text
stringlengths
56
1.16k
[2023-09-01 23:26:22,649::train::INFO] [train] Iter 03492 | loss 1.3477 | loss(rot) 0.9813 | loss(pos) 0.1681 | loss(seq) 0.1984 | grad 2.5994 | lr 0.0010 | time_forward 1.2490 | time_backward 1.5390
[2023-09-01 23:26:29,188::train::INFO] [train] Iter 03493 | loss 3.3476 | loss(rot) 2.7937 | loss(pos) 0.4137 | loss(seq) 0.1402 | grad 3.6138 | lr 0.0010 | time_forward 2.7880 | time_backward 3.7470
[2023-09-01 23:26:37,921::train::INFO] [train] Iter 03494 | loss 2.6634 | loss(rot) 2.3248 | loss(pos) 0.3165 | loss(seq) 0.0220 | grad 5.5043 | lr 0.0010 | time_forward 3.6930 | time_backward 5.0360
[2023-09-01 23:26:47,874::train::INFO] [train] Iter 03495 | loss 2.3981 | loss(rot) 1.6976 | loss(pos) 0.3020 | loss(seq) 0.3985 | grad 3.6825 | lr 0.0010 | time_forward 4.0020 | time_backward 5.9480
[2023-09-01 23:26:56,863::train::INFO] [train] Iter 03496 | loss 2.4501 | loss(rot) 1.9393 | loss(pos) 0.1706 | loss(seq) 0.3402 | grad 3.5968 | lr 0.0010 | time_forward 3.8470 | time_backward 5.1380
[2023-09-01 23:27:06,870::train::INFO] [train] Iter 03497 | loss 2.8828 | loss(rot) 2.3863 | loss(pos) 0.3426 | loss(seq) 0.1540 | grad 4.9510 | lr 0.0010 | time_forward 4.0110 | time_backward 5.9930
[2023-09-01 23:27:15,416::train::INFO] [train] Iter 03498 | loss 3.1882 | loss(rot) 2.5503 | loss(pos) 0.4123 | loss(seq) 0.2256 | grad 4.1156 | lr 0.0010 | time_forward 3.5830 | time_backward 4.9590
[2023-09-01 23:27:18,040::train::INFO] [train] Iter 03499 | loss 2.8044 | loss(rot) 2.4161 | loss(pos) 0.1952 | loss(seq) 0.1932 | grad 6.1110 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4100
[2023-09-01 23:27:20,685::train::INFO] [train] Iter 03500 | loss 2.5431 | loss(rot) 2.0662 | loss(pos) 0.1148 | loss(seq) 0.3621 | grad 4.1751 | lr 0.0010 | time_forward 1.2030 | time_backward 1.4380
[2023-09-01 23:27:29,819::train::INFO] [train] Iter 03501 | loss 2.3249 | loss(rot) 1.5057 | loss(pos) 0.2401 | loss(seq) 0.5791 | grad 3.1197 | lr 0.0010 | time_forward 3.8080 | time_backward 5.3220
[2023-09-01 23:27:39,774::train::INFO] [train] Iter 03502 | loss 2.9178 | loss(rot) 2.6528 | loss(pos) 0.2561 | loss(seq) 0.0090 | grad 4.9067 | lr 0.0010 | time_forward 4.0170 | time_backward 5.9070
[2023-09-01 23:27:49,840::train::INFO] [train] Iter 03503 | loss 1.7181 | loss(rot) 1.5148 | loss(pos) 0.0821 | loss(seq) 0.1212 | grad 3.7359 | lr 0.0010 | time_forward 4.0440 | time_backward 6.0180
[2023-09-01 23:27:59,951::train::INFO] [train] Iter 03504 | loss 1.1736 | loss(rot) 0.2537 | loss(pos) 0.8820 | loss(seq) 0.0379 | grad 3.5810 | lr 0.0010 | time_forward 4.1940 | time_backward 5.9140
[2023-09-01 23:28:10,893::train::INFO] [train] Iter 03505 | loss 1.3857 | loss(rot) 0.3967 | loss(pos) 0.9080 | loss(seq) 0.0810 | grad 3.0551 | lr 0.0010 | time_forward 4.6350 | time_backward 6.3030
[2023-09-01 23:28:20,928::train::INFO] [train] Iter 03506 | loss 4.5114 | loss(rot) 0.0736 | loss(pos) 4.4378 | loss(seq) 0.0000 | grad 6.4240 | lr 0.0010 | time_forward 4.1440 | time_backward 5.8870
[2023-09-01 23:28:30,210::train::INFO] [train] Iter 03507 | loss 1.8328 | loss(rot) 0.9206 | loss(pos) 0.4620 | loss(seq) 0.4503 | grad 3.6567 | lr 0.0010 | time_forward 3.8500 | time_backward 5.4280
[2023-09-01 23:28:40,298::train::INFO] [train] Iter 03508 | loss 2.7943 | loss(rot) 1.8791 | loss(pos) 0.3159 | loss(seq) 0.5993 | grad 4.5906 | lr 0.0010 | time_forward 3.9970 | time_backward 6.0870
[2023-09-01 23:28:43,424::train::INFO] [train] Iter 03509 | loss 2.6010 | loss(rot) 1.0768 | loss(pos) 1.0058 | loss(seq) 0.5185 | grad 4.6786 | lr 0.0010 | time_forward 1.4010 | time_backward 1.7110
[2023-09-01 23:28:53,392::train::INFO] [train] Iter 03510 | loss 2.2161 | loss(rot) 1.6603 | loss(pos) 0.2650 | loss(seq) 0.2908 | grad 4.6321 | lr 0.0010 | time_forward 4.0370 | time_backward 5.9280
[2023-09-01 23:29:02,245::train::INFO] [train] Iter 03511 | loss 1.2687 | loss(rot) 0.5482 | loss(pos) 0.4422 | loss(seq) 0.2783 | grad 4.3711 | lr 0.0010 | time_forward 3.8730 | time_backward 4.9760
[2023-09-01 23:29:12,162::train::INFO] [train] Iter 03512 | loss 1.0921 | loss(rot) 0.3469 | loss(pos) 0.7204 | loss(seq) 0.0248 | grad 4.1098 | lr 0.0010 | time_forward 4.1970 | time_backward 5.7160
[2023-09-01 23:29:22,596::train::INFO] [train] Iter 03513 | loss 1.1961 | loss(rot) 0.3705 | loss(pos) 0.4168 | loss(seq) 0.4088 | grad 4.1855 | lr 0.0010 | time_forward 4.4800 | time_backward 5.9510
[2023-09-01 23:29:32,474::train::INFO] [train] Iter 03514 | loss 2.6197 | loss(rot) 0.0368 | loss(pos) 2.5771 | loss(seq) 0.0058 | grad 5.5036 | lr 0.0010 | time_forward 3.9800 | time_backward 5.8940
[2023-09-01 23:29:41,729::train::INFO] [train] Iter 03515 | loss 1.8908 | loss(rot) 0.4423 | loss(pos) 1.1452 | loss(seq) 0.3033 | grad 5.1215 | lr 0.0010 | time_forward 3.8720 | time_backward 5.3790
[2023-09-01 23:29:51,943::train::INFO] [train] Iter 03516 | loss 2.4359 | loss(rot) 1.7039 | loss(pos) 0.1651 | loss(seq) 0.5670 | grad 2.8387 | lr 0.0010 | time_forward 4.0540 | time_backward 6.1560
[2023-09-01 23:29:55,168::train::INFO] [train] Iter 03517 | loss 2.6724 | loss(rot) 2.4788 | loss(pos) 0.1929 | loss(seq) 0.0007 | grad 4.9546 | lr 0.0010 | time_forward 1.4360 | time_backward 1.7760
[2023-09-01 23:29:57,908::train::INFO] [train] Iter 03518 | loss 2.7214 | loss(rot) 1.5737 | loss(pos) 0.6106 | loss(seq) 0.5371 | grad 5.9776 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4510
[2023-09-01 23:30:00,600::train::INFO] [train] Iter 03519 | loss 1.6364 | loss(rot) 1.0533 | loss(pos) 0.2573 | loss(seq) 0.3258 | grad 6.5831 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4080
[2023-09-01 23:30:03,335::train::INFO] [train] Iter 03520 | loss 2.4183 | loss(rot) 2.0820 | loss(pos) 0.1603 | loss(seq) 0.1759 | grad 3.8432 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4380
[2023-09-01 23:30:05,994::train::INFO] [train] Iter 03521 | loss 2.9156 | loss(rot) 2.2124 | loss(pos) 0.2945 | loss(seq) 0.4087 | grad 4.5867 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4130
[2023-09-01 23:30:16,316::train::INFO] [train] Iter 03522 | loss 1.5819 | loss(rot) 0.0717 | loss(pos) 1.4957 | loss(seq) 0.0145 | grad 6.9083 | lr 0.0010 | time_forward 4.1640 | time_backward 6.1550
[2023-09-01 23:30:26,528::train::INFO] [train] Iter 03523 | loss 2.8725 | loss(rot) 2.1239 | loss(pos) 0.2332 | loss(seq) 0.5154 | grad 4.2310 | lr 0.0010 | time_forward 4.1140 | time_backward 6.0940
[2023-09-01 23:30:34,372::train::INFO] [train] Iter 03524 | loss 1.6427 | loss(rot) 1.1656 | loss(pos) 0.2488 | loss(seq) 0.2282 | grad 6.7212 | lr 0.0010 | time_forward 3.2750 | time_backward 4.5550
[2023-09-01 23:30:36,985::train::INFO] [train] Iter 03525 | loss 2.9622 | loss(rot) 2.8091 | loss(pos) 0.1510 | loss(seq) 0.0022 | grad 4.2721 | lr 0.0010 | time_forward 1.1870 | time_backward 1.4240
[2023-09-01 23:30:45,385::train::INFO] [train] Iter 03526 | loss 1.0033 | loss(rot) 0.2504 | loss(pos) 0.6987 | loss(seq) 0.0542 | grad 4.3152 | lr 0.0010 | time_forward 3.7130 | time_backward 4.6840
[2023-09-01 23:30:52,940::train::INFO] [train] Iter 03527 | loss 1.7741 | loss(rot) 0.7351 | loss(pos) 0.8094 | loss(seq) 0.2296 | grad 4.2112 | lr 0.0010 | time_forward 3.1680 | time_backward 4.3830
[2023-09-01 23:31:02,886::train::INFO] [train] Iter 03528 | loss 1.6661 | loss(rot) 0.0328 | loss(pos) 1.2155 | loss(seq) 0.4177 | grad 4.8853 | lr 0.0010 | time_forward 4.1180 | time_backward 5.8250
[2023-09-01 23:31:10,871::train::INFO] [train] Iter 03529 | loss 1.3341 | loss(rot) 0.0437 | loss(pos) 1.2865 | loss(seq) 0.0039 | grad 5.9419 | lr 0.0010 | time_forward 3.4240 | time_backward 4.5570
[2023-09-01 23:31:13,768::train::INFO] [train] Iter 03530 | loss 2.3991 | loss(rot) 2.1913 | loss(pos) 0.2066 | loss(seq) 0.0012 | grad 6.1233 | lr 0.0010 | time_forward 1.4710 | time_backward 1.4240
[2023-09-01 23:31:20,212::train::INFO] [train] Iter 03531 | loss 1.9627 | loss(rot) 1.6013 | loss(pos) 0.1773 | loss(seq) 0.1841 | grad 4.8543 | lr 0.0010 | time_forward 2.6660 | time_backward 3.7740
[2023-09-01 23:31:30,324::train::INFO] [train] Iter 03532 | loss 1.6636 | loss(rot) 1.5076 | loss(pos) 0.0940 | loss(seq) 0.0620 | grad 6.0149 | lr 0.0010 | time_forward 4.0540 | time_backward 6.0550
[2023-09-01 23:31:38,805::train::INFO] [train] Iter 03533 | loss 2.8620 | loss(rot) 2.4378 | loss(pos) 0.1012 | loss(seq) 0.3231 | grad 3.3840 | lr 0.0010 | time_forward 3.5390 | time_backward 4.9380
[2023-09-01 23:31:47,248::train::INFO] [train] Iter 03534 | loss 2.7164 | loss(rot) 2.6123 | loss(pos) 0.0610 | loss(seq) 0.0430 | grad 5.6738 | lr 0.0010 | time_forward 3.5410 | time_backward 4.8980
[2023-09-01 23:31:49,548::train::INFO] [train] Iter 03535 | loss 1.5262 | loss(rot) 0.6795 | loss(pos) 0.4776 | loss(seq) 0.3691 | grad 4.6172 | lr 0.0010 | time_forward 1.0520 | time_backward 1.2460
[2023-09-01 23:31:52,327::train::INFO] [train] Iter 03536 | loss 2.3947 | loss(rot) 1.9193 | loss(pos) 0.1272 | loss(seq) 0.3482 | grad 5.4595 | lr 0.0010 | time_forward 1.2640 | time_backward 1.5110
[2023-09-01 23:32:00,986::train::INFO] [train] Iter 03537 | loss 1.3115 | loss(rot) 0.4604 | loss(pos) 0.5583 | loss(seq) 0.2928 | grad 4.5481 | lr 0.0010 | time_forward 3.6490 | time_backward 5.0070
[2023-09-01 23:32:03,440::train::INFO] [train] Iter 03538 | loss 3.1330 | loss(rot) 2.9033 | loss(pos) 0.2080 | loss(seq) 0.0217 | grad 4.7231 | lr 0.0010 | time_forward 1.1900 | time_backward 1.2600
[2023-09-01 23:32:13,609::train::INFO] [train] Iter 03539 | loss 3.0125 | loss(rot) 2.9062 | loss(pos) 0.1031 | loss(seq) 0.0033 | grad 3.0837 | lr 0.0010 | time_forward 4.1390 | time_backward 5.9940
[2023-09-01 23:32:16,278::train::INFO] [train] Iter 03540 | loss 1.6554 | loss(rot) 0.9672 | loss(pos) 0.5335 | loss(seq) 0.1547 | grad 5.1394 | lr 0.0010 | time_forward 1.2770 | time_backward 1.3790
[2023-09-01 23:32:26,341::train::INFO] [train] Iter 03541 | loss 3.2790 | loss(rot) 2.4836 | loss(pos) 0.3831 | loss(seq) 0.4124 | grad 5.5469 | lr 0.0010 | time_forward 4.0910 | time_backward 5.9690
[2023-09-01 23:32:34,614::train::INFO] [train] Iter 03542 | loss 1.3633 | loss(rot) 0.4612 | loss(pos) 0.5403 | loss(seq) 0.3617 | grad 5.2157 | lr 0.0010 | time_forward 3.4270 | time_backward 4.8420
[2023-09-01 23:32:43,626::train::INFO] [train] Iter 03543 | loss 1.3027 | loss(rot) 0.2703 | loss(pos) 0.9908 | loss(seq) 0.0415 | grad 7.5930 | lr 0.0010 | time_forward 3.8120 | time_backward 5.1960
[2023-09-01 23:32:46,378::train::INFO] [train] Iter 03544 | loss 1.0913 | loss(rot) 0.3454 | loss(pos) 0.5193 | loss(seq) 0.2266 | grad 4.3148 | lr 0.0010 | time_forward 1.3320 | time_backward 1.4160
[2023-09-01 23:32:49,077::train::INFO] [train] Iter 03545 | loss 2.0700 | loss(rot) 1.6982 | loss(pos) 0.1662 | loss(seq) 0.2056 | grad 5.6156 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4450
[2023-09-01 23:32:59,741::train::INFO] [train] Iter 03546 | loss 2.3183 | loss(rot) 0.8371 | loss(pos) 0.8760 | loss(seq) 0.6052 | grad 8.1951 | lr 0.0010 | time_forward 4.3640 | time_backward 6.2970
[2023-09-01 23:33:10,009::train::INFO] [train] Iter 03547 | loss 2.4306 | loss(rot) 2.0104 | loss(pos) 0.3267 | loss(seq) 0.0935 | grad 5.3498 | lr 0.0010 | time_forward 4.3240 | time_backward 5.9300
[2023-09-01 23:33:17,524::train::INFO] [train] Iter 03548 | loss 1.9260 | loss(rot) 0.4195 | loss(pos) 1.4950 | loss(seq) 0.0116 | grad 6.3909 | lr 0.0010 | time_forward 3.1850 | time_backward 4.3270
[2023-09-01 23:33:26,377::train::INFO] [train] Iter 03549 | loss 2.5903 | loss(rot) 2.1009 | loss(pos) 0.4395 | loss(seq) 0.0500 | grad 6.8414 | lr 0.0010 | time_forward 3.7530 | time_backward 5.0960
[2023-09-01 23:33:29,120::train::INFO] [train] Iter 03550 | loss 4.4694 | loss(rot) 2.8635 | loss(pos) 1.3943 | loss(seq) 0.2116 | grad 20.5254 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4400
[2023-09-01 23:33:31,928::train::INFO] [train] Iter 03551 | loss 1.9759 | loss(rot) 1.1358 | loss(pos) 0.3124 | loss(seq) 0.5276 | grad 5.3504 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4860
[2023-09-01 23:33:34,284::train::INFO] [train] Iter 03552 | loss 3.3551 | loss(rot) 3.0370 | loss(pos) 0.3087 | loss(seq) 0.0094 | grad 7.4369 | lr 0.0010 | time_forward 1.1500 | time_backward 1.1900
[2023-09-01 23:33:43,979::train::INFO] [train] Iter 03553 | loss 2.7465 | loss(rot) 2.1796 | loss(pos) 0.1945 | loss(seq) 0.3723 | grad 3.8158 | lr 0.0010 | time_forward 4.3050 | time_backward 5.3850
[2023-09-01 23:33:53,128::train::INFO] [train] Iter 03554 | loss 2.6647 | loss(rot) 2.5211 | loss(pos) 0.1370 | loss(seq) 0.0067 | grad 4.9661 | lr 0.0010 | time_forward 4.1970 | time_backward 4.9480
[2023-09-01 23:33:58,879::train::INFO] [train] Iter 03555 | loss 1.3526 | loss(rot) 0.2196 | loss(pos) 0.8824 | loss(seq) 0.2507 | grad 4.4976 | lr 0.0010 | time_forward 2.4880 | time_backward 3.2600
[2023-09-01 23:34:08,304::train::INFO] [train] Iter 03556 | loss 2.9942 | loss(rot) 2.7273 | loss(pos) 0.2648 | loss(seq) 0.0021 | grad 3.7459 | lr 0.0010 | time_forward 4.1010 | time_backward 5.3200
[2023-09-01 23:34:16,843::train::INFO] [train] Iter 03557 | loss 2.6847 | loss(rot) 2.1932 | loss(pos) 0.1404 | loss(seq) 0.3512 | grad 3.7956 | lr 0.0010 | time_forward 3.5370 | time_backward 4.9990
[2023-09-01 23:34:27,419::train::INFO] [train] Iter 03558 | loss 2.4338 | loss(rot) 1.6528 | loss(pos) 0.3617 | loss(seq) 0.4194 | grad 4.1444 | lr 0.0010 | time_forward 4.1100 | time_backward 6.4630
[2023-09-01 23:34:36,928::train::INFO] [train] Iter 03559 | loss 2.8422 | loss(rot) 2.6063 | loss(pos) 0.2288 | loss(seq) 0.0072 | grad 4.1999 | lr 0.0010 | time_forward 4.0320 | time_backward 5.4710
[2023-09-01 23:34:39,768::train::INFO] [train] Iter 03560 | loss 2.4932 | loss(rot) 0.0157 | loss(pos) 2.4775 | loss(seq) 0.0000 | grad 4.2934 | lr 0.0010 | time_forward 1.3520 | time_backward 1.4850
[2023-09-01 23:34:49,898::train::INFO] [train] Iter 03561 | loss 2.8803 | loss(rot) 2.2620 | loss(pos) 0.2610 | loss(seq) 0.3573 | grad 3.5491 | lr 0.0010 | time_forward 4.2110 | time_backward 5.9160
[2023-09-01 23:34:59,313::train::INFO] [train] Iter 03562 | loss 2.8872 | loss(rot) 1.8297 | loss(pos) 0.4937 | loss(seq) 0.5638 | grad 4.2062 | lr 0.0010 | time_forward 4.0760 | time_backward 5.3360
[2023-09-01 23:35:07,706::train::INFO] [train] Iter 03563 | loss 2.5439 | loss(rot) 2.2226 | loss(pos) 0.3201 | loss(seq) 0.0012 | grad 4.5631 | lr 0.0010 | time_forward 3.5530 | time_backward 4.8360
[2023-09-01 23:35:16,139::train::INFO] [train] Iter 03564 | loss 2.9103 | loss(rot) 2.6983 | loss(pos) 0.2072 | loss(seq) 0.0048 | grad 4.6371 | lr 0.0010 | time_forward 3.4940 | time_backward 4.9350
[2023-09-01 23:35:22,641::train::INFO] [train] Iter 03565 | loss 2.2518 | loss(rot) 0.0752 | loss(pos) 2.1722 | loss(seq) 0.0044 | grad 5.0346 | lr 0.0010 | time_forward 2.7290 | time_backward 3.7700
[2023-09-01 23:35:32,785::train::INFO] [train] Iter 03566 | loss 2.9299 | loss(rot) 2.6398 | loss(pos) 0.2868 | loss(seq) 0.0032 | grad 4.0361 | lr 0.0010 | time_forward 4.2210 | time_backward 5.9190
[2023-09-01 23:35:40,448::train::INFO] [train] Iter 03567 | loss 4.2319 | loss(rot) 0.7983 | loss(pos) 3.4315 | loss(seq) 0.0021 | grad 7.6347 | lr 0.0010 | time_forward 3.2400 | time_backward 4.4190
[2023-09-01 23:35:50,073::train::INFO] [train] Iter 03568 | loss 3.4490 | loss(rot) 2.7630 | loss(pos) 0.6860 | loss(seq) 0.0000 | grad 5.7645 | lr 0.0010 | time_forward 4.0300 | time_backward 5.5910
[2023-09-01 23:35:53,728::train::INFO] [train] Iter 03569 | loss 3.2648 | loss(rot) 2.0578 | loss(pos) 0.6814 | loss(seq) 0.5257 | grad 5.9736 | lr 0.0010 | time_forward 1.6260 | time_backward 2.0250
[2023-09-01 23:35:56,245::train::INFO] [train] Iter 03570 | loss 2.3217 | loss(rot) 1.5002 | loss(pos) 0.4751 | loss(seq) 0.3464 | grad 6.3738 | lr 0.0010 | time_forward 1.1840 | time_backward 1.3290
[2023-09-01 23:36:04,872::train::INFO] [train] Iter 03571 | loss 1.4188 | loss(rot) 0.0596 | loss(pos) 1.3461 | loss(seq) 0.0131 | grad 5.3684 | lr 0.0010 | time_forward 3.6000 | time_backward 4.9890
[2023-09-01 23:36:15,172::train::INFO] [train] Iter 03572 | loss 2.8710 | loss(rot) 2.0694 | loss(pos) 0.3520 | loss(seq) 0.4496 | grad 3.5628 | lr 0.0010 | time_forward 4.2720 | time_backward 6.0080
[2023-09-01 23:36:25,430::train::INFO] [train] Iter 03573 | loss 2.5684 | loss(rot) 2.3496 | loss(pos) 0.2125 | loss(seq) 0.0063 | grad 4.2683 | lr 0.0010 | time_forward 4.0980 | time_backward 6.1570
[2023-09-01 23:36:35,803::train::INFO] [train] Iter 03574 | loss 1.6224 | loss(rot) 0.7764 | loss(pos) 0.5616 | loss(seq) 0.2845 | grad 3.8647 | lr 0.0010 | time_forward 4.1360 | time_backward 6.2330
[2023-09-01 23:36:44,586::train::INFO] [train] Iter 03575 | loss 2.2410 | loss(rot) 2.0275 | loss(pos) 0.1705 | loss(seq) 0.0429 | grad 4.3436 | lr 0.0010 | time_forward 3.6870 | time_backward 5.0920
[2023-09-01 23:36:46,875::train::INFO] [train] Iter 03576 | loss 2.1476 | loss(rot) 0.0798 | loss(pos) 1.7960 | loss(seq) 0.2719 | grad 6.1410 | lr 0.0010 | time_forward 1.0320 | time_backward 1.2540
[2023-09-01 23:36:56,364::train::INFO] [train] Iter 03577 | loss 1.1047 | loss(rot) 0.3631 | loss(pos) 0.4549 | loss(seq) 0.2866 | grad 3.9331 | lr 0.0010 | time_forward 4.1880 | time_backward 5.2970
[2023-09-01 23:37:06,471::train::INFO] [train] Iter 03578 | loss 2.3563 | loss(rot) 1.9345 | loss(pos) 0.3379 | loss(seq) 0.0839 | grad 6.7640 | lr 0.0010 | time_forward 4.0640 | time_backward 6.0400
[2023-09-01 23:37:09,210::train::INFO] [train] Iter 03579 | loss 1.3465 | loss(rot) 0.5724 | loss(pos) 0.1856 | loss(seq) 0.5885 | grad 4.5635 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4950
[2023-09-01 23:37:19,065::train::INFO] [train] Iter 03580 | loss 2.0067 | loss(rot) 0.9768 | loss(pos) 0.5828 | loss(seq) 0.4471 | grad 6.8083 | lr 0.0010 | time_forward 3.9880 | time_backward 5.8640
[2023-09-01 23:37:27,018::train::INFO] [train] Iter 03581 | loss 1.4976 | loss(rot) 0.6574 | loss(pos) 0.5547 | loss(seq) 0.2855 | grad 6.5188 | lr 0.0010 | time_forward 3.3930 | time_backward 4.5560
[2023-09-01 23:37:29,753::train::INFO] [train] Iter 03582 | loss 2.1058 | loss(rot) 1.7272 | loss(pos) 0.2340 | loss(seq) 0.1445 | grad 5.9543 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4910
[2023-09-01 23:37:39,811::train::INFO] [train] Iter 03583 | loss 1.7048 | loss(rot) 0.7835 | loss(pos) 0.5773 | loss(seq) 0.3440 | grad 4.7188 | lr 0.0010 | time_forward 4.2590 | time_backward 5.7950
[2023-09-01 23:37:42,499::train::INFO] [train] Iter 03584 | loss 3.4183 | loss(rot) 2.9885 | loss(pos) 0.2547 | loss(seq) 0.1752 | grad 5.6702 | lr 0.0010 | time_forward 1.2870 | time_backward 1.3870
[2023-09-01 23:37:49,045::train::INFO] [train] Iter 03585 | loss 1.3350 | loss(rot) 0.0397 | loss(pos) 1.2891 | loss(seq) 0.0062 | grad 4.3925 | lr 0.0010 | time_forward 2.6780 | time_backward 3.8640
[2023-09-01 23:37:57,498::train::INFO] [train] Iter 03586 | loss 1.5232 | loss(rot) 0.4019 | loss(pos) 0.8808 | loss(seq) 0.2405 | grad 5.3475 | lr 0.0010 | time_forward 3.5270 | time_backward 4.9220
[2023-09-01 23:38:07,482::train::INFO] [train] Iter 03587 | loss 1.0464 | loss(rot) 0.4803 | loss(pos) 0.3750 | loss(seq) 0.1911 | grad 2.6426 | lr 0.0010 | time_forward 4.1910 | time_backward 5.7890
[2023-09-01 23:38:09,726::train::INFO] [train] Iter 03588 | loss 1.3830 | loss(rot) 0.6523 | loss(pos) 0.2931 | loss(seq) 0.4376 | grad 2.7580 | lr 0.0010 | time_forward 1.0360 | time_backward 1.2030
[2023-09-01 23:38:17,790::train::INFO] [train] Iter 03589 | loss 2.8380 | loss(rot) 1.4479 | loss(pos) 0.9264 | loss(seq) 0.4637 | grad 5.8929 | lr 0.0010 | time_forward 3.3380 | time_backward 4.7220
[2023-09-01 23:38:27,672::train::INFO] [train] Iter 03590 | loss 3.7478 | loss(rot) 3.2395 | loss(pos) 0.5081 | loss(seq) 0.0001 | grad 6.9032 | lr 0.0010 | time_forward 4.1110 | time_backward 5.7670
[2023-09-01 23:38:37,679::train::INFO] [train] Iter 03591 | loss 1.8712 | loss(rot) 1.4283 | loss(pos) 0.1764 | loss(seq) 0.2664 | grad 3.8936 | lr 0.0010 | time_forward 4.2360 | time_backward 5.7670