0093 | loss(rot) 2.6366 | loss(pos) 0.1622 | loss(seq) 0.2104 | grad 4.2907 | lr 0.0010 | time_forward 3.8020 | time_backward 5.4760 |
[2023-09-01 22:14:59,866::train::INFO] [train] Iter 02894 | loss 1.2174 | loss(rot) 0.3119 | loss(pos) 0.6882 | loss(seq) 0.2173 | grad 4.7726 | lr 0.0010 | time_forward 1.2930 | time_backward 1.5220 |
[2023-09-01 22:15:08,654::train::INFO] [train] Iter 02895 | loss 1.7353 | loss(rot) 0.3392 | loss(pos) 1.3855 | loss(seq) 0.0106 | grad 3.6953 | lr 0.0010 | time_forward 3.6580 | time_backward 5.1270 |
[2023-09-01 22:15:17,684::train::INFO] [train] Iter 02896 | loss 0.8829 | loss(rot) 0.3572 | loss(pos) 0.4854 | loss(seq) 0.0404 | grad 4.2254 | lr 0.0010 | time_forward 3.6950 | time_backward 5.3320 |
[2023-09-01 22:15:27,038::train::INFO] [train] Iter 02897 | loss 3.1557 | loss(rot) 2.6942 | loss(pos) 0.2058 | loss(seq) 0.2556 | grad 5.2587 | lr 0.0010 | time_forward 3.9220 | time_backward 5.4260 |
[2023-09-01 22:15:35,432::train::INFO] [train] Iter 02898 | loss 3.4262 | loss(rot) 3.2222 | loss(pos) 0.2007 | loss(seq) 0.0033 | grad 2.4014 | lr 0.0010 | time_forward 3.5330 | time_backward 4.8570 |
[2023-09-01 22:15:39,007::train::INFO] [train] Iter 02899 | loss 3.0409 | loss(rot) 2.7569 | loss(pos) 0.2820 | loss(seq) 0.0020 | grad 3.3153 | lr 0.0010 | time_forward 1.8580 | time_backward 1.7130 |
[2023-09-01 22:15:49,061::train::INFO] [train] Iter 02900 | loss 1.2535 | loss(rot) 0.5397 | loss(pos) 0.3562 | loss(seq) 0.3577 | grad 4.6147 | lr 0.0010 | time_forward 4.1140 | time_backward 5.9370 |
[2023-09-01 22:15:51,792::train::INFO] [train] Iter 02901 | loss 1.7028 | loss(rot) 0.5779 | loss(pos) 0.9569 | loss(seq) 0.1679 | grad 4.3628 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4210 |
[2023-09-01 22:16:01,872::train::INFO] [train] Iter 02902 | loss 2.5286 | loss(rot) 1.9608 | loss(pos) 0.4288 | loss(seq) 0.1390 | grad 5.4881 | lr 0.0010 | time_forward 4.2280 | time_backward 5.8490 |
[2023-09-01 22:16:04,682::train::INFO] [train] Iter 02903 | loss 1.8365 | loss(rot) 0.3442 | loss(pos) 1.4624 | loss(seq) 0.0299 | grad 7.3329 | lr 0.0010 | time_forward 1.2570 | time_backward 1.5490 |
[2023-09-01 22:16:07,517::train::INFO] [train] Iter 02904 | loss 1.1114 | loss(rot) 0.3854 | loss(pos) 0.6599 | loss(seq) 0.0661 | grad 3.5890 | lr 0.0010 | time_forward 1.2660 | time_backward 1.5450 |
[2023-09-01 22:16:15,633::train::INFO] [train] Iter 02905 | loss 2.1893 | loss(rot) 1.3381 | loss(pos) 0.2901 | loss(seq) 0.5611 | grad 6.3068 | lr 0.0010 | time_forward 3.3960 | time_backward 4.7150 |
[2023-09-01 22:16:25,743::train::INFO] [train] Iter 02906 | loss 3.1144 | loss(rot) 2.4113 | loss(pos) 0.4280 | loss(seq) 0.2751 | grad 7.2094 | lr 0.0010 | time_forward 4.0750 | time_backward 6.0320 |
[2023-09-01 22:16:35,848::train::INFO] [train] Iter 02907 | loss 1.8751 | loss(rot) 0.7035 | loss(pos) 0.6543 | loss(seq) 0.5173 | grad 5.9314 | lr 0.0010 | time_forward 4.1400 | time_backward 5.9600 |
[2023-09-01 22:16:43,778::train::INFO] [train] Iter 02908 | loss 3.4725 | loss(rot) 2.6574 | loss(pos) 0.4240 | loss(seq) 0.3911 | grad 5.0430 | lr 0.0010 | time_forward 3.3030 | time_backward 4.6230 |
[2023-09-01 22:16:52,134::train::INFO] [train] Iter 02909 | loss 2.0256 | loss(rot) 1.2646 | loss(pos) 0.3254 | loss(seq) 0.4356 | grad 4.7287 | lr 0.0010 | time_forward 3.4830 | time_backward 4.8700 |
[2023-09-01 22:17:01,248::train::INFO] [train] Iter 02910 | loss 2.9732 | loss(rot) 2.0637 | loss(pos) 0.3787 | loss(seq) 0.5308 | grad 3.8796 | lr 0.0010 | time_forward 3.8100 | time_backward 5.3010 |
[2023-09-01 22:17:10,369::train::INFO] [train] Iter 02911 | loss 1.1452 | loss(rot) 0.0710 | loss(pos) 1.0632 | loss(seq) 0.0110 | grad 3.3754 | lr 0.0010 | time_forward 3.8900 | time_backward 5.2270 |
[2023-09-01 22:17:20,382::train::INFO] [train] Iter 02912 | loss 2.6204 | loss(rot) 2.0926 | loss(pos) 0.2252 | loss(seq) 0.3026 | grad 2.9645 | lr 0.0010 | time_forward 4.2400 | time_backward 5.7690 |
[2023-09-01 22:17:28,358::train::INFO] [train] Iter 02913 | loss 0.7946 | loss(rot) 0.1945 | loss(pos) 0.5439 | loss(seq) 0.0562 | grad 4.7799 | lr 0.0010 | time_forward 3.3290 | time_backward 4.6340 |
[2023-09-01 22:17:36,847::train::INFO] [train] Iter 02914 | loss 2.0071 | loss(rot) 1.0585 | loss(pos) 0.5083 | loss(seq) 0.4404 | grad 5.2335 | lr 0.0010 | time_forward 3.5560 | time_backward 4.9300 |
[2023-09-01 22:17:39,540::train::INFO] [train] Iter 02915 | loss 1.2526 | loss(rot) 0.4096 | loss(pos) 0.6069 | loss(seq) 0.2361 | grad 4.4067 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4570 |
[2023-09-01 22:17:42,275::train::INFO] [train] Iter 02916 | loss 1.4671 | loss(rot) 0.2503 | loss(pos) 1.1737 | loss(seq) 0.0431 | grad 6.5988 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4450 |
[2023-09-01 22:17:44,726::train::INFO] [train] Iter 02917 | loss 1.9732 | loss(rot) 1.4168 | loss(pos) 0.1805 | loss(seq) 0.3760 | grad 4.0801 | lr 0.0010 | time_forward 1.1690 | time_backward 1.2790 |
[2023-09-01 22:17:54,363::train::INFO] [train] Iter 02918 | loss 3.2383 | loss(rot) 3.0728 | loss(pos) 0.1653 | loss(seq) 0.0001 | grad 4.3122 | lr 0.0010 | time_forward 4.0670 | time_backward 5.5090 |
[2023-09-01 22:18:04,470::train::INFO] [train] Iter 02919 | loss 1.2479 | loss(rot) 0.6937 | loss(pos) 0.2550 | loss(seq) 0.2992 | grad 3.9387 | lr 0.0010 | time_forward 4.0670 | time_backward 6.0380 |
[2023-09-01 22:18:12,087::train::INFO] [train] Iter 02920 | loss 3.1956 | loss(rot) 2.7008 | loss(pos) 0.4633 | loss(seq) 0.0315 | grad 7.8691 | lr 0.0010 | time_forward 3.1510 | time_backward 4.4620 |
[2023-09-01 22:18:20,008::train::INFO] [train] Iter 02921 | loss 1.9666 | loss(rot) 1.0352 | loss(pos) 0.4476 | loss(seq) 0.4838 | grad 5.5936 | lr 0.0010 | time_forward 3.4940 | time_backward 4.4230 |
[2023-09-01 22:18:22,737::train::INFO] [train] Iter 02922 | loss 2.1283 | loss(rot) 1.3305 | loss(pos) 0.3774 | loss(seq) 0.4204 | grad 7.0010 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4810 |
[2023-09-01 22:18:31,753::train::INFO] [train] Iter 02923 | loss 3.2120 | loss(rot) 3.1308 | loss(pos) 0.0799 | loss(seq) 0.0013 | grad 7.4146 | lr 0.0010 | time_forward 3.8130 | time_backward 5.2000 |
[2023-09-01 22:18:39,792::train::INFO] [train] Iter 02924 | loss 0.9698 | loss(rot) 0.1894 | loss(pos) 0.6126 | loss(seq) 0.1678 | grad 6.2250 | lr 0.0010 | time_forward 3.3850 | time_backward 4.6500 |
[2023-09-01 22:18:49,840::train::INFO] [train] Iter 02925 | loss 2.1102 | loss(rot) 1.1602 | loss(pos) 0.5818 | loss(seq) 0.3682 | grad 4.5335 | lr 0.0010 | time_forward 4.0670 | time_backward 5.9780 |
[2023-09-01 22:18:52,495::train::INFO] [train] Iter 02926 | loss 2.3683 | loss(rot) 1.1132 | loss(pos) 0.8259 | loss(seq) 0.4292 | grad 6.0705 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4180 |
[2023-09-01 22:18:55,374::train::INFO] [train] Iter 02927 | loss 1.8463 | loss(rot) 0.4610 | loss(pos) 0.9423 | loss(seq) 0.4430 | grad 4.1116 | lr 0.0010 | time_forward 1.4120 | time_backward 1.4640 |
[2023-09-01 22:18:58,129::train::INFO] [train] Iter 02928 | loss 2.5435 | loss(rot) 2.4255 | loss(pos) 0.1173 | loss(seq) 0.0007 | grad 5.0277 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4030 |
[2023-09-01 22:19:06,702::train::INFO] [train] Iter 02929 | loss 3.0534 | loss(rot) 2.8895 | loss(pos) 0.1212 | loss(seq) 0.0428 | grad 6.4056 | lr 0.0010 | time_forward 3.6800 | time_backward 4.8890 |
[2023-09-01 22:19:09,126::train::INFO] [train] Iter 02930 | loss 0.5905 | loss(rot) 0.1311 | loss(pos) 0.4421 | loss(seq) 0.0173 | grad 4.5021 | lr 0.0010 | time_forward 1.1440 | time_backward 1.2770 |
[2023-09-01 22:19:17,812::train::INFO] [train] Iter 02931 | loss 2.4143 | loss(rot) 2.0982 | loss(pos) 0.3158 | loss(seq) 0.0003 | grad 5.3454 | lr 0.0010 | time_forward 3.7050 | time_backward 4.9470 |
[2023-09-01 22:19:26,968::train::INFO] [train] Iter 02932 | loss 3.0821 | loss(rot) 2.1282 | loss(pos) 0.4226 | loss(seq) 0.5313 | grad 4.8385 | lr 0.0010 | time_forward 3.8240 | time_backward 5.3280 |
[2023-09-01 22:19:29,164::train::INFO] [train] Iter 02933 | loss 2.6407 | loss(rot) 2.4570 | loss(pos) 0.1623 | loss(seq) 0.0213 | grad 4.9551 | lr 0.0010 | time_forward 1.0140 | time_backward 1.1790 |
[2023-09-01 22:19:36,693::train::INFO] [train] Iter 02934 | loss 1.5081 | loss(rot) 0.7611 | loss(pos) 0.4235 | loss(seq) 0.3235 | grad 5.1652 | lr 0.0010 | time_forward 3.1230 | time_backward 4.4020 |
[2023-09-01 22:19:45,385::train::INFO] [train] Iter 02935 | loss 2.8776 | loss(rot) 2.1771 | loss(pos) 0.5019 | loss(seq) 0.1986 | grad 6.2889 | lr 0.0010 | time_forward 3.7140 | time_backward 4.9740 |
[2023-09-01 22:19:48,025::train::INFO] [train] Iter 02936 | loss 2.1077 | loss(rot) 1.2829 | loss(pos) 0.3250 | loss(seq) 0.4998 | grad 6.1848 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4060 |
[2023-09-01 22:19:58,082::train::INFO] [train] Iter 02937 | loss 2.6580 | loss(rot) 0.3164 | loss(pos) 2.3410 | loss(seq) 0.0007 | grad 6.7514 | lr 0.0010 | time_forward 4.0560 | time_backward 5.9970 |
[2023-09-01 22:20:06,955::train::INFO] [train] Iter 02938 | loss 2.4018 | loss(rot) 0.9696 | loss(pos) 0.8260 | loss(seq) 0.6062 | grad 3.9409 | lr 0.0010 | time_forward 3.7140 | time_backward 5.1570 |
[2023-09-01 22:20:15,678::train::INFO] [train] Iter 02939 | loss 1.5935 | loss(rot) 0.9275 | loss(pos) 0.2913 | loss(seq) 0.3747 | grad 3.3749 | lr 0.0010 | time_forward 3.6180 | time_backward 5.1020 |
[2023-09-01 22:20:17,986::train::INFO] [train] Iter 02940 | loss 2.5491 | loss(rot) 1.9303 | loss(pos) 0.1376 | loss(seq) 0.4812 | grad 4.8921 | lr 0.0010 | time_forward 1.0400 | time_backward 1.2650 |
[2023-09-01 22:20:28,251::train::INFO] [train] Iter 02941 | loss 3.0081 | loss(rot) 2.5582 | loss(pos) 0.2259 | loss(seq) 0.2240 | grad 3.9203 | lr 0.0010 | time_forward 4.3150 | time_backward 5.9460 |
[2023-09-01 22:20:34,900::train::INFO] [train] Iter 02942 | loss 2.8519 | loss(rot) 2.1325 | loss(pos) 0.2850 | loss(seq) 0.4344 | grad 4.5082 | lr 0.0010 | time_forward 2.8280 | time_backward 3.8180 |
[2023-09-01 22:20:37,580::train::INFO] [train] Iter 02943 | loss 2.5148 | loss(rot) 0.0341 | loss(pos) 2.4786 | loss(seq) 0.0021 | grad 5.2310 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4090 |
[2023-09-01 22:20:40,297::train::INFO] [train] Iter 02944 | loss 3.1640 | loss(rot) 2.3716 | loss(pos) 0.2971 | loss(seq) 0.4953 | grad 4.4661 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4130 |
[2023-09-01 22:20:50,456::train::INFO] [train] Iter 02945 | loss 2.5382 | loss(rot) 1.6389 | loss(pos) 0.3567 | loss(seq) 0.5425 | grad 5.8632 | lr 0.0010 | time_forward 4.1100 | time_backward 6.0450 |
[2023-09-01 22:21:00,852::train::INFO] [train] Iter 02946 | loss 3.1428 | loss(rot) 2.8641 | loss(pos) 0.2786 | loss(seq) 0.0001 | grad 5.9021 | lr 0.0010 | time_forward 3.8730 | time_backward 5.2590 |
[2023-09-01 22:21:10,842::train::INFO] [train] Iter 02947 | loss 2.7908 | loss(rot) 2.1254 | loss(pos) 0.2234 | loss(seq) 0.4420 | grad 3.8106 | lr 0.0010 | time_forward 4.0180 | time_backward 5.9670 |
[2023-09-01 22:21:20,876::train::INFO] [train] Iter 02948 | loss 2.5569 | loss(rot) 2.2592 | loss(pos) 0.2971 | loss(seq) 0.0007 | grad 5.5360 | lr 0.0010 | time_forward 4.0630 | time_backward 5.9670 |
[2023-09-01 22:21:30,174::train::INFO] [train] Iter 02949 | loss 2.5129 | loss(rot) 2.2154 | loss(pos) 0.2139 | loss(seq) 0.0837 | grad 3.9395 | lr 0.0010 | time_forward 3.8200 | time_backward 5.4750 |
[2023-09-01 22:21:40,025::train::INFO] [train] Iter 02950 | loss 4.4652 | loss(rot) 0.0293 | loss(pos) 4.4359 | loss(seq) 0.0000 | grad 10.7793 | lr 0.0010 | time_forward 4.0280 | time_backward 5.8190 |
[2023-09-01 22:21:47,986::train::INFO] [train] Iter 02951 | loss 2.9624 | loss(rot) 2.4674 | loss(pos) 0.1212 | loss(seq) 0.3737 | grad 3.9986 | lr 0.0010 | time_forward 3.3770 | time_backward 4.5800 |
[2023-09-01 22:21:55,974::train::INFO] [train] Iter 02952 | loss 1.3088 | loss(rot) 0.5364 | loss(pos) 0.7157 | loss(seq) 0.0567 | grad 3.4142 | lr 0.0010 | time_forward 3.3880 | time_backward 4.5960 |
[2023-09-01 22:21:58,632::train::INFO] [train] Iter 02953 | loss 2.3665 | loss(rot) 1.6796 | loss(pos) 0.2023 | loss(seq) 0.4847 | grad 4.5716 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4270 |
[2023-09-01 22:22:06,697::train::INFO] [train] Iter 02954 | loss 2.5472 | loss(rot) 0.0558 | loss(pos) 2.4899 | loss(seq) 0.0015 | grad 3.8564 | lr 0.0010 | time_forward 3.3310 | time_backward 4.7310 |
[2023-09-01 22:22:16,579::train::INFO] [train] Iter 02955 | loss 2.3697 | loss(rot) 0.8060 | loss(pos) 1.0168 | loss(seq) 0.5470 | grad 6.0214 | lr 0.0010 | time_forward 4.0690 | time_backward 5.8100 |
[2023-09-01 22:22:26,682::train::INFO] [train] Iter 02956 | loss 3.0885 | loss(rot) 2.6194 | loss(pos) 0.4689 | loss(seq) 0.0001 | grad 6.1015 | lr 0.0010 | time_forward 4.0080 | time_backward 6.0760 |
[2023-09-01 22:22:35,123::train::INFO] [train] Iter 02957 | loss 1.7304 | loss(rot) 0.8033 | loss(pos) 0.6819 | loss(seq) 0.2452 | grad 5.4189 | lr 0.0010 | time_forward 3.5220 | time_backward 4.9150 |
[2023-09-01 22:22:43,115::train::INFO] [train] Iter 02958 | loss 2.8066 | loss(rot) 2.1544 | loss(pos) 0.2543 | loss(seq) 0.3979 | grad 6.2304 | lr 0.0010 | time_forward 3.2420 | time_backward 4.7460 |
[2023-09-01 22:22:51,992::train::INFO] [train] Iter 02959 | loss 1.6485 | loss(rot) 0.4438 | loss(pos) 0.9317 | loss(seq) 0.2730 | grad 5.4497 | lr 0.0010 | time_forward 3.6970 | time_backward 5.1760 |
[2023-09-01 22:22:55,011::train::INFO] [train] Iter 02960 | loss 2.7801 | loss(rot) 2.0320 | loss(pos) 0.2501 | loss(seq) 0.4980 | grad 4.8139 | lr 0.0010 | time_forward 1.4020 | time_backward 1.6130 |
[2023-09-01 22:23:04,815::train::INFO] [train] Iter 02961 | loss 2.5835 | loss(rot) 1.9359 | loss(pos) 0.4136 | loss(seq) 0.2340 | grad 6.3815 | lr 0.0010 | time_forward 3.9150 | time_backward 5.8860 |
[2023-09-01 22:23:15,139::train::INFO] [train] Iter 02962 | loss 2.7586 | loss(rot) 1.0403 | loss(pos) 0.8579 | loss(seq) 0.8603 | grad 4.7358 | lr 0.0010 | time_forward 4.3550 | time_backward 5.9490 |
[2023-09-01 22:23:26,148::train::INFO] [train] Iter 02963 | loss 1.9725 | loss(rot) 0.3461 | loss(pos) 1.6024 | loss(seq) 0.0240 | grad 6.3454 | lr 0.0010 | time_forward 4.9870 | time_backward 6.0190 |
[2023-09-01 22:23:36,211::train::INFO] [train] Iter 02964 | loss 1.7483 | loss(rot) 0.8233 | loss(pos) 0.5635 | loss(seq) 0.3615 | grad 4.1898 | lr 0.0010 | time_forward 4.1450 | time_backward 5.9140 |
[2023-09-01 22:23:43,926::train::INFO] [train] Iter 02965 | loss 2.1294 | loss(rot) 1.9308 | loss(pos) 0.1356 | loss(seq) 0.0630 | grad 6.4633 | lr 0.0010 | time_forward 3.1740 | time_backward 4.5370 |
[2023-09-01 22:23:46,669::train::INFO] [train] Iter 02966 | loss 2.2736 | loss(rot) 1.8923 | loss(pos) 0.2531 | loss(seq) 0.1282 | grad 4.5357 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4410 |
[2023-09-01 22:23:48,966::train::INFO] [train] Iter 02967 | loss 1.2405 | loss(rot) 0.0312 | loss(pos) 1.2049 | loss(seq) 0.0044 | grad 4.7426 | lr 0.0010 | time_forward 1.0730 | time_backward 1.2200 |
[2023-09-01 22:23:57,621::train::INFO] [train] Iter 02968 | loss 0.9515 | loss(rot) 0.3251 | loss(pos) 0.4427 | loss(seq) 0.1838 | grad 3.8975 | lr 0.0010 | time_forward 3.6260 | time_backward 5.0270 |
[2023-09-01 22:24:00,759::train::INFO] [train] Iter 02969 | loss 3.0405 | loss(rot) 2.1907 | loss(pos) 0.5219 | loss(seq) 0.3280 | grad 6.7066 | lr 0.0010 | time_forward 1.3980 | time_backward 1.7370 |
[2023-09-01 22:24:08,714::train::INFO] [train] Iter 02970 | loss 3.0508 | loss(rot) 0.0365 | loss(pos) 3.0143 | loss(seq) 0.0000 | grad 6.4607 | lr 0.0010 | time_forward 3.3680 | time_backward 4.5840 |
[2023-09-01 22:24:17,396::train::INFO] [train] Iter 02971 | loss 1.4656 | loss(rot) 0.7499 | loss(pos) 0.6291 | loss(seq) 0.0867 | grad 4.1908 | lr 0.0010 | time_forward 3.6610 | time_backward 5.0170 |
[2023-09-01 22:24:25,623::train::INFO] [train] Iter 02972 | loss 2.8428 | loss(rot) 2.3084 | loss(pos) 0.2797 | loss(seq) 0.2547 | grad 4.8211 | lr 0.0010 | time_forward 3.4490 | time_backward 4.7750 |
[2023-09-01 22:24:34,224::train::INFO] [train] Iter 02973 | loss 1.5931 | loss(rot) 0.4997 | loss(pos) 0.6571 | loss(seq) 0.4363 | grad 3.6680 | lr 0.0010 | time_forward 3.6120 | time_backward 4.9850 |
[2023-09-01 22:24:44,112::train::INFO] [train] Iter 02974 | loss 2.6304 | loss(rot) 1.9291 | loss(pos) 0.5894 | loss(seq) 0.1119 | grad 5.0709 | lr 0.0010 | time_forward 4.0330 | time_backward 5.8510 |
[2023-09-01 22:24:54,365::train::INFO] [train] Iter 02975 | loss 3.0494 | loss(rot) 1.7352 | loss(pos) 0.8370 | loss(seq) 0.4772 | grad 6.8511 | lr 0.0010 | time_forward 4.1440 | time_backward 6.0960 |
[2023-09-01 22:25:02,811::train::INFO] [train] Iter 02976 | loss 3.1839 | loss(rot) 2.8179 | loss(pos) 0.3629 | loss(seq) 0.0031 | grad 4.8404 | lr 0.0010 | time_forward 3.5450 | time_backward 4.8970 |
[2023-09-01 22:25:11,891::train::INFO] [train] Iter 02977 | loss 2.0500 | loss(rot) 1.6955 | loss(pos) 0.2172 | loss(seq) 0.1373 | grad 4.2429 | lr 0.0010 | time_forward 3.8240 | time_backward 5.2530 |
[2023-09-01 22:25:20,973::train::INFO] [train] Iter 02978 | loss 1.7867 | loss(rot) 0.8693 | loss(pos) 0.5066 | loss(seq) 0.4107 | grad 5.5511 | lr 0.0010 | time_forward 3.8550 | time_backward 5.2230 |
[2023-09-01 22:25:30,888::train::INFO] [train] Iter 02979 | loss 2.4803 | loss(rot) 2.1681 | loss(pos) 0.3122 | loss(seq) 0.0000 | grad 7.1419 | lr 0.0010 | time_forward 4.0180 | time_backward 5.8940 |
[2023-09-01 22:25:34,113::train::INFO] [train] Iter 02980 | loss 3.2267 | loss(rot) 2.6657 | loss(pos) 0.3276 | loss(seq) 0.2333 | grad 3.9840 | lr 0.0010 | time_forward 1.5760 | time_backward 1.6460 |
[2023-09-01 22:25:44,158::train::INFO] [train] Iter 02981 | loss 2.7154 | loss(rot) 2.2006 | loss(pos) 0.1819 | loss(seq) 0.3329 | grad 4.2240 | lr 0.0010 | time_forward 4.0710 | time_backward 5.9710 |
[2023-09-01 22:25:46,937::train::INFO] [train] Iter 02982 | loss 2.2327 | loss(rot) 1.5566 | loss(pos) 0.2636 | loss(seq) 0.4126 | grad 5.3710 | lr 0.0010 | time_forward 1.3310 | time_backward 1.4440 |
[2023-09-01 22:25:55,971::train::INFO] [train] Iter 02983 | loss 2.1887 | loss(rot) 0.1583 | loss(pos) 2.0159 | loss(seq) 0.0145 | grad 8.1204 | lr 0.0010 | time_forward 3.8760 | time_backward 5.1540 |
[2023-09-01 22:26:06,295::train::INFO] [train] Iter 02984 | loss 1.3823 | loss(rot) 0.2760 | loss(pos) 0.6219 | loss(seq) 0.4845 | grad 5.0026 | lr 0.0010 | time_forward 4.1760 | time_backward 6.1450 |
[2023-09-01 22:26:16,332::train::INFO] [train] Iter 02985 | loss 2.9014 | loss(rot) 0.2163 | loss(pos) 2.6831 | loss(seq) 0.0020 | grad 5.4914 | lr 0.0010 | time_forward 4.1830 | time_backward 5.8500 |
[2023-09-01 22:26:24,426::train::INFO] [train] Iter 02986 | loss 1.8878 | loss(rot) 1.2405 | loss(pos) 0.1953 | loss(seq) 0.4520 | grad 3.8361 | lr 0.0010 | time_forward 3.2910 | time_backward 4.7990 |
[2023-09-01 22:26:27,237::train::INFO] [train] Iter 02987 | loss 2.8342 | loss(rot) 2.4223 | loss(pos) 0.1303 | loss(seq) 0.2816 | grad 3.4452 | lr 0.0010 | time_forward 1.2950 | time_backward 1.5130 |
[2023-09-01 22:26:37,239::train::INFO] [train] Iter 02988 | loss 2.0984 | loss(rot) 1.3723 | loss(pos) 0.2300 | loss(seq) 0.4961 | grad 3.6673 | lr 0.0010 | time_forward 4.1010 | time_backward 5.8940 |
[2023-09-01 22:26:39,969::train::INFO] [train] Iter 02989 | loss 1.4863 | loss(rot) 0.5561 | loss(pos) 0.6603 | loss(seq) 0.2700 | grad 5.1234 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4730 |
[2023-09-01 22:26:48,462::train::INFO] [train] Iter 02990 | loss 2.4505 | loss(rot) 1.5003 | loss(pos) 0.5655 | loss(seq) 0.3847 | grad 6.4224 | lr 0.0010 | time_forward 3.5610 | time_backward 4.9280 |
[2023-09-01 22:26:59,001::train::INFO] [train] Iter 02991 | loss 2.9293 | loss(rot) 2.3136 | loss(pos) 0.3717 | loss(seq) 0.2440 | grad 3.7776 | lr 0.0010 | time_forward 4.3390 | time_backward 6.1960 |
[2023-09-01 22:27:07,178::train::INFO] [train] Iter 02992 | loss 2.7557 | loss(rot) 2.1178 | loss(pos) 0.2676 | loss(seq) 0.3704 | grad 4.3995 | lr 0.0010 | time_forward 3.5890 | time_backward 4.5840 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.