text
stringlengths
56
1.16k
[2023-09-01 23:14:40,655::train::INFO] [train] Iter 03392 | loss 2.6091 | loss(rot) 2.2216 | loss(pos) 0.3517 | loss(seq) 0.0358 | grad 5.2743 | lr 0.0010 | time_forward 4.0930 | time_backward 5.8410
[2023-09-01 23:14:49,134::train::INFO] [train] Iter 03393 | loss 2.6932 | loss(rot) 2.3473 | loss(pos) 0.0845 | loss(seq) 0.2615 | grad 3.3973 | lr 0.0010 | time_forward 3.5280 | time_backward 4.9480
[2023-09-01 23:14:51,823::train::INFO] [train] Iter 03394 | loss 2.5915 | loss(rot) 2.4734 | loss(pos) 0.1182 | loss(seq) 0.0000 | grad 4.5553 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4180
[2023-09-01 23:15:00,556::train::INFO] [train] Iter 03395 | loss 2.9986 | loss(rot) 2.6281 | loss(pos) 0.3617 | loss(seq) 0.0089 | grad 7.0089 | lr 0.0010 | time_forward 3.6320 | time_backward 5.0980
[2023-09-01 23:15:10,675::train::INFO] [train] Iter 03396 | loss 1.2370 | loss(rot) 0.1564 | loss(pos) 0.6825 | loss(seq) 0.3981 | grad 3.9452 | lr 0.0010 | time_forward 4.0480 | time_backward 6.0680
[2023-09-01 23:15:19,793::train::INFO] [train] Iter 03397 | loss 1.6061 | loss(rot) 0.3618 | loss(pos) 0.7335 | loss(seq) 0.5108 | grad 4.9379 | lr 0.0010 | time_forward 3.7430 | time_backward 5.3720
[2023-09-01 23:15:22,559::train::INFO] [train] Iter 03398 | loss 1.4344 | loss(rot) 0.6238 | loss(pos) 0.5726 | loss(seq) 0.2380 | grad 4.0154 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4850
[2023-09-01 23:15:32,358::train::INFO] [train] Iter 03399 | loss 3.3221 | loss(rot) 3.0349 | loss(pos) 0.2749 | loss(seq) 0.0123 | grad 4.4000 | lr 0.0010 | time_forward 4.0920 | time_backward 5.7040
[2023-09-01 23:15:38,842::train::INFO] [train] Iter 03400 | loss 1.9845 | loss(rot) 0.0410 | loss(pos) 1.9421 | loss(seq) 0.0014 | grad 5.6587 | lr 0.0010 | time_forward 2.7020 | time_backward 3.7780
[2023-09-01 23:15:47,452::train::INFO] [train] Iter 03401 | loss 2.8670 | loss(rot) 2.7732 | loss(pos) 0.0842 | loss(seq) 0.0095 | grad 4.8023 | lr 0.0010 | time_forward 3.5440 | time_backward 5.0620
[2023-09-01 23:15:57,636::train::INFO] [train] Iter 03402 | loss 2.4224 | loss(rot) 1.7351 | loss(pos) 0.2404 | loss(seq) 0.4469 | grad 3.3973 | lr 0.0010 | time_forward 4.0410 | time_backward 6.1400
[2023-09-01 23:16:00,347::train::INFO] [train] Iter 03403 | loss 0.7118 | loss(rot) 0.1389 | loss(pos) 0.5241 | loss(seq) 0.0488 | grad 3.4163 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4440
[2023-09-01 23:16:03,648::train::INFO] [train] Iter 03404 | loss 2.4343 | loss(rot) 2.0783 | loss(pos) 0.3057 | loss(seq) 0.0503 | grad 4.1545 | lr 0.0010 | time_forward 1.4980 | time_backward 1.7980
[2023-09-01 23:16:12,397::train::INFO] [train] Iter 03405 | loss 1.7624 | loss(rot) 0.7330 | loss(pos) 0.5424 | loss(seq) 0.4869 | grad 3.8550 | lr 0.0010 | time_forward 3.6780 | time_backward 5.0670
[2023-09-01 23:16:14,602::train::INFO] [train] Iter 03406 | loss 0.9700 | loss(rot) 0.0941 | loss(pos) 0.8511 | loss(seq) 0.0248 | grad 4.7923 | lr 0.0010 | time_forward 1.0170 | time_backward 1.1840
[2023-09-01 23:16:17,308::train::INFO] [train] Iter 03407 | loss 2.3946 | loss(rot) 2.2634 | loss(pos) 0.1291 | loss(seq) 0.0022 | grad 4.7404 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4450
[2023-09-01 23:16:27,271::train::INFO] [train] Iter 03408 | loss 2.0789 | loss(rot) 1.6323 | loss(pos) 0.3126 | loss(seq) 0.1340 | grad 3.8910 | lr 0.0010 | time_forward 4.0500 | time_backward 5.8830
[2023-09-01 23:16:35,717::train::INFO] [train] Iter 03409 | loss 2.2680 | loss(rot) 1.3482 | loss(pos) 0.4268 | loss(seq) 0.4931 | grad 5.4084 | lr 0.0010 | time_forward 3.5770 | time_backward 4.8650
[2023-09-01 23:16:38,163::train::INFO] [train] Iter 03410 | loss 2.3504 | loss(rot) 1.8121 | loss(pos) 0.2351 | loss(seq) 0.3032 | grad 5.2302 | lr 0.0010 | time_forward 1.1770 | time_backward 1.2670
[2023-09-01 23:16:46,845::train::INFO] [train] Iter 03411 | loss 1.1623 | loss(rot) 0.6681 | loss(pos) 0.3698 | loss(seq) 0.1244 | grad 5.4184 | lr 0.0010 | time_forward 3.7340 | time_backward 4.9070
[2023-09-01 23:16:56,712::train::INFO] [train] Iter 03412 | loss 2.4578 | loss(rot) 2.1298 | loss(pos) 0.2834 | loss(seq) 0.0446 | grad 7.2282 | lr 0.0010 | time_forward 4.5770 | time_backward 5.2860
[2023-09-01 23:17:07,682::train::INFO] [train] Iter 03413 | loss 2.5816 | loss(rot) 1.8430 | loss(pos) 0.2653 | loss(seq) 0.4733 | grad 4.9710 | lr 0.0010 | time_forward 4.6130 | time_backward 6.3530
[2023-09-01 23:17:17,876::train::INFO] [train] Iter 03414 | loss 2.7460 | loss(rot) 2.5219 | loss(pos) 0.2228 | loss(seq) 0.0013 | grad 5.2676 | lr 0.0010 | time_forward 4.3850 | time_backward 5.8050
[2023-09-01 23:17:20,528::train::INFO] [train] Iter 03415 | loss 3.0734 | loss(rot) 2.6767 | loss(pos) 0.2771 | loss(seq) 0.1196 | grad 4.9785 | lr 0.0010 | time_forward 1.2560 | time_backward 1.3940
[2023-09-01 23:17:23,356::train::INFO] [train] Iter 03416 | loss 2.4563 | loss(rot) 2.1855 | loss(pos) 0.2581 | loss(seq) 0.0127 | grad 5.3901 | lr 0.0010 | time_forward 1.3860 | time_backward 1.4390
[2023-09-01 23:17:25,208::train::INFO] [train] Iter 03417 | loss 1.6193 | loss(rot) 1.3477 | loss(pos) 0.2705 | loss(seq) 0.0012 | grad 9.1961 | lr 0.0010 | time_forward 0.8240 | time_backward 1.0240
[2023-09-01 23:17:35,222::train::INFO] [train] Iter 03418 | loss 1.5822 | loss(rot) 0.7015 | loss(pos) 0.4489 | loss(seq) 0.4318 | grad 3.7411 | lr 0.0010 | time_forward 4.0710 | time_backward 5.9400
[2023-09-01 23:17:44,029::train::INFO] [train] Iter 03419 | loss 2.0489 | loss(rot) 1.2413 | loss(pos) 0.3728 | loss(seq) 0.4348 | grad 4.5054 | lr 0.0010 | time_forward 3.7550 | time_backward 5.0500
[2023-09-01 23:17:54,258::train::INFO] [train] Iter 03420 | loss 3.2006 | loss(rot) 2.9129 | loss(pos) 0.2590 | loss(seq) 0.0287 | grad 4.4588 | lr 0.0010 | time_forward 4.1950 | time_backward 6.0310
[2023-09-01 23:18:04,545::train::INFO] [train] Iter 03421 | loss 1.5964 | loss(rot) 0.7956 | loss(pos) 0.6017 | loss(seq) 0.1992 | grad 3.8037 | lr 0.0010 | time_forward 4.2030 | time_backward 6.0800
[2023-09-01 23:18:12,225::train::INFO] [train] Iter 03422 | loss 3.0325 | loss(rot) 2.4576 | loss(pos) 0.5276 | loss(seq) 0.0473 | grad 8.2014 | lr 0.0010 | time_forward 3.2120 | time_backward 4.4520
[2023-09-01 23:18:23,388::train::INFO] [train] Iter 03423 | loss 2.6036 | loss(rot) 2.4158 | loss(pos) 0.1875 | loss(seq) 0.0003 | grad 4.0644 | lr 0.0010 | time_forward 5.1680 | time_backward 5.9910
[2023-09-01 23:18:33,653::train::INFO] [train] Iter 03424 | loss 2.1472 | loss(rot) 1.9737 | loss(pos) 0.1188 | loss(seq) 0.0547 | grad 4.8400 | lr 0.0010 | time_forward 4.1390 | time_backward 6.1230
[2023-09-01 23:18:35,844::train::INFO] [train] Iter 03425 | loss 2.7398 | loss(rot) 0.1170 | loss(pos) 2.6215 | loss(seq) 0.0012 | grad 7.7293 | lr 0.0010 | time_forward 1.0120 | time_backward 1.1770
[2023-09-01 23:18:46,178::train::INFO] [train] Iter 03426 | loss 2.1358 | loss(rot) 1.3578 | loss(pos) 0.2663 | loss(seq) 0.5117 | grad 4.1689 | lr 0.0010 | time_forward 4.1370 | time_backward 6.1940
[2023-09-01 23:18:53,804::train::INFO] [train] Iter 03427 | loss 1.7756 | loss(rot) 0.3549 | loss(pos) 1.2640 | loss(seq) 0.1566 | grad 6.1863 | lr 0.0010 | time_forward 3.2020 | time_backward 4.4200
[2023-09-01 23:18:57,124::train::INFO] [train] Iter 03428 | loss 1.5841 | loss(rot) 0.3874 | loss(pos) 0.8437 | loss(seq) 0.3529 | grad 5.7317 | lr 0.0010 | time_forward 1.5980 | time_backward 1.7190
[2023-09-01 23:19:00,522::train::INFO] [train] Iter 03429 | loss 2.0347 | loss(rot) 1.0069 | loss(pos) 0.7586 | loss(seq) 0.2693 | grad 4.9376 | lr 0.0010 | time_forward 1.5620 | time_backward 1.8340
[2023-09-01 23:19:09,463::train::INFO] [train] Iter 03430 | loss 1.5975 | loss(rot) 0.3728 | loss(pos) 1.2024 | loss(seq) 0.0223 | grad 4.3730 | lr 0.0010 | time_forward 3.8080 | time_backward 5.1290
[2023-09-01 23:19:11,945::train::INFO] [train] Iter 03431 | loss 0.8827 | loss(rot) 0.0423 | loss(pos) 0.8346 | loss(seq) 0.0057 | grad 4.9512 | lr 0.0010 | time_forward 1.1870 | time_backward 1.2930
[2023-09-01 23:19:17,437::train::INFO] [train] Iter 03432 | loss 3.0434 | loss(rot) 2.7327 | loss(pos) 0.2851 | loss(seq) 0.0256 | grad 5.4168 | lr 0.0010 | time_forward 2.1660 | time_backward 3.3230
[2023-09-01 23:19:25,759::train::INFO] [train] Iter 03433 | loss 2.0273 | loss(rot) 1.3554 | loss(pos) 0.2838 | loss(seq) 0.3881 | grad 7.7870 | lr 0.0010 | time_forward 3.6050 | time_backward 4.6820
[2023-09-01 23:19:27,984::train::INFO] [train] Iter 03434 | loss 3.8596 | loss(rot) 3.1626 | loss(pos) 0.2464 | loss(seq) 0.4505 | grad 4.9820 | lr 0.0010 | time_forward 1.0210 | time_backward 1.2010
[2023-09-01 23:19:37,120::train::INFO] [train] Iter 03435 | loss 2.8084 | loss(rot) 2.2942 | loss(pos) 0.2011 | loss(seq) 0.3131 | grad 6.5177 | lr 0.0010 | time_forward 3.7960 | time_backward 5.3360
[2023-09-01 23:19:39,799::train::INFO] [train] Iter 03436 | loss 2.4880 | loss(rot) 1.9481 | loss(pos) 0.2938 | loss(seq) 0.2461 | grad 5.7062 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4420
[2023-09-01 23:19:48,700::train::INFO] [train] Iter 03437 | loss 3.6375 | loss(rot) 2.2290 | loss(pos) 0.8812 | loss(seq) 0.5273 | grad 4.5840 | lr 0.0010 | time_forward 3.7140 | time_backward 5.1850
[2023-09-01 23:19:57,275::train::INFO] [train] Iter 03438 | loss 1.2825 | loss(rot) 0.7911 | loss(pos) 0.1638 | loss(seq) 0.3275 | grad 3.2184 | lr 0.0010 | time_forward 3.5860 | time_backward 4.9860
[2023-09-01 23:20:06,353::train::INFO] [train] Iter 03439 | loss 1.6462 | loss(rot) 0.4362 | loss(pos) 0.9259 | loss(seq) 0.2841 | grad 5.9287 | lr 0.0010 | time_forward 3.8370 | time_backward 5.2380
[2023-09-01 23:20:15,568::train::INFO] [train] Iter 03440 | loss 2.6139 | loss(rot) 1.8205 | loss(pos) 0.3974 | loss(seq) 0.3960 | grad 5.6368 | lr 0.0010 | time_forward 3.8810 | time_backward 5.3310
[2023-09-01 23:20:18,289::train::INFO] [train] Iter 03441 | loss 2.7333 | loss(rot) 1.8598 | loss(pos) 0.4157 | loss(seq) 0.4578 | grad 4.0269 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4400
[2023-09-01 23:20:21,003::train::INFO] [train] Iter 03442 | loss 2.6731 | loss(rot) 2.5381 | loss(pos) 0.0811 | loss(seq) 0.0540 | grad 5.0204 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4620
[2023-09-01 23:20:23,716::train::INFO] [train] Iter 03443 | loss 1.8120 | loss(rot) 0.0449 | loss(pos) 1.7662 | loss(seq) 0.0008 | grad 6.1295 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4530
[2023-09-01 23:20:26,499::train::INFO] [train] Iter 03444 | loss 2.6755 | loss(rot) 2.2378 | loss(pos) 0.4364 | loss(seq) 0.0012 | grad 4.9818 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4700
[2023-09-01 23:20:34,029::train::INFO] [train] Iter 03445 | loss 1.0799 | loss(rot) 0.3072 | loss(pos) 0.6999 | loss(seq) 0.0727 | grad 4.0310 | lr 0.0010 | time_forward 3.2210 | time_backward 4.3060
[2023-09-01 23:20:42,844::train::INFO] [train] Iter 03446 | loss 2.8990 | loss(rot) 2.3937 | loss(pos) 0.2932 | loss(seq) 0.2122 | grad 6.6210 | lr 0.0010 | time_forward 3.7940 | time_backward 5.0180
[2023-09-01 23:20:51,273::train::INFO] [train] Iter 03447 | loss 2.6415 | loss(rot) 1.5232 | loss(pos) 0.5045 | loss(seq) 0.6137 | grad 6.4436 | lr 0.0010 | time_forward 3.5460 | time_backward 4.8790
[2023-09-01 23:20:59,985::train::INFO] [train] Iter 03448 | loss 2.6766 | loss(rot) 2.2874 | loss(pos) 0.1910 | loss(seq) 0.1982 | grad 4.1777 | lr 0.0010 | time_forward 3.6970 | time_backward 5.0090
[2023-09-01 23:21:08,634::train::INFO] [train] Iter 03449 | loss 2.1229 | loss(rot) 1.6273 | loss(pos) 0.1652 | loss(seq) 0.3304 | grad 7.3406 | lr 0.0010 | time_forward 3.5810 | time_backward 5.0650
[2023-09-01 23:21:11,327::train::INFO] [train] Iter 03450 | loss 2.5880 | loss(rot) 2.2662 | loss(pos) 0.1518 | loss(seq) 0.1700 | grad 5.0298 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4470
[2023-09-01 23:21:21,202::train::INFO] [train] Iter 03451 | loss 2.4941 | loss(rot) 2.2881 | loss(pos) 0.2053 | loss(seq) 0.0007 | grad 4.3259 | lr 0.0010 | time_forward 4.0590 | time_backward 5.8120
[2023-09-01 23:21:29,344::train::INFO] [train] Iter 03452 | loss 1.8841 | loss(rot) 0.9861 | loss(pos) 0.4060 | loss(seq) 0.4920 | grad 5.5071 | lr 0.0010 | time_forward 3.3670 | time_backward 4.7720
[2023-09-01 23:21:37,415::train::INFO] [train] Iter 03453 | loss 2.0901 | loss(rot) 1.9297 | loss(pos) 0.1504 | loss(seq) 0.0100 | grad 5.0804 | lr 0.0010 | time_forward 3.3220 | time_backward 4.7450
[2023-09-01 23:21:47,641::train::INFO] [train] Iter 03454 | loss 1.5079 | loss(rot) 0.6707 | loss(pos) 0.3704 | loss(seq) 0.4668 | grad 3.8125 | lr 0.0010 | time_forward 4.2210 | time_backward 6.0010
[2023-09-01 23:21:57,975::train::INFO] [train] Iter 03455 | loss 2.7328 | loss(rot) 2.5356 | loss(pos) 0.1815 | loss(seq) 0.0156 | grad 4.3111 | lr 0.0010 | time_forward 4.1590 | time_backward 6.1600
[2023-09-01 23:22:00,760::train::INFO] [train] Iter 03456 | loss 2.4003 | loss(rot) 1.6033 | loss(pos) 0.2849 | loss(seq) 0.5120 | grad 3.9675 | lr 0.0010 | time_forward 1.3150 | time_backward 1.4660
[2023-09-01 23:22:10,922::train::INFO] [train] Iter 03457 | loss 0.8913 | loss(rot) 0.1587 | loss(pos) 0.4706 | loss(seq) 0.2620 | grad 3.0360 | lr 0.0010 | time_forward 4.2720 | time_backward 5.8860
[2023-09-01 23:22:13,158::train::INFO] [train] Iter 03458 | loss 2.7012 | loss(rot) 2.4085 | loss(pos) 0.2214 | loss(seq) 0.0714 | grad 3.7741 | lr 0.0010 | time_forward 1.0210 | time_backward 1.2120
[2023-09-01 23:22:23,062::train::INFO] [train] Iter 03459 | loss 2.6505 | loss(rot) 2.4956 | loss(pos) 0.1549 | loss(seq) 0.0000 | grad 6.0801 | lr 0.0010 | time_forward 4.0640 | time_backward 5.8370
[2023-09-01 23:22:25,764::train::INFO] [train] Iter 03460 | loss 2.2930 | loss(rot) 1.3710 | loss(pos) 0.4968 | loss(seq) 0.4252 | grad 3.9000 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4430
[2023-09-01 23:22:35,908::train::INFO] [train] Iter 03461 | loss 2.6700 | loss(rot) 2.3006 | loss(pos) 0.1898 | loss(seq) 0.1796 | grad 3.9247 | lr 0.0010 | time_forward 4.2030 | time_backward 5.9370
[2023-09-01 23:22:45,387::train::INFO] [train] Iter 03462 | loss 1.0206 | loss(rot) 0.5606 | loss(pos) 0.3677 | loss(seq) 0.0922 | grad 2.6387 | lr 0.0010 | time_forward 3.9510 | time_backward 5.5240
[2023-09-01 23:22:55,688::train::INFO] [train] Iter 03463 | loss 2.4284 | loss(rot) 1.5664 | loss(pos) 0.3017 | loss(seq) 0.5603 | grad 4.1706 | lr 0.0010 | time_forward 4.2660 | time_backward 6.0310
[2023-09-01 23:23:04,409::train::INFO] [train] Iter 03464 | loss 1.6482 | loss(rot) 0.0623 | loss(pos) 1.5813 | loss(seq) 0.0046 | grad 6.2730 | lr 0.0010 | time_forward 3.7690 | time_backward 4.9480
[2023-09-01 23:23:12,883::train::INFO] [train] Iter 03465 | loss 2.6325 | loss(rot) 2.4149 | loss(pos) 0.1504 | loss(seq) 0.0672 | grad 3.9620 | lr 0.0010 | time_forward 3.5710 | time_backward 4.9000
[2023-09-01 23:23:21,617::train::INFO] [train] Iter 03466 | loss 3.5492 | loss(rot) 0.3346 | loss(pos) 3.2097 | loss(seq) 0.0049 | grad 8.5916 | lr 0.0010 | time_forward 3.6190 | time_backward 5.1110
[2023-09-01 23:23:29,382::train::INFO] [train] Iter 03467 | loss 1.8510 | loss(rot) 1.7019 | loss(pos) 0.1259 | loss(seq) 0.0232 | grad 4.6739 | lr 0.0010 | time_forward 3.2730 | time_backward 4.4890
[2023-09-01 23:23:38,713::train::INFO] [train] Iter 03468 | loss 2.3301 | loss(rot) 1.8151 | loss(pos) 0.1476 | loss(seq) 0.3673 | grad 3.2795 | lr 0.0010 | time_forward 3.8600 | time_backward 5.4660
[2023-09-01 23:23:41,431::train::INFO] [train] Iter 03469 | loss 1.0848 | loss(rot) 0.0521 | loss(pos) 1.0217 | loss(seq) 0.0111 | grad 4.5689 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4760
[2023-09-01 23:23:48,618::train::INFO] [train] Iter 03470 | loss 1.1050 | loss(rot) 0.3424 | loss(pos) 0.7156 | loss(seq) 0.0470 | grad 5.5026 | lr 0.0010 | time_forward 3.0390 | time_backward 4.1420
[2023-09-01 23:23:51,368::train::INFO] [train] Iter 03471 | loss 4.4474 | loss(rot) 0.0145 | loss(pos) 4.4330 | loss(seq) 0.0000 | grad 8.9356 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4120
[2023-09-01 23:23:59,873::train::INFO] [train] Iter 03472 | loss 2.9030 | loss(rot) 2.5946 | loss(pos) 0.1928 | loss(seq) 0.1157 | grad 3.1131 | lr 0.0010 | time_forward 3.5650 | time_backward 4.9360
[2023-09-01 23:24:07,015::train::INFO] [train] Iter 03473 | loss 1.3810 | loss(rot) 0.7094 | loss(pos) 0.4351 | loss(seq) 0.2365 | grad 4.4262 | lr 0.0010 | time_forward 3.0260 | time_backward 4.1110
[2023-09-01 23:24:16,930::train::INFO] [train] Iter 03474 | loss 1.8187 | loss(rot) 0.4760 | loss(pos) 0.9218 | loss(seq) 0.4209 | grad 3.7399 | lr 0.0010 | time_forward 4.0360 | time_backward 5.8750
[2023-09-01 23:24:19,603::train::INFO] [train] Iter 03475 | loss 2.6408 | loss(rot) 2.1897 | loss(pos) 0.1954 | loss(seq) 0.2556 | grad 4.3793 | lr 0.0010 | time_forward 1.2700 | time_backward 1.3990
[2023-09-01 23:24:29,822::train::INFO] [train] Iter 03476 | loss 3.0380 | loss(rot) 2.7377 | loss(pos) 0.2566 | loss(seq) 0.0437 | grad 3.4327 | lr 0.0010 | time_forward 4.1660 | time_backward 6.0490
[2023-09-01 23:24:39,626::train::INFO] [train] Iter 03477 | loss 5.6834 | loss(rot) 0.0109 | loss(pos) 5.6725 | loss(seq) 0.0000 | grad 7.4324 | lr 0.0010 | time_forward 3.9780 | time_backward 5.8240
[2023-09-01 23:24:42,284::train::INFO] [train] Iter 03478 | loss 1.4312 | loss(rot) 0.3569 | loss(pos) 0.8396 | loss(seq) 0.2346 | grad 5.6223 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4150
[2023-09-01 23:24:45,559::train::INFO] [train] Iter 03479 | loss 2.4897 | loss(rot) 0.0169 | loss(pos) 2.4709 | loss(seq) 0.0019 | grad 6.3497 | lr 0.0010 | time_forward 1.5550 | time_backward 1.7160
[2023-09-01 23:24:47,688::train::INFO] [train] Iter 03480 | loss 2.7656 | loss(rot) 2.3818 | loss(pos) 0.3838 | loss(seq) 0.0000 | grad 3.8783 | lr 0.0010 | time_forward 0.9710 | time_backward 1.1540
[2023-09-01 23:24:55,628::train::INFO] [train] Iter 03481 | loss 4.2645 | loss(rot) 0.0307 | loss(pos) 4.2338 | loss(seq) 0.0000 | grad 7.2129 | lr 0.0010 | time_forward 3.2700 | time_backward 4.6660
[2023-09-01 23:25:04,884::train::INFO] [train] Iter 03482 | loss 2.1655 | loss(rot) 0.0110 | loss(pos) 2.1539 | loss(seq) 0.0006 | grad 5.6558 | lr 0.0010 | time_forward 3.8470 | time_backward 5.4070
[2023-09-01 23:25:14,795::train::INFO] [train] Iter 03483 | loss 1.8885 | loss(rot) 0.0676 | loss(pos) 1.8141 | loss(seq) 0.0069 | grad 5.3561 | lr 0.0010 | time_forward 4.0730 | time_backward 5.8340
[2023-09-01 23:25:25,096::train::INFO] [train] Iter 03484 | loss 3.0657 | loss(rot) 2.7711 | loss(pos) 0.2852 | loss(seq) 0.0094 | grad 4.4760 | lr 0.0010 | time_forward 4.0900 | time_backward 6.2080
[2023-09-01 23:25:33,165::train::INFO] [train] Iter 03485 | loss 2.7440 | loss(rot) 1.6216 | loss(pos) 0.5611 | loss(seq) 0.5613 | grad 4.1768 | lr 0.0010 | time_forward 3.4350 | time_backward 4.6190
[2023-09-01 23:25:41,148::train::INFO] [train] Iter 03486 | loss 2.2867 | loss(rot) 1.8281 | loss(pos) 0.1546 | loss(seq) 0.3039 | grad 5.5898 | lr 0.0010 | time_forward 3.3670 | time_backward 4.6120
[2023-09-01 23:25:51,548::train::INFO] [train] Iter 03487 | loss 2.1978 | loss(rot) 1.8165 | loss(pos) 0.3360 | loss(seq) 0.0453 | grad 5.2543 | lr 0.0010 | time_forward 4.3610 | time_backward 6.0330
[2023-09-01 23:26:00,291::train::INFO] [train] Iter 03488 | loss 2.0427 | loss(rot) 0.9426 | loss(pos) 0.5213 | loss(seq) 0.5788 | grad 3.1957 | lr 0.0010 | time_forward 3.6290 | time_backward 5.1100
[2023-09-01 23:26:03,062::train::INFO] [train] Iter 03489 | loss 2.7386 | loss(rot) 2.0480 | loss(pos) 0.2158 | loss(seq) 0.4748 | grad 3.8282 | lr 0.0010 | time_forward 1.2610 | time_backward 1.5070
[2023-09-01 23:26:11,056::train::INFO] [train] Iter 03490 | loss 2.2982 | loss(rot) 1.3308 | loss(pos) 0.4047 | loss(seq) 0.5628 | grad 4.1384 | lr 0.0010 | time_forward 3.3730 | time_backward 4.6170
[2023-09-01 23:26:19,857::train::INFO] [train] Iter 03491 | loss 0.9230 | loss(rot) 0.3182 | loss(pos) 0.5095 | loss(seq) 0.0954 | grad 4.1897 | lr 0.0010 | time_forward 3.6830 | time_backward 5.1150