text
stringlengths 56
1.16k
|
---|
[2023-09-01 22:38:28,755::train::INFO] [train] Iter 03092 | loss 1.3928 | loss(rot) 0.3726 | loss(pos) 0.7345 | loss(seq) 0.2857 | grad 4.5841 | lr 0.0010 | time_forward 1.4110 | time_backward 1.7720 |
[2023-09-01 22:38:38,113::train::INFO] [train] Iter 03093 | loss 1.9224 | loss(rot) 1.4751 | loss(pos) 0.1990 | loss(seq) 0.2482 | grad 4.8860 | lr 0.0010 | time_forward 3.9840 | time_backward 5.3710 |
[2023-09-01 22:38:40,823::train::INFO] [train] Iter 03094 | loss 2.2656 | loss(rot) 1.7311 | loss(pos) 0.1966 | loss(seq) 0.3380 | grad 5.0510 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4520 |
[2023-09-01 22:38:49,086::train::INFO] [train] Iter 03095 | loss 2.6438 | loss(rot) 2.4606 | loss(pos) 0.1832 | loss(seq) 0.0000 | grad 4.3839 | lr 0.0010 | time_forward 3.3920 | time_backward 4.8650 |
[2023-09-01 22:38:57,194::train::INFO] [train] Iter 03096 | loss 3.4323 | loss(rot) 3.1596 | loss(pos) 0.2706 | loss(seq) 0.0021 | grad 3.0926 | lr 0.0010 | time_forward 3.3900 | time_backward 4.7140 |
[2023-09-01 22:39:07,962::train::INFO] [train] Iter 03097 | loss 1.3659 | loss(rot) 0.5215 | loss(pos) 0.7980 | loss(seq) 0.0464 | grad 4.7125 | lr 0.0010 | time_forward 4.0760 | time_backward 6.6880 |
[2023-09-01 22:39:16,936::train::INFO] [train] Iter 03098 | loss 1.9978 | loss(rot) 1.2181 | loss(pos) 0.3428 | loss(seq) 0.4369 | grad 4.8379 | lr 0.0010 | time_forward 3.8020 | time_backward 5.1680 |
[2023-09-01 22:39:25,787::train::INFO] [train] Iter 03099 | loss 2.5427 | loss(rot) 2.1597 | loss(pos) 0.2161 | loss(seq) 0.1670 | grad 4.2692 | lr 0.0010 | time_forward 3.6960 | time_backward 5.1520 |
[2023-09-01 22:39:36,375::train::INFO] [train] Iter 03100 | loss 2.1276 | loss(rot) 1.3470 | loss(pos) 0.1822 | loss(seq) 0.5984 | grad 3.2609 | lr 0.0010 | time_forward 4.3970 | time_backward 6.1880 |
[2023-09-01 22:39:46,702::train::INFO] [train] Iter 03101 | loss 2.3484 | loss(rot) 1.7621 | loss(pos) 0.2183 | loss(seq) 0.3680 | grad 3.5297 | lr 0.0010 | time_forward 4.2210 | time_backward 6.1030 |
[2023-09-01 22:39:57,136::train::INFO] [train] Iter 03102 | loss 2.6163 | loss(rot) 2.1128 | loss(pos) 0.1389 | loss(seq) 0.3645 | grad 2.3376 | lr 0.0010 | time_forward 4.1930 | time_backward 6.2380 |
[2023-09-01 22:40:07,520::train::INFO] [train] Iter 03103 | loss 2.0977 | loss(rot) 1.4414 | loss(pos) 0.3340 | loss(seq) 0.3223 | grad 3.2606 | lr 0.0010 | time_forward 4.2830 | time_backward 6.0960 |
[2023-09-01 22:40:10,309::train::INFO] [train] Iter 03104 | loss 3.1113 | loss(rot) 2.8463 | loss(pos) 0.2638 | loss(seq) 0.0012 | grad 3.0235 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4720 |
[2023-09-01 22:40:13,034::train::INFO] [train] Iter 03105 | loss 1.8182 | loss(rot) 0.6860 | loss(pos) 0.9275 | loss(seq) 0.2047 | grad 5.3949 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4270 |
[2023-09-01 22:40:15,794::train::INFO] [train] Iter 03106 | loss 0.6525 | loss(rot) 0.1443 | loss(pos) 0.4680 | loss(seq) 0.0402 | grad 2.6188 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4560 |
[2023-09-01 22:40:26,112::train::INFO] [train] Iter 03107 | loss 2.9920 | loss(rot) 2.7462 | loss(pos) 0.1809 | loss(seq) 0.0649 | grad 5.7538 | lr 0.0010 | time_forward 4.1610 | time_backward 6.1230 |
[2023-09-01 22:40:35,028::train::INFO] [train] Iter 03108 | loss 1.0302 | loss(rot) 0.3934 | loss(pos) 0.6039 | loss(seq) 0.0330 | grad 3.9242 | lr 0.0010 | time_forward 3.7450 | time_backward 5.1670 |
[2023-09-01 22:40:44,253::train::INFO] [train] Iter 03109 | loss 2.2928 | loss(rot) 2.0607 | loss(pos) 0.1803 | loss(seq) 0.0519 | grad 4.7247 | lr 0.0010 | time_forward 3.8730 | time_backward 5.3490 |
[2023-09-01 22:40:52,357::train::INFO] [train] Iter 03110 | loss 2.1195 | loss(rot) 1.1783 | loss(pos) 0.6600 | loss(seq) 0.2812 | grad 4.4492 | lr 0.0010 | time_forward 3.4820 | time_backward 4.6180 |
[2023-09-01 22:41:02,482::train::INFO] [train] Iter 03111 | loss 2.7455 | loss(rot) 2.3572 | loss(pos) 0.3303 | loss(seq) 0.0581 | grad 4.8585 | lr 0.0010 | time_forward 4.0610 | time_backward 6.0610 |
[2023-09-01 22:41:05,190::train::INFO] [train] Iter 03112 | loss 0.8409 | loss(rot) 0.1228 | loss(pos) 0.7038 | loss(seq) 0.0143 | grad 5.2998 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4520 |
[2023-09-01 22:41:13,795::train::INFO] [train] Iter 03113 | loss 1.0471 | loss(rot) 0.1595 | loss(pos) 0.8614 | loss(seq) 0.0262 | grad 5.6507 | lr 0.0010 | time_forward 3.5790 | time_backward 5.0220 |
[2023-09-01 22:41:16,261::train::INFO] [train] Iter 03114 | loss 1.8083 | loss(rot) 1.0211 | loss(pos) 0.2964 | loss(seq) 0.4908 | grad 4.2770 | lr 0.0010 | time_forward 1.1670 | time_backward 1.2960 |
[2023-09-01 22:41:26,421::train::INFO] [train] Iter 03115 | loss 3.2365 | loss(rot) 0.0211 | loss(pos) 3.2148 | loss(seq) 0.0006 | grad 5.5671 | lr 0.0010 | time_forward 4.0630 | time_backward 6.0930 |
[2023-09-01 22:41:33,938::train::INFO] [train] Iter 03116 | loss 1.8244 | loss(rot) 1.2395 | loss(pos) 0.3362 | loss(seq) 0.2487 | grad 3.2576 | lr 0.0010 | time_forward 3.1250 | time_backward 4.3790 |
[2023-09-01 22:41:36,227::train::INFO] [train] Iter 03117 | loss 1.4113 | loss(rot) 0.4880 | loss(pos) 0.7797 | loss(seq) 0.1436 | grad 3.6594 | lr 0.0010 | time_forward 1.0730 | time_backward 1.2120 |
[2023-09-01 22:41:46,364::train::INFO] [train] Iter 03118 | loss 2.5464 | loss(rot) 1.7754 | loss(pos) 0.3034 | loss(seq) 0.4675 | grad 3.9498 | lr 0.0010 | time_forward 4.0440 | time_backward 6.0890 |
[2023-09-01 22:41:49,034::train::INFO] [train] Iter 03119 | loss 3.1941 | loss(rot) 0.3259 | loss(pos) 2.8659 | loss(seq) 0.0023 | grad 8.5171 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4180 |
[2023-09-01 22:41:51,712::train::INFO] [train] Iter 03120 | loss 3.5259 | loss(rot) 0.0346 | loss(pos) 3.4913 | loss(seq) 0.0000 | grad 11.1114 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4010 |
[2023-09-01 22:41:54,459::train::INFO] [train] Iter 03121 | loss 1.3869 | loss(rot) 0.3766 | loss(pos) 0.8727 | loss(seq) 0.1376 | grad 7.2628 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4270 |
[2023-09-01 22:42:03,407::train::INFO] [train] Iter 03122 | loss 2.8303 | loss(rot) 2.6648 | loss(pos) 0.1635 | loss(seq) 0.0020 | grad 5.0826 | lr 0.0010 | time_forward 3.6800 | time_backward 5.2640 |
[2023-09-01 22:42:13,441::train::INFO] [train] Iter 03123 | loss 2.1896 | loss(rot) 0.2044 | loss(pos) 1.6818 | loss(seq) 0.3034 | grad 7.4994 | lr 0.0010 | time_forward 4.0520 | time_backward 5.9780 |
[2023-09-01 22:42:15,933::train::INFO] [train] Iter 03124 | loss 2.3521 | loss(rot) 1.9994 | loss(pos) 0.2086 | loss(seq) 0.1442 | grad 3.2613 | lr 0.0010 | time_forward 1.1910 | time_backward 1.2970 |
[2023-09-01 22:42:18,676::train::INFO] [train] Iter 03125 | loss 2.3052 | loss(rot) 2.1469 | loss(pos) 0.0875 | loss(seq) 0.0708 | grad 2.6484 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4760 |
[2023-09-01 22:42:27,835::train::INFO] [train] Iter 03126 | loss 0.5603 | loss(rot) 0.1694 | loss(pos) 0.3404 | loss(seq) 0.0506 | grad 2.4243 | lr 0.0010 | time_forward 3.9070 | time_backward 5.2490 |
[2023-09-01 22:42:36,045::train::INFO] [train] Iter 03127 | loss 1.4764 | loss(rot) 0.7219 | loss(pos) 0.6303 | loss(seq) 0.1243 | grad 3.4312 | lr 0.0010 | time_forward 3.2870 | time_backward 4.9200 |
[2023-09-01 22:42:43,594::train::INFO] [train] Iter 03128 | loss 2.5289 | loss(rot) 1.8100 | loss(pos) 0.3111 | loss(seq) 0.4077 | grad 3.8698 | lr 0.0010 | time_forward 3.1770 | time_backward 4.3680 |
[2023-09-01 22:42:46,283::train::INFO] [train] Iter 03129 | loss 1.9799 | loss(rot) 1.0784 | loss(pos) 0.4184 | loss(seq) 0.4831 | grad 5.0227 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4490 |
[2023-09-01 22:42:53,757::train::INFO] [train] Iter 03130 | loss 3.0472 | loss(rot) 2.4776 | loss(pos) 0.2879 | loss(seq) 0.2817 | grad 4.5362 | lr 0.0010 | time_forward 3.1790 | time_backward 4.2910 |
[2023-09-01 22:42:56,563::train::INFO] [train] Iter 03131 | loss 2.5937 | loss(rot) 2.3658 | loss(pos) 0.1430 | loss(seq) 0.0850 | grad 4.1743 | lr 0.0010 | time_forward 1.2940 | time_backward 1.5090 |
[2023-09-01 22:42:58,943::train::INFO] [train] Iter 03132 | loss 2.0530 | loss(rot) 1.9007 | loss(pos) 0.0921 | loss(seq) 0.0602 | grad 4.4185 | lr 0.0010 | time_forward 1.0950 | time_backward 1.2830 |
[2023-09-01 22:43:02,148::train::INFO] [train] Iter 03133 | loss 2.8909 | loss(rot) 2.1248 | loss(pos) 0.3321 | loss(seq) 0.4341 | grad 3.9274 | lr 0.0010 | time_forward 1.4460 | time_backward 1.7560 |
[2023-09-01 22:43:04,770::train::INFO] [train] Iter 03134 | loss 3.2357 | loss(rot) 2.4797 | loss(pos) 0.3471 | loss(seq) 0.4089 | grad 5.6873 | lr 0.0010 | time_forward 1.1970 | time_backward 1.4210 |
[2023-09-01 22:43:11,380::train::INFO] [train] Iter 03135 | loss 2.7815 | loss(rot) 2.6449 | loss(pos) 0.1355 | loss(seq) 0.0012 | grad 4.0885 | lr 0.0010 | time_forward 2.6940 | time_backward 3.9020 |
[2023-09-01 22:43:14,166::train::INFO] [train] Iter 03136 | loss 2.7079 | loss(rot) 0.5682 | loss(pos) 2.1200 | loss(seq) 0.0197 | grad 4.9145 | lr 0.0010 | time_forward 1.2820 | time_backward 1.5000 |
[2023-09-01 22:43:23,479::train::INFO] [train] Iter 03137 | loss 2.4202 | loss(rot) 1.2055 | loss(pos) 0.7333 | loss(seq) 0.4815 | grad 6.4094 | lr 0.0010 | time_forward 4.1000 | time_backward 5.2100 |
[2023-09-01 22:43:31,403::train::INFO] [train] Iter 03138 | loss 2.9756 | loss(rot) 2.0856 | loss(pos) 0.3616 | loss(seq) 0.5284 | grad 5.6423 | lr 0.0010 | time_forward 3.3330 | time_backward 4.5880 |
[2023-09-01 22:43:34,029::train::INFO] [train] Iter 03139 | loss 1.2199 | loss(rot) 0.6788 | loss(pos) 0.2191 | loss(seq) 0.3220 | grad 2.8927 | lr 0.0010 | time_forward 1.2270 | time_backward 1.3950 |
[2023-09-01 22:43:36,310::train::INFO] [train] Iter 03140 | loss 1.6391 | loss(rot) 0.3760 | loss(pos) 0.7795 | loss(seq) 0.4837 | grad 4.9967 | lr 0.0010 | time_forward 1.0630 | time_backward 1.2140 |
[2023-09-01 22:43:47,090::train::INFO] [train] Iter 03141 | loss 3.3365 | loss(rot) 2.6673 | loss(pos) 0.6624 | loss(seq) 0.0069 | grad 7.2214 | lr 0.0010 | time_forward 4.3550 | time_backward 6.3900 |
[2023-09-01 22:43:55,968::train::INFO] [train] Iter 03142 | loss 3.2469 | loss(rot) 0.1216 | loss(pos) 3.1249 | loss(seq) 0.0004 | grad 8.8798 | lr 0.0010 | time_forward 3.6120 | time_backward 5.2620 |
[2023-09-01 22:44:06,627::train::INFO] [train] Iter 03143 | loss 2.6980 | loss(rot) 1.2509 | loss(pos) 0.7682 | loss(seq) 0.6788 | grad 7.0193 | lr 0.0010 | time_forward 4.3790 | time_backward 6.2770 |
[2023-09-01 22:44:17,516::train::INFO] [train] Iter 03144 | loss 1.8246 | loss(rot) 0.8629 | loss(pos) 0.5663 | loss(seq) 0.3954 | grad 5.4271 | lr 0.0010 | time_forward 4.2330 | time_backward 6.6530 |
[2023-09-01 22:44:20,084::train::INFO] [train] Iter 03145 | loss 3.0331 | loss(rot) 2.6594 | loss(pos) 0.3736 | loss(seq) 0.0000 | grad 5.4465 | lr 0.0010 | time_forward 1.1740 | time_backward 1.3080 |
[2023-09-01 22:44:22,575::train::INFO] [train] Iter 03146 | loss 3.3175 | loss(rot) 2.7813 | loss(pos) 0.2887 | loss(seq) 0.2475 | grad 4.2206 | lr 0.0010 | time_forward 1.0920 | time_backward 1.2930 |
[2023-09-01 22:44:25,300::train::INFO] [train] Iter 03147 | loss 1.9044 | loss(rot) 0.9762 | loss(pos) 0.7136 | loss(seq) 0.2146 | grad 4.2245 | lr 0.0010 | time_forward 1.3380 | time_backward 1.3850 |
[2023-09-01 22:44:34,890::train::INFO] [train] Iter 03148 | loss 3.5115 | loss(rot) 2.8458 | loss(pos) 0.2579 | loss(seq) 0.4078 | grad 6.7966 | lr 0.0010 | time_forward 3.7630 | time_backward 5.7710 |
[2023-09-01 22:44:37,633::train::INFO] [train] Iter 03149 | loss 2.0657 | loss(rot) 1.4583 | loss(pos) 0.2795 | loss(seq) 0.3279 | grad 4.0242 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4720 |
[2023-09-01 22:44:46,089::train::INFO] [train] Iter 03150 | loss 2.6537 | loss(rot) 2.0008 | loss(pos) 0.2396 | loss(seq) 0.4133 | grad 4.1706 | lr 0.0010 | time_forward 3.4980 | time_backward 4.9550 |
[2023-09-01 22:44:58,064::train::INFO] [train] Iter 03151 | loss 1.9485 | loss(rot) 1.3409 | loss(pos) 0.2567 | loss(seq) 0.3509 | grad 5.3133 | lr 0.0010 | time_forward 5.8550 | time_backward 6.1160 |
[2023-09-01 22:45:07,157::train::INFO] [train] Iter 03152 | loss 2.6459 | loss(rot) 2.3873 | loss(pos) 0.2217 | loss(seq) 0.0369 | grad 5.2598 | lr 0.0010 | time_forward 3.7970 | time_backward 5.2920 |
[2023-09-01 22:45:09,635::train::INFO] [train] Iter 03153 | loss 2.0494 | loss(rot) 1.8063 | loss(pos) 0.2127 | loss(seq) 0.0304 | grad 4.4283 | lr 0.0010 | time_forward 1.1740 | time_backward 1.3010 |
[2023-09-01 22:45:17,155::train::INFO] [train] Iter 03154 | loss 2.5530 | loss(rot) 2.3667 | loss(pos) 0.1814 | loss(seq) 0.0049 | grad 3.4160 | lr 0.0010 | time_forward 3.1170 | time_backward 4.3760 |
[2023-09-01 22:45:28,367::train::INFO] [train] Iter 03155 | loss 2.5690 | loss(rot) 0.3788 | loss(pos) 2.1894 | loss(seq) 0.0008 | grad 4.1181 | lr 0.0010 | time_forward 5.0380 | time_backward 6.1700 |
[2023-09-01 22:45:36,961::train::INFO] [train] Iter 03156 | loss 3.4505 | loss(rot) 3.1849 | loss(pos) 0.2635 | loss(seq) 0.0020 | grad 3.6641 | lr 0.0010 | time_forward 3.5600 | time_backward 5.0300 |
[2023-09-01 22:45:39,654::train::INFO] [train] Iter 03157 | loss 2.3730 | loss(rot) 1.2471 | loss(pos) 0.6733 | loss(seq) 0.4526 | grad 7.3104 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4220 |
[2023-09-01 22:45:42,729::train::INFO] [train] Iter 03158 | loss 2.7098 | loss(rot) 2.5148 | loss(pos) 0.1861 | loss(seq) 0.0089 | grad 4.4602 | lr 0.0010 | time_forward 1.6280 | time_backward 1.4420 |
[2023-09-01 22:45:44,940::train::INFO] [train] Iter 03159 | loss 3.2379 | loss(rot) 2.6315 | loss(pos) 0.1646 | loss(seq) 0.4419 | grad 3.4029 | lr 0.0010 | time_forward 1.0270 | time_backward 1.1820 |
[2023-09-01 22:45:54,016::train::INFO] [train] Iter 03160 | loss 2.6494 | loss(rot) 1.8049 | loss(pos) 0.3516 | loss(seq) 0.4928 | grad 4.5359 | lr 0.0010 | time_forward 3.7500 | time_backward 5.3200 |
[2023-09-01 22:46:02,093::train::INFO] [train] Iter 03161 | loss 1.9601 | loss(rot) 1.2378 | loss(pos) 0.2658 | loss(seq) 0.4565 | grad 4.8994 | lr 0.0010 | time_forward 3.3760 | time_backward 4.6980 |
[2023-09-01 22:46:12,102::train::INFO] [train] Iter 03162 | loss 2.1874 | loss(rot) 1.4589 | loss(pos) 0.2458 | loss(seq) 0.4827 | grad 4.7340 | lr 0.0010 | time_forward 4.0970 | time_backward 5.9080 |
[2023-09-01 22:46:21,235::train::INFO] [train] Iter 03163 | loss 1.8967 | loss(rot) 1.6411 | loss(pos) 0.2030 | loss(seq) 0.0526 | grad 3.3231 | lr 0.0010 | time_forward 3.8770 | time_backward 5.2530 |
[2023-09-01 22:46:29,505::train::INFO] [train] Iter 03164 | loss 1.3776 | loss(rot) 0.4186 | loss(pos) 0.9109 | loss(seq) 0.0481 | grad 4.8238 | lr 0.0010 | time_forward 3.4320 | time_backward 4.8340 |
[2023-09-01 22:46:37,074::train::INFO] [train] Iter 03165 | loss 2.6307 | loss(rot) 0.1999 | loss(pos) 2.4274 | loss(seq) 0.0035 | grad 5.6524 | lr 0.0010 | time_forward 3.2570 | time_backward 4.3050 |
[2023-09-01 22:46:46,199::train::INFO] [train] Iter 03166 | loss 2.5954 | loss(rot) 2.2173 | loss(pos) 0.1710 | loss(seq) 0.2071 | grad 4.5051 | lr 0.0010 | time_forward 3.7340 | time_backward 5.3890 |
[2023-09-01 22:46:56,591::train::INFO] [train] Iter 03167 | loss 2.1164 | loss(rot) 1.1700 | loss(pos) 0.3885 | loss(seq) 0.5578 | grad 4.0815 | lr 0.0010 | time_forward 4.2570 | time_backward 6.1310 |
[2023-09-01 22:47:07,454::train::INFO] [train] Iter 03168 | loss 1.5224 | loss(rot) 0.5506 | loss(pos) 0.7413 | loss(seq) 0.2305 | grad 4.6678 | lr 0.0010 | time_forward 4.8220 | time_backward 6.0370 |
[2023-09-01 22:47:17,525::train::INFO] [train] Iter 03169 | loss 2.1807 | loss(rot) 1.1573 | loss(pos) 0.3996 | loss(seq) 0.6239 | grad 4.1910 | lr 0.0010 | time_forward 4.1730 | time_backward 5.8940 |
[2023-09-01 22:47:27,644::train::INFO] [train] Iter 03170 | loss 2.0666 | loss(rot) 1.6210 | loss(pos) 0.3172 | loss(seq) 0.1283 | grad 4.3527 | lr 0.0010 | time_forward 4.1030 | time_backward 6.0120 |
[2023-09-01 22:47:35,382::train::INFO] [train] Iter 03171 | loss 3.4218 | loss(rot) 0.0227 | loss(pos) 3.3991 | loss(seq) 0.0000 | grad 6.0670 | lr 0.0010 | time_forward 3.3240 | time_backward 4.4110 |
[2023-09-01 22:47:44,208::train::INFO] [train] Iter 03172 | loss 2.3490 | loss(rot) 2.1094 | loss(pos) 0.1877 | loss(seq) 0.0520 | grad 6.2310 | lr 0.0010 | time_forward 3.7120 | time_backward 5.1110 |
[2023-09-01 22:47:55,264::train::INFO] [train] Iter 03173 | loss 3.5410 | loss(rot) 3.0237 | loss(pos) 0.5083 | loss(seq) 0.0091 | grad 6.7025 | lr 0.0010 | time_forward 4.6250 | time_backward 6.4270 |
[2023-09-01 22:48:06,128::train::INFO] [train] Iter 03174 | loss 2.9612 | loss(rot) 2.5189 | loss(pos) 0.3845 | loss(seq) 0.0578 | grad 4.5102 | lr 0.0010 | time_forward 4.3820 | time_backward 6.4790 |
[2023-09-01 22:48:14,761::train::INFO] [train] Iter 03175 | loss 1.8975 | loss(rot) 1.3199 | loss(pos) 0.1957 | loss(seq) 0.3819 | grad 3.1410 | lr 0.0010 | time_forward 3.6010 | time_backward 5.0290 |
[2023-09-01 22:48:24,686::train::INFO] [train] Iter 03176 | loss 2.8599 | loss(rot) 2.6229 | loss(pos) 0.2254 | loss(seq) 0.0116 | grad 4.5130 | lr 0.0010 | time_forward 4.1720 | time_backward 5.7490 |
[2023-09-01 22:48:33,596::train::INFO] [train] Iter 03177 | loss 3.0367 | loss(rot) 2.8334 | loss(pos) 0.1069 | loss(seq) 0.0963 | grad 3.8080 | lr 0.0010 | time_forward 3.8710 | time_backward 5.0340 |
[2023-09-01 22:48:43,827::train::INFO] [train] Iter 03178 | loss 1.6957 | loss(rot) 0.0321 | loss(pos) 1.6605 | loss(seq) 0.0031 | grad 2.9600 | lr 0.0010 | time_forward 4.2410 | time_backward 5.9870 |
[2023-09-01 22:48:54,150::train::INFO] [train] Iter 03179 | loss 2.6039 | loss(rot) 1.6438 | loss(pos) 0.4256 | loss(seq) 0.5344 | grad 4.3537 | lr 0.0010 | time_forward 4.2360 | time_backward 6.0700 |
[2023-09-01 22:49:04,385::train::INFO] [train] Iter 03180 | loss 2.5993 | loss(rot) 2.4138 | loss(pos) 0.1848 | loss(seq) 0.0007 | grad 3.1516 | lr 0.0010 | time_forward 4.1810 | time_backward 6.0510 |
[2023-09-01 22:49:12,392::train::INFO] [train] Iter 03181 | loss 3.5480 | loss(rot) 2.2148 | loss(pos) 0.8179 | loss(seq) 0.5153 | grad 6.3378 | lr 0.0010 | time_forward 3.4470 | time_backward 4.5570 |
[2023-09-01 22:49:22,493::train::INFO] [train] Iter 03182 | loss 2.8113 | loss(rot) 0.8182 | loss(pos) 1.6962 | loss(seq) 0.2969 | grad 6.4743 | lr 0.0010 | time_forward 4.2300 | time_backward 5.8680 |
[2023-09-01 22:49:32,353::train::INFO] [train] Iter 03183 | loss 3.3258 | loss(rot) 2.8261 | loss(pos) 0.3711 | loss(seq) 0.1287 | grad 6.0080 | lr 0.0010 | time_forward 4.1250 | time_backward 5.7310 |
[2023-09-01 22:49:35,624::train::INFO] [train] Iter 03184 | loss 3.1682 | loss(rot) 2.3516 | loss(pos) 0.5737 | loss(seq) 0.2429 | grad 4.3287 | lr 0.0010 | time_forward 1.5870 | time_backward 1.6800 |
[2023-09-01 22:49:38,377::train::INFO] [train] Iter 03185 | loss 2.4446 | loss(rot) 1.6036 | loss(pos) 0.3285 | loss(seq) 0.5125 | grad 3.2152 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4310 |
[2023-09-01 22:49:48,543::train::INFO] [train] Iter 03186 | loss 2.5968 | loss(rot) 2.3952 | loss(pos) 0.1918 | loss(seq) 0.0098 | grad 5.6719 | lr 0.0010 | time_forward 4.1670 | time_backward 5.9960 |
[2023-09-01 22:49:51,271::train::INFO] [train] Iter 03187 | loss 2.5421 | loss(rot) 1.9270 | loss(pos) 0.2408 | loss(seq) 0.3743 | grad 4.1334 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4410 |
[2023-09-01 22:50:00,012::train::INFO] [train] Iter 03188 | loss 1.1008 | loss(rot) 0.4339 | loss(pos) 0.5925 | loss(seq) 0.0744 | grad 4.9687 | lr 0.0010 | time_forward 3.8240 | time_backward 4.9130 |
[2023-09-01 22:50:06,629::train::INFO] [train] Iter 03189 | loss 1.5761 | loss(rot) 0.8503 | loss(pos) 0.6120 | loss(seq) 0.1137 | grad 3.0382 | lr 0.0010 | time_forward 2.7710 | time_backward 3.8430 |
[2023-09-01 22:50:13,381::train::INFO] [train] Iter 03190 | loss 3.3482 | loss(rot) 3.0425 | loss(pos) 0.2056 | loss(seq) 0.1000 | grad 4.2307 | lr 0.0010 | time_forward 2.8490 | time_backward 3.8990 |
[2023-09-01 22:50:22,423::train::INFO] [train] Iter 03191 | loss 1.7694 | loss(rot) 0.1810 | loss(pos) 1.5669 | loss(seq) 0.0215 | grad 6.5694 | lr 0.0010 | time_forward 4.7840 | time_backward 4.2540 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.