text
stringlengths
56
1.16k
[2023-09-01 23:03:07,489::train::INFO] [train] Iter 03292 | loss 2.0324 | loss(rot) 1.0197 | loss(pos) 0.5599 | loss(seq) 0.4528 | grad 4.6659 | lr 0.0010 | time_forward 4.0120 | time_backward 5.5180
[2023-09-01 23:03:16,613::train::INFO] [train] Iter 03293 | loss 2.7387 | loss(rot) 2.2661 | loss(pos) 0.1431 | loss(seq) 0.3295 | grad 5.4837 | lr 0.0010 | time_forward 3.9710 | time_backward 5.1500
[2023-09-01 23:03:19,456::train::INFO] [train] Iter 03294 | loss 1.5683 | loss(rot) 0.5385 | loss(pos) 0.7687 | loss(seq) 0.2611 | grad 5.9218 | lr 0.0010 | time_forward 1.2410 | time_backward 1.5980
[2023-09-01 23:03:22,372::train::INFO] [train] Iter 03295 | loss 2.6839 | loss(rot) 1.6555 | loss(pos) 0.7201 | loss(seq) 0.3083 | grad 8.2399 | lr 0.0010 | time_forward 1.4300 | time_backward 1.4600
[2023-09-01 23:03:32,466::train::INFO] [train] Iter 03296 | loss 1.2721 | loss(rot) 0.4417 | loss(pos) 0.7231 | loss(seq) 0.1073 | grad 5.6851 | lr 0.0010 | time_forward 4.0720 | time_backward 6.0190
[2023-09-01 23:03:43,046::train::INFO] [train] Iter 03297 | loss 1.5093 | loss(rot) 0.6344 | loss(pos) 0.4324 | loss(seq) 0.4425 | grad 4.2045 | lr 0.0010 | time_forward 4.1750 | time_backward 6.3540
[2023-09-01 23:03:52,070::train::INFO] [train] Iter 03298 | loss 2.9973 | loss(rot) 1.8381 | loss(pos) 0.6201 | loss(seq) 0.5391 | grad 5.4329 | lr 0.0010 | time_forward 3.7410 | time_backward 5.2790
[2023-09-01 23:04:01,008::train::INFO] [train] Iter 03299 | loss 2.8279 | loss(rot) 1.9007 | loss(pos) 0.4738 | loss(seq) 0.4534 | grad 5.1646 | lr 0.0010 | time_forward 3.8340 | time_backward 5.0990
[2023-09-01 23:04:03,858::train::INFO] [train] Iter 03300 | loss 2.6845 | loss(rot) 1.7474 | loss(pos) 0.2932 | loss(seq) 0.6439 | grad 3.5627 | lr 0.0010 | time_forward 1.2600 | time_backward 1.5860
[2023-09-01 23:04:06,812::train::INFO] [train] Iter 03301 | loss 2.7512 | loss(rot) 2.5303 | loss(pos) 0.1781 | loss(seq) 0.0428 | grad 3.9233 | lr 0.0010 | time_forward 1.3780 | time_backward 1.5720
[2023-09-01 23:04:17,576::train::INFO] [train] Iter 03302 | loss 2.1977 | loss(rot) 1.8199 | loss(pos) 0.3516 | loss(seq) 0.0261 | grad 4.0332 | lr 0.0010 | time_forward 4.5900 | time_backward 6.1710
[2023-09-01 23:04:28,065::train::INFO] [train] Iter 03303 | loss 3.2397 | loss(rot) 2.9169 | loss(pos) 0.2424 | loss(seq) 0.0805 | grad 4.2932 | lr 0.0010 | time_forward 4.5160 | time_backward 5.9680
[2023-09-01 23:04:36,222::train::INFO] [train] Iter 03304 | loss 1.5939 | loss(rot) 0.7078 | loss(pos) 0.5208 | loss(seq) 0.3653 | grad 3.3209 | lr 0.0010 | time_forward 3.3640 | time_backward 4.7890
[2023-09-01 23:04:38,662::train::INFO] [train] Iter 03305 | loss 2.1000 | loss(rot) 1.6843 | loss(pos) 0.2039 | loss(seq) 0.2118 | grad 3.9589 | lr 0.0010 | time_forward 1.2320 | time_backward 1.2040
[2023-09-01 23:04:47,836::train::INFO] [train] Iter 03306 | loss 2.3562 | loss(rot) 1.1784 | loss(pos) 0.7302 | loss(seq) 0.4476 | grad 5.4376 | lr 0.0010 | time_forward 3.8570 | time_backward 5.3140
[2023-09-01 23:04:50,555::train::INFO] [train] Iter 03307 | loss 1.6941 | loss(rot) 0.5320 | loss(pos) 1.0853 | loss(seq) 0.0768 | grad 4.9405 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4670
[2023-09-01 23:05:01,786::train::INFO] [train] Iter 03308 | loss 4.6797 | loss(rot) 0.0049 | loss(pos) 4.6741 | loss(seq) 0.0007 | grad 11.6252 | lr 0.0010 | time_forward 5.2830 | time_backward 5.9450
[2023-09-01 23:05:04,407::train::INFO] [train] Iter 03309 | loss 2.9332 | loss(rot) 2.6764 | loss(pos) 0.2568 | loss(seq) 0.0000 | grad 3.8159 | lr 0.0010 | time_forward 1.2020 | time_backward 1.4160
[2023-09-01 23:05:14,294::train::INFO] [train] Iter 03310 | loss 3.1011 | loss(rot) 2.3442 | loss(pos) 0.3373 | loss(seq) 0.4196 | grad 4.2668 | lr 0.0010 | time_forward 3.9780 | time_backward 5.9050
[2023-09-01 23:05:16,980::train::INFO] [train] Iter 03311 | loss 1.8263 | loss(rot) 0.6285 | loss(pos) 0.7653 | loss(seq) 0.4324 | grad 7.3146 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4450
[2023-09-01 23:05:20,235::train::INFO] [train] Iter 03312 | loss 3.1233 | loss(rot) 2.3297 | loss(pos) 0.4881 | loss(seq) 0.3055 | grad 5.7965 | lr 0.0010 | time_forward 1.4220 | time_backward 1.8280
[2023-09-01 23:05:22,960::train::INFO] [train] Iter 03313 | loss 1.6705 | loss(rot) 0.8244 | loss(pos) 0.3568 | loss(seq) 0.4894 | grad 4.3316 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4140
[2023-09-01 23:05:25,693::train::INFO] [train] Iter 03314 | loss 1.8073 | loss(rot) 0.1692 | loss(pos) 1.6054 | loss(seq) 0.0326 | grad 4.1477 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4560
[2023-09-01 23:05:36,022::train::INFO] [train] Iter 03315 | loss 0.8933 | loss(rot) 0.1690 | loss(pos) 0.6636 | loss(seq) 0.0606 | grad 4.6215 | lr 0.0010 | time_forward 4.1690 | time_backward 6.1260
[2023-09-01 23:05:46,546::train::INFO] [train] Iter 03316 | loss 2.6319 | loss(rot) 2.3865 | loss(pos) 0.2293 | loss(seq) 0.0160 | grad 3.9517 | lr 0.0010 | time_forward 4.2500 | time_backward 6.2710
[2023-09-01 23:05:54,661::train::INFO] [train] Iter 03317 | loss 2.8707 | loss(rot) 2.0604 | loss(pos) 0.3602 | loss(seq) 0.4501 | grad 3.2015 | lr 0.0010 | time_forward 3.3300 | time_backward 4.7660
[2023-09-01 23:05:57,416::train::INFO] [train] Iter 03318 | loss 1.2699 | loss(rot) 0.5151 | loss(pos) 0.6358 | loss(seq) 0.1190 | grad 4.1687 | lr 0.0010 | time_forward 1.2450 | time_backward 1.5060
[2023-09-01 23:06:00,084::train::INFO] [train] Iter 03319 | loss 3.8360 | loss(rot) 3.2026 | loss(pos) 0.3950 | loss(seq) 0.2384 | grad 5.9223 | lr 0.0010 | time_forward 1.2720 | time_backward 1.3930
[2023-09-01 23:06:02,795::train::INFO] [train] Iter 03320 | loss 3.3739 | loss(rot) 3.0868 | loss(pos) 0.1662 | loss(seq) 0.1209 | grad 3.3963 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4100
[2023-09-01 23:06:13,150::train::INFO] [train] Iter 03321 | loss 3.3901 | loss(rot) 3.0914 | loss(pos) 0.2377 | loss(seq) 0.0610 | grad 3.4263 | lr 0.0010 | time_forward 4.3240 | time_backward 5.9900
[2023-09-01 23:06:20,195::train::INFO] [train] Iter 03322 | loss 2.2569 | loss(rot) 1.8059 | loss(pos) 0.2223 | loss(seq) 0.2287 | grad 4.8700 | lr 0.0010 | time_forward 2.9160 | time_backward 4.1160
[2023-09-01 23:06:30,402::train::INFO] [train] Iter 03323 | loss 1.8463 | loss(rot) 1.3772 | loss(pos) 0.2233 | loss(seq) 0.2458 | grad 4.3583 | lr 0.0010 | time_forward 4.2120 | time_backward 5.9910
[2023-09-01 23:06:40,357::train::INFO] [train] Iter 03324 | loss 2.2695 | loss(rot) 2.0463 | loss(pos) 0.1091 | loss(seq) 0.1141 | grad 4.7434 | lr 0.0010 | time_forward 4.0080 | time_backward 5.9440
[2023-09-01 23:06:48,659::train::INFO] [train] Iter 03325 | loss 2.4833 | loss(rot) 1.7150 | loss(pos) 0.3204 | loss(seq) 0.4479 | grad 4.2012 | lr 0.0010 | time_forward 3.5480 | time_backward 4.7500
[2023-09-01 23:06:51,331::train::INFO] [train] Iter 03326 | loss 2.2069 | loss(rot) 1.4623 | loss(pos) 0.1755 | loss(seq) 0.5691 | grad 3.0892 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4350
[2023-09-01 23:06:54,235::train::INFO] [train] Iter 03327 | loss 2.4040 | loss(rot) 2.1974 | loss(pos) 0.1786 | loss(seq) 0.0280 | grad 4.9656 | lr 0.0010 | time_forward 1.3980 | time_backward 1.5030
[2023-09-01 23:07:02,307::train::INFO] [train] Iter 03328 | loss 2.8269 | loss(rot) 2.6852 | loss(pos) 0.1397 | loss(seq) 0.0020 | grad 5.2449 | lr 0.0010 | time_forward 3.3900 | time_backward 4.6610
[2023-09-01 23:07:09,910::train::INFO] [train] Iter 03329 | loss 3.0385 | loss(rot) 2.7464 | loss(pos) 0.1397 | loss(seq) 0.1523 | grad 4.0485 | lr 0.0010 | time_forward 3.0740 | time_backward 4.5190
[2023-09-01 23:07:20,083::train::INFO] [train] Iter 03330 | loss 2.8641 | loss(rot) 2.7669 | loss(pos) 0.0905 | loss(seq) 0.0067 | grad 2.9887 | lr 0.0010 | time_forward 4.2130 | time_backward 5.9560
[2023-09-01 23:07:22,658::train::INFO] [train] Iter 03331 | loss 2.5020 | loss(rot) 1.7360 | loss(pos) 0.2209 | loss(seq) 0.5450 | grad 3.4716 | lr 0.0010 | time_forward 1.1560 | time_backward 1.4160
[2023-09-01 23:07:32,728::train::INFO] [train] Iter 03332 | loss 3.3676 | loss(rot) 3.0862 | loss(pos) 0.2815 | loss(seq) 0.0000 | grad 3.3031 | lr 0.0010 | time_forward 4.1390 | time_backward 5.9070
[2023-09-01 23:07:39,435::train::INFO] [train] Iter 03333 | loss 2.8835 | loss(rot) 2.0264 | loss(pos) 0.3766 | loss(seq) 0.4805 | grad 3.6027 | lr 0.0010 | time_forward 2.7540 | time_backward 3.9380
[2023-09-01 23:07:44,144::train::INFO] [train] Iter 03334 | loss 2.0896 | loss(rot) 1.1980 | loss(pos) 0.3938 | loss(seq) 0.4978 | grad 3.9761 | lr 0.0010 | time_forward 2.0110 | time_backward 2.6950
[2023-09-01 23:07:52,590::train::INFO] [train] Iter 03335 | loss 3.2188 | loss(rot) 3.0148 | loss(pos) 0.1926 | loss(seq) 0.0115 | grad 4.6544 | lr 0.0010 | time_forward 3.5560 | time_backward 4.8510
[2023-09-01 23:08:02,579::train::INFO] [train] Iter 03336 | loss 1.4718 | loss(rot) 0.2590 | loss(pos) 0.9982 | loss(seq) 0.2146 | grad 5.5894 | lr 0.0010 | time_forward 4.0630 | time_backward 5.9220
[2023-09-01 23:08:12,717::train::INFO] [train] Iter 03337 | loss 1.8347 | loss(rot) 0.9681 | loss(pos) 0.4292 | loss(seq) 0.4374 | grad 4.0412 | lr 0.0010 | time_forward 3.9920 | time_backward 6.1430
[2023-09-01 23:08:15,234::train::INFO] [train] Iter 03338 | loss 1.5603 | loss(rot) 1.0175 | loss(pos) 0.1412 | loss(seq) 0.4017 | grad 3.9733 | lr 0.0010 | time_forward 1.1620 | time_backward 1.3400
[2023-09-01 23:08:25,320::train::INFO] [train] Iter 03339 | loss 1.2735 | loss(rot) 0.4990 | loss(pos) 0.6566 | loss(seq) 0.1179 | grad 4.3969 | lr 0.0010 | time_forward 4.1160 | time_backward 5.9380
[2023-09-01 23:08:34,141::train::INFO] [train] Iter 03340 | loss 2.0533 | loss(rot) 1.3450 | loss(pos) 0.2377 | loss(seq) 0.4707 | grad 6.9883 | lr 0.0010 | time_forward 3.7460 | time_backward 5.0560
[2023-09-01 23:08:41,304::train::INFO] [train] Iter 03341 | loss 2.3571 | loss(rot) 1.9202 | loss(pos) 0.1584 | loss(seq) 0.2785 | grad 3.8701 | lr 0.0010 | time_forward 2.9800 | time_backward 4.1790
[2023-09-01 23:08:47,313::train::INFO] [train] Iter 03342 | loss 2.2983 | loss(rot) 1.9233 | loss(pos) 0.2305 | loss(seq) 0.1445 | grad 3.6041 | lr 0.0010 | time_forward 2.4710 | time_backward 3.5340
[2023-09-01 23:08:55,964::train::INFO] [train] Iter 03343 | loss 1.5558 | loss(rot) 0.2586 | loss(pos) 0.6674 | loss(seq) 0.6298 | grad 6.6837 | lr 0.0010 | time_forward 3.5520 | time_backward 5.0950
[2023-09-01 23:08:58,693::train::INFO] [train] Iter 03344 | loss 2.8173 | loss(rot) 2.4637 | loss(pos) 0.3115 | loss(seq) 0.0422 | grad 6.6002 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4280
[2023-09-01 23:09:01,451::train::INFO] [train] Iter 03345 | loss 2.5294 | loss(rot) 1.6546 | loss(pos) 0.4045 | loss(seq) 0.4703 | grad 9.4131 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4590
[2023-09-01 23:09:04,215::train::INFO] [train] Iter 03346 | loss 1.5999 | loss(rot) 0.9271 | loss(pos) 0.4685 | loss(seq) 0.2043 | grad 4.4319 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4210
[2023-09-01 23:09:13,720::train::INFO] [train] Iter 03347 | loss 2.6115 | loss(rot) 1.6774 | loss(pos) 0.3094 | loss(seq) 0.6247 | grad 4.6322 | lr 0.0010 | time_forward 4.1140 | time_backward 5.3870
[2023-09-01 23:09:20,308::train::INFO] [train] Iter 03348 | loss 3.0330 | loss(rot) 2.6188 | loss(pos) 0.2186 | loss(seq) 0.1956 | grad 4.8068 | lr 0.0010 | time_forward 2.7920 | time_backward 3.7920
[2023-09-01 23:09:28,328::train::INFO] [train] Iter 03349 | loss 2.4806 | loss(rot) 2.3570 | loss(pos) 0.1085 | loss(seq) 0.0151 | grad 3.8153 | lr 0.0010 | time_forward 3.3310 | time_backward 4.6860
[2023-09-01 23:09:31,074::train::INFO] [train] Iter 03350 | loss 2.1783 | loss(rot) 0.0972 | loss(pos) 2.0695 | loss(seq) 0.0117 | grad 7.7738 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4490
[2023-09-01 23:09:33,799::train::INFO] [train] Iter 03351 | loss 2.3321 | loss(rot) 2.2110 | loss(pos) 0.1189 | loss(seq) 0.0022 | grad 3.4662 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4080
[2023-09-01 23:09:36,562::train::INFO] [train] Iter 03352 | loss 2.1324 | loss(rot) 1.2796 | loss(pos) 0.4132 | loss(seq) 0.4396 | grad 4.3488 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4430
[2023-09-01 23:09:39,267::train::INFO] [train] Iter 03353 | loss 1.5449 | loss(rot) 0.6469 | loss(pos) 0.5509 | loss(seq) 0.3471 | grad 3.7671 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4200
[2023-09-01 23:09:42,043::train::INFO] [train] Iter 03354 | loss 2.3109 | loss(rot) 1.2799 | loss(pos) 0.4365 | loss(seq) 0.5945 | grad 3.8590 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4840
[2023-09-01 23:09:49,638::train::INFO] [train] Iter 03355 | loss 2.0844 | loss(rot) 1.9749 | loss(pos) 0.1084 | loss(seq) 0.0012 | grad 4.2884 | lr 0.0010 | time_forward 3.3190 | time_backward 4.2710
[2023-09-01 23:09:57,738::train::INFO] [train] Iter 03356 | loss 2.4558 | loss(rot) 1.9003 | loss(pos) 0.2541 | loss(seq) 0.3014 | grad 3.4112 | lr 0.0010 | time_forward 3.4570 | time_backward 4.6400
[2023-09-01 23:10:09,734::train::INFO] [train] Iter 03357 | loss 2.0507 | loss(rot) 1.3318 | loss(pos) 0.1723 | loss(seq) 0.5466 | grad 3.8467 | lr 0.0010 | time_forward 5.3070 | time_backward 6.6850
[2023-09-01 23:10:12,829::train::INFO] [train] Iter 03358 | loss 2.9751 | loss(rot) 2.4353 | loss(pos) 0.3811 | loss(seq) 0.1587 | grad 5.8600 | lr 0.0010 | time_forward 1.4460 | time_backward 1.6460
[2023-09-01 23:10:22,887::train::INFO] [train] Iter 03359 | loss 2.3835 | loss(rot) 1.7509 | loss(pos) 0.1440 | loss(seq) 0.4885 | grad 2.0395 | lr 0.0010 | time_forward 3.9830 | time_backward 6.0720
[2023-09-01 23:10:31,430::train::INFO] [train] Iter 03360 | loss 1.2782 | loss(rot) 0.0846 | loss(pos) 1.1851 | loss(seq) 0.0086 | grad 4.5154 | lr 0.0010 | time_forward 3.6440 | time_backward 4.8950
[2023-09-01 23:10:40,358::train::INFO] [train] Iter 03361 | loss 1.8868 | loss(rot) 0.4919 | loss(pos) 1.2843 | loss(seq) 0.1106 | grad 6.6368 | lr 0.0010 | time_forward 3.7740 | time_backward 5.1500
[2023-09-01 23:10:48,929::train::INFO] [train] Iter 03362 | loss 2.9211 | loss(rot) 2.0406 | loss(pos) 0.3277 | loss(seq) 0.5529 | grad 4.3997 | lr 0.0010 | time_forward 3.6690 | time_backward 4.8990
[2023-09-01 23:10:59,172::train::INFO] [train] Iter 03363 | loss 3.3244 | loss(rot) 2.8296 | loss(pos) 0.3638 | loss(seq) 0.1310 | grad 4.2956 | lr 0.0010 | time_forward 4.2300 | time_backward 6.0090
[2023-09-01 23:11:05,693::train::INFO] [train] Iter 03364 | loss 1.1944 | loss(rot) 0.3958 | loss(pos) 0.5391 | loss(seq) 0.2595 | grad 4.9995 | lr 0.0010 | time_forward 2.7520 | time_backward 3.7650
[2023-09-01 23:11:13,978::train::INFO] [train] Iter 03365 | loss 2.5914 | loss(rot) 2.0354 | loss(pos) 0.1726 | loss(seq) 0.3834 | grad 5.1022 | lr 0.0010 | time_forward 3.4110 | time_backward 4.8700
[2023-09-01 23:11:18,153::train::INFO] [train] Iter 03366 | loss 1.7901 | loss(rot) 0.4389 | loss(pos) 1.3206 | loss(seq) 0.0306 | grad 7.3979 | lr 0.0010 | time_forward 1.8120 | time_backward 2.3590
[2023-09-01 23:11:27,000::train::INFO] [train] Iter 03367 | loss 2.0449 | loss(rot) 1.1896 | loss(pos) 0.3536 | loss(seq) 0.5016 | grad 5.6788 | lr 0.0010 | time_forward 3.7130 | time_backward 5.1170
[2023-09-01 23:11:37,255::train::INFO] [train] Iter 03368 | loss 3.2382 | loss(rot) 2.4059 | loss(pos) 0.4035 | loss(seq) 0.4288 | grad 6.1896 | lr 0.0010 | time_forward 4.1630 | time_backward 6.0900
[2023-09-01 23:11:40,497::train::INFO] [train] Iter 03369 | loss 3.2332 | loss(rot) 2.8998 | loss(pos) 0.2972 | loss(seq) 0.0362 | grad 4.2834 | lr 0.0010 | time_forward 1.4440 | time_backward 1.7940
[2023-09-01 23:11:50,053::train::INFO] [train] Iter 03370 | loss 1.5233 | loss(rot) 0.7109 | loss(pos) 0.2745 | loss(seq) 0.5379 | grad 4.1246 | lr 0.0010 | time_forward 4.0830 | time_backward 5.4700
[2023-09-01 23:12:01,532::train::INFO] [train] Iter 03371 | loss 1.5714 | loss(rot) 0.6282 | loss(pos) 0.7536 | loss(seq) 0.1896 | grad 3.7979 | lr 0.0010 | time_forward 4.7940 | time_backward 6.6800
[2023-09-01 23:12:04,276::train::INFO] [train] Iter 03372 | loss 1.4318 | loss(rot) 0.6713 | loss(pos) 0.5831 | loss(seq) 0.1773 | grad 4.7264 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4710
[2023-09-01 23:12:13,556::train::INFO] [train] Iter 03373 | loss 1.9337 | loss(rot) 1.1182 | loss(pos) 0.5370 | loss(seq) 0.2785 | grad 6.5519 | lr 0.0010 | time_forward 3.9660 | time_backward 5.3110
[2023-09-01 23:12:23,875::train::INFO] [train] Iter 03374 | loss 2.3793 | loss(rot) 1.7092 | loss(pos) 0.2640 | loss(seq) 0.4061 | grad 3.5289 | lr 0.0010 | time_forward 4.2470 | time_backward 6.0680
[2023-09-01 23:12:33,101::train::INFO] [train] Iter 03375 | loss 2.6123 | loss(rot) 2.3931 | loss(pos) 0.2159 | loss(seq) 0.0033 | grad 4.7361 | lr 0.0010 | time_forward 3.9100 | time_backward 5.3130
[2023-09-01 23:12:35,724::train::INFO] [train] Iter 03376 | loss 1.9975 | loss(rot) 1.3455 | loss(pos) 0.2272 | loss(seq) 0.4248 | grad 5.3151 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3900
[2023-09-01 23:12:38,427::train::INFO] [train] Iter 03377 | loss 1.6279 | loss(rot) 0.2243 | loss(pos) 1.3650 | loss(seq) 0.0386 | grad 5.8592 | lr 0.0010 | time_forward 1.3010 | time_backward 1.3990
[2023-09-01 23:12:48,606::train::INFO] [train] Iter 03378 | loss 1.3213 | loss(rot) 0.6851 | loss(pos) 0.3214 | loss(seq) 0.3147 | grad 3.5126 | lr 0.0010 | time_forward 4.1580 | time_backward 6.0170
[2023-09-01 23:12:51,259::train::INFO] [train] Iter 03379 | loss 2.7221 | loss(rot) 2.5100 | loss(pos) 0.2117 | loss(seq) 0.0003 | grad 4.2683 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4070
[2023-09-01 23:13:00,773::train::INFO] [train] Iter 03380 | loss 1.0014 | loss(rot) 0.1564 | loss(pos) 0.7587 | loss(seq) 0.0863 | grad 6.0071 | lr 0.0010 | time_forward 3.9390 | time_backward 5.5720
[2023-09-01 23:13:11,017::train::INFO] [train] Iter 03381 | loss 3.1620 | loss(rot) 2.4175 | loss(pos) 0.5376 | loss(seq) 0.2069 | grad 6.2331 | lr 0.0010 | time_forward 4.2200 | time_backward 6.0200
[2023-09-01 23:13:15,857::train::INFO] [train] Iter 03382 | loss 1.4569 | loss(rot) 0.6993 | loss(pos) 0.6524 | loss(seq) 0.1052 | grad 5.3601 | lr 0.0010 | time_forward 2.0460 | time_backward 2.7910
[2023-09-01 23:13:24,103::train::INFO] [train] Iter 03383 | loss 1.7508 | loss(rot) 0.5958 | loss(pos) 0.5841 | loss(seq) 0.5709 | grad 4.1587 | lr 0.0010 | time_forward 3.4450 | time_backward 4.7980
[2023-09-01 23:13:26,836::train::INFO] [train] Iter 03384 | loss 1.1580 | loss(rot) 0.0974 | loss(pos) 1.0496 | loss(seq) 0.0110 | grad 6.5619 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4450
[2023-09-01 23:13:37,059::train::INFO] [train] Iter 03385 | loss 1.1034 | loss(rot) 0.3190 | loss(pos) 0.4904 | loss(seq) 0.2941 | grad 3.2971 | lr 0.0010 | time_forward 4.1300 | time_backward 6.0890
[2023-09-01 23:13:45,502::train::INFO] [train] Iter 03386 | loss 1.0889 | loss(rot) 0.2784 | loss(pos) 0.2096 | loss(seq) 0.6009 | grad 3.9148 | lr 0.0010 | time_forward 3.5300 | time_backward 4.9090
[2023-09-01 23:13:53,591::train::INFO] [train] Iter 03387 | loss 1.4183 | loss(rot) 0.5295 | loss(pos) 0.8258 | loss(seq) 0.0629 | grad 6.1714 | lr 0.0010 | time_forward 3.4650 | time_backward 4.6200
[2023-09-01 23:14:02,880::train::INFO] [train] Iter 03388 | loss 2.7905 | loss(rot) 2.1212 | loss(pos) 0.3645 | loss(seq) 0.3048 | grad 7.4716 | lr 0.0010 | time_forward 3.8870 | time_backward 5.3980
[2023-09-01 23:14:12,971::train::INFO] [train] Iter 03389 | loss 1.8367 | loss(rot) 0.9888 | loss(pos) 0.4318 | loss(seq) 0.4161 | grad 6.1736 | lr 0.0010 | time_forward 4.0260 | time_backward 6.0620
[2023-09-01 23:14:21,405::train::INFO] [train] Iter 03390 | loss 2.4882 | loss(rot) 2.0401 | loss(pos) 0.3197 | loss(seq) 0.1284 | grad 4.7420 | lr 0.0010 | time_forward 3.5780 | time_backward 4.8530
[2023-09-01 23:14:30,716::train::INFO] [train] Iter 03391 | loss 1.1423 | loss(rot) 0.4541 | loss(pos) 0.2626 | loss(seq) 0.4256 | grad 3.3399 | lr 0.0010 | time_forward 3.9270 | time_backward 5.3800