text
stringlengths 56
1.16k
|
---|
[2023-09-01 23:52:07,281::train::INFO] [train] Iter 03692 | loss 2.5579 | loss(rot) 0.0324 | loss(pos) 2.5219 | loss(seq) 0.0036 | grad 6.8483 | lr 0.0010 | time_forward 1.3720 | time_backward 1.6110 |
[2023-09-01 23:52:17,398::train::INFO] [train] Iter 03693 | loss 2.0460 | loss(rot) 1.2547 | loss(pos) 0.3471 | loss(seq) 0.4442 | grad 4.7956 | lr 0.0010 | time_forward 4.1130 | time_backward 6.0000 |
[2023-09-01 23:52:20,052::train::INFO] [train] Iter 03694 | loss 1.9408 | loss(rot) 1.2137 | loss(pos) 0.1507 | loss(seq) 0.5764 | grad 4.6073 | lr 0.0010 | time_forward 1.2700 | time_backward 1.3820 |
[2023-09-01 23:52:30,050::train::INFO] [train] Iter 03695 | loss 3.2111 | loss(rot) 2.4696 | loss(pos) 0.2132 | loss(seq) 0.5283 | grad 2.7450 | lr 0.0010 | time_forward 3.9680 | time_backward 5.9880 |
[2023-09-01 23:52:32,429::train::INFO] [train] Iter 03696 | loss 2.8146 | loss(rot) 2.6448 | loss(pos) 0.1694 | loss(seq) 0.0004 | grad 4.4966 | lr 0.0010 | time_forward 1.1500 | time_backward 1.2270 |
[2023-09-01 23:52:35,145::train::INFO] [train] Iter 03697 | loss 1.1536 | loss(rot) 0.1008 | loss(pos) 0.5810 | loss(seq) 0.4718 | grad 4.7083 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4120 |
[2023-09-01 23:52:42,531::train::INFO] [train] Iter 03698 | loss 2.3978 | loss(rot) 2.2616 | loss(pos) 0.1361 | loss(seq) 0.0000 | grad 4.1868 | lr 0.0010 | time_forward 3.1310 | time_backward 4.2520 |
[2023-09-01 23:52:51,134::train::INFO] [train] Iter 03699 | loss 1.5192 | loss(rot) 0.3260 | loss(pos) 0.6422 | loss(seq) 0.5511 | grad 4.1175 | lr 0.0010 | time_forward 3.5990 | time_backward 5.0010 |
[2023-09-01 23:52:59,562::train::INFO] [train] Iter 03700 | loss 3.5140 | loss(rot) 2.7037 | loss(pos) 0.4105 | loss(seq) 0.3999 | grad 4.7042 | lr 0.0010 | time_forward 3.4970 | time_backward 4.9270 |
[2023-09-01 23:53:08,229::train::INFO] [train] Iter 03701 | loss 2.6154 | loss(rot) 2.4181 | loss(pos) 0.1571 | loss(seq) 0.0403 | grad 4.8620 | lr 0.0010 | time_forward 3.7320 | time_backward 4.9310 |
[2023-09-01 23:53:10,830::train::INFO] [train] Iter 03702 | loss 2.1958 | loss(rot) 2.0117 | loss(pos) 0.0840 | loss(seq) 0.1001 | grad 3.7254 | lr 0.0010 | time_forward 1.2130 | time_backward 1.3850 |
[2023-09-01 23:53:19,966::train::INFO] [train] Iter 03703 | loss 2.4868 | loss(rot) 2.3517 | loss(pos) 0.1344 | loss(seq) 0.0006 | grad 4.3795 | lr 0.0010 | time_forward 3.8660 | time_backward 5.2670 |
[2023-09-01 23:53:30,109::train::INFO] [train] Iter 03704 | loss 2.2751 | loss(rot) 1.6326 | loss(pos) 0.2870 | loss(seq) 0.3554 | grad 3.5269 | lr 0.0010 | time_forward 4.2390 | time_backward 5.9010 |
[2023-09-01 23:53:37,748::train::INFO] [train] Iter 03705 | loss 2.2690 | loss(rot) 1.9679 | loss(pos) 0.0671 | loss(seq) 0.2341 | grad 3.0388 | lr 0.0010 | time_forward 3.1690 | time_backward 4.4670 |
[2023-09-01 23:53:48,996::train::INFO] [train] Iter 03706 | loss 1.8844 | loss(rot) 1.5725 | loss(pos) 0.1592 | loss(seq) 0.1528 | grad 4.8232 | lr 0.0010 | time_forward 4.1780 | time_backward 7.0670 |
[2023-09-01 23:53:52,261::train::INFO] [train] Iter 03707 | loss 2.5202 | loss(rot) 2.3808 | loss(pos) 0.1387 | loss(seq) 0.0007 | grad 3.6816 | lr 0.0010 | time_forward 1.4700 | time_backward 1.7790 |
[2023-09-01 23:54:03,859::train::INFO] [train] Iter 03708 | loss 2.0498 | loss(rot) 1.3560 | loss(pos) 0.3045 | loss(seq) 0.3893 | grad 3.5040 | lr 0.0010 | time_forward 4.7620 | time_backward 6.8310 |
[2023-09-01 23:54:11,787::train::INFO] [train] Iter 03709 | loss 2.8311 | loss(rot) 1.9711 | loss(pos) 0.2788 | loss(seq) 0.5812 | grad 4.4165 | lr 0.0010 | time_forward 3.3410 | time_backward 4.5850 |
[2023-09-01 23:54:20,332::train::INFO] [train] Iter 03710 | loss 2.4847 | loss(rot) 1.6565 | loss(pos) 0.3268 | loss(seq) 0.5014 | grad 5.6485 | lr 0.0010 | time_forward 3.6950 | time_backward 4.8450 |
[2023-09-01 23:54:28,970::train::INFO] [train] Iter 03711 | loss 1.8692 | loss(rot) 1.2398 | loss(pos) 0.2297 | loss(seq) 0.3997 | grad 5.8111 | lr 0.0010 | time_forward 3.7640 | time_backward 4.8700 |
[2023-09-01 23:54:39,278::train::INFO] [train] Iter 03712 | loss 1.1877 | loss(rot) 0.4825 | loss(pos) 0.3888 | loss(seq) 0.3165 | grad 2.8635 | lr 0.0010 | time_forward 4.1620 | time_backward 6.1420 |
[2023-09-01 23:54:49,528::train::INFO] [train] Iter 03713 | loss 2.3857 | loss(rot) 0.1034 | loss(pos) 2.2732 | loss(seq) 0.0091 | grad 7.2916 | lr 0.0010 | time_forward 4.0930 | time_backward 6.1530 |
[2023-09-01 23:54:58,589::train::INFO] [train] Iter 03714 | loss 2.0849 | loss(rot) 1.8162 | loss(pos) 0.2643 | loss(seq) 0.0044 | grad 5.2233 | lr 0.0010 | time_forward 3.7710 | time_backward 5.2760 |
[2023-09-01 23:55:01,339::train::INFO] [train] Iter 03715 | loss 2.1700 | loss(rot) 0.9473 | loss(pos) 0.6261 | loss(seq) 0.5966 | grad 4.1172 | lr 0.0010 | time_forward 1.2290 | time_backward 1.5170 |
[2023-09-01 23:55:04,112::train::INFO] [train] Iter 03716 | loss 2.2234 | loss(rot) 1.8206 | loss(pos) 0.3815 | loss(seq) 0.0213 | grad 6.7744 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4340 |
[2023-09-01 23:55:12,249::train::INFO] [train] Iter 03717 | loss 1.4545 | loss(rot) 0.1675 | loss(pos) 1.2813 | loss(seq) 0.0057 | grad 4.9365 | lr 0.0010 | time_forward 3.4740 | time_backward 4.6590 |
[2023-09-01 23:55:21,494::train::INFO] [train] Iter 03718 | loss 1.9838 | loss(rot) 0.7354 | loss(pos) 0.8992 | loss(seq) 0.3492 | grad 3.9565 | lr 0.0010 | time_forward 3.9510 | time_backward 5.2910 |
[2023-09-01 23:55:30,407::train::INFO] [train] Iter 03719 | loss 1.1616 | loss(rot) 0.2691 | loss(pos) 0.6469 | loss(seq) 0.2456 | grad 5.8145 | lr 0.0010 | time_forward 3.7840 | time_backward 5.1270 |
[2023-09-01 23:55:39,028::train::INFO] [train] Iter 03720 | loss 2.2430 | loss(rot) 1.1212 | loss(pos) 0.6740 | loss(seq) 0.4478 | grad 5.1770 | lr 0.0010 | time_forward 3.6820 | time_backward 4.9350 |
[2023-09-01 23:55:47,787::train::INFO] [train] Iter 03721 | loss 3.2098 | loss(rot) 2.6393 | loss(pos) 0.5294 | loss(seq) 0.0411 | grad 7.6108 | lr 0.0010 | time_forward 3.6400 | time_backward 5.1140 |
[2023-09-01 23:55:57,069::train::INFO] [train] Iter 03722 | loss 2.8915 | loss(rot) 2.6339 | loss(pos) 0.2553 | loss(seq) 0.0023 | grad 5.0038 | lr 0.0010 | time_forward 3.9100 | time_backward 5.3700 |
[2023-09-01 23:56:04,917::train::INFO] [train] Iter 03723 | loss 1.8958 | loss(rot) 1.1480 | loss(pos) 0.2550 | loss(seq) 0.4927 | grad 4.2880 | lr 0.0010 | time_forward 3.5060 | time_backward 4.3390 |
[2023-09-01 23:56:12,584::train::INFO] [train] Iter 03724 | loss 3.0247 | loss(rot) 2.2391 | loss(pos) 0.3532 | loss(seq) 0.4324 | grad 4.3167 | lr 0.0010 | time_forward 3.2690 | time_backward 4.3940 |
[2023-09-01 23:56:22,689::train::INFO] [train] Iter 03725 | loss 2.8234 | loss(rot) 2.0797 | loss(pos) 0.2639 | loss(seq) 0.4798 | grad 3.7168 | lr 0.0010 | time_forward 4.1200 | time_backward 5.9810 |
[2023-09-01 23:56:32,769::train::INFO] [train] Iter 03726 | loss 2.6863 | loss(rot) 1.8668 | loss(pos) 0.2445 | loss(seq) 0.5750 | grad 3.1019 | lr 0.0010 | time_forward 4.0620 | time_backward 6.0150 |
[2023-09-01 23:56:43,071::train::INFO] [train] Iter 03727 | loss 2.1631 | loss(rot) 1.3737 | loss(pos) 0.2449 | loss(seq) 0.5445 | grad 4.2463 | lr 0.0010 | time_forward 4.2600 | time_backward 6.0390 |
[2023-09-01 23:56:45,741::train::INFO] [train] Iter 03728 | loss 1.0175 | loss(rot) 0.3918 | loss(pos) 0.5637 | loss(seq) 0.0620 | grad 5.5777 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4130 |
[2023-09-01 23:56:55,945::train::INFO] [train] Iter 03729 | loss 2.9337 | loss(rot) 2.5082 | loss(pos) 0.2405 | loss(seq) 0.1850 | grad 2.8305 | lr 0.0010 | time_forward 4.0960 | time_backward 6.1030 |
[2023-09-01 23:56:59,520::train::INFO] [train] Iter 03730 | loss 3.2798 | loss(rot) 2.7557 | loss(pos) 0.3033 | loss(seq) 0.2208 | grad 2.3366 | lr 0.0010 | time_forward 1.6420 | time_backward 1.9310 |
[2023-09-01 23:57:07,551::train::INFO] [train] Iter 03731 | loss 2.8035 | loss(rot) 2.6827 | loss(pos) 0.1105 | loss(seq) 0.0103 | grad 3.5036 | lr 0.0010 | time_forward 3.3230 | time_backward 4.6940 |
[2023-09-01 23:57:09,977::train::INFO] [train] Iter 03732 | loss 2.7362 | loss(rot) 2.2940 | loss(pos) 0.1898 | loss(seq) 0.2524 | grad 5.4127 | lr 0.0010 | time_forward 1.1500 | time_backward 1.2700 |
[2023-09-01 23:57:12,639::train::INFO] [train] Iter 03733 | loss 2.2383 | loss(rot) 2.1170 | loss(pos) 0.1084 | loss(seq) 0.0129 | grad 3.5074 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4220 |
[2023-09-01 23:57:21,848::train::INFO] [train] Iter 03734 | loss 2.6370 | loss(rot) 2.3912 | loss(pos) 0.2193 | loss(seq) 0.0266 | grad 2.4092 | lr 0.0010 | time_forward 3.9420 | time_backward 5.2620 |
[2023-09-01 23:57:29,943::train::INFO] [train] Iter 03735 | loss 2.6201 | loss(rot) 0.0207 | loss(pos) 2.5987 | loss(seq) 0.0007 | grad 7.2367 | lr 0.0010 | time_forward 3.3630 | time_backward 4.7280 |
[2023-09-01 23:57:33,593::train::INFO] [train] Iter 03736 | loss 3.1275 | loss(rot) 2.7770 | loss(pos) 0.1618 | loss(seq) 0.1887 | grad 2.4197 | lr 0.0010 | time_forward 1.5990 | time_backward 2.0470 |
[2023-09-01 23:57:36,343::train::INFO] [train] Iter 03737 | loss 2.9681 | loss(rot) 1.6839 | loss(pos) 0.8020 | loss(seq) 0.4822 | grad 7.5320 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4210 |
[2023-09-01 23:57:46,713::train::INFO] [train] Iter 03738 | loss 1.9508 | loss(rot) 0.0252 | loss(pos) 1.9244 | loss(seq) 0.0013 | grad 5.5288 | lr 0.0010 | time_forward 4.2410 | time_backward 6.1260 |
[2023-09-01 23:57:55,158::train::INFO] [train] Iter 03739 | loss 1.2406 | loss(rot) 1.1506 | loss(pos) 0.0796 | loss(seq) 0.0104 | grad 2.9574 | lr 0.0010 | time_forward 3.4980 | time_backward 4.9430 |
[2023-09-01 23:58:05,628::train::INFO] [train] Iter 03740 | loss 1.3038 | loss(rot) 0.0207 | loss(pos) 1.2825 | loss(seq) 0.0007 | grad 6.8352 | lr 0.0010 | time_forward 4.4640 | time_backward 6.0020 |
[2023-09-01 23:58:15,044::train::INFO] [train] Iter 03741 | loss 2.4741 | loss(rot) 1.3351 | loss(pos) 0.5694 | loss(seq) 0.5696 | grad 3.5843 | lr 0.0010 | time_forward 3.9610 | time_backward 5.4520 |
[2023-09-01 23:58:23,925::train::INFO] [train] Iter 03742 | loss 3.1567 | loss(rot) 2.9430 | loss(pos) 0.1715 | loss(seq) 0.0422 | grad 3.7751 | lr 0.0010 | time_forward 3.7810 | time_backward 5.0960 |
[2023-09-01 23:58:32,327::train::INFO] [train] Iter 03743 | loss 2.8608 | loss(rot) 2.7039 | loss(pos) 0.1333 | loss(seq) 0.0236 | grad 3.9486 | lr 0.0010 | time_forward 3.5480 | time_backward 4.8510 |
[2023-09-01 23:58:38,793::train::INFO] [train] Iter 03744 | loss 2.6285 | loss(rot) 2.3763 | loss(pos) 0.1732 | loss(seq) 0.0790 | grad 5.6525 | lr 0.0010 | time_forward 2.6940 | time_backward 3.7680 |
[2023-09-01 23:58:47,465::train::INFO] [train] Iter 03745 | loss 2.7225 | loss(rot) 1.3938 | loss(pos) 0.7618 | loss(seq) 0.5669 | grad 5.0427 | lr 0.0010 | time_forward 3.6880 | time_backward 4.9810 |
[2023-09-01 23:58:55,886::train::INFO] [train] Iter 03746 | loss 2.1944 | loss(rot) 1.6627 | loss(pos) 0.1899 | loss(seq) 0.3418 | grad 6.1204 | lr 0.0010 | time_forward 3.5960 | time_backward 4.8210 |
[2023-09-01 23:59:05,736::train::INFO] [train] Iter 03747 | loss 2.8988 | loss(rot) 1.8945 | loss(pos) 0.4542 | loss(seq) 0.5502 | grad 3.9546 | lr 0.0010 | time_forward 4.0410 | time_backward 5.8060 |
[2023-09-01 23:59:15,518::train::INFO] [train] Iter 03748 | loss 2.3126 | loss(rot) 1.9602 | loss(pos) 0.2175 | loss(seq) 0.1349 | grad 3.1723 | lr 0.0010 | time_forward 4.0950 | time_backward 5.6840 |
[2023-09-01 23:59:23,938::train::INFO] [train] Iter 03749 | loss 2.0990 | loss(rot) 1.9430 | loss(pos) 0.1529 | loss(seq) 0.0031 | grad 4.5745 | lr 0.0010 | time_forward 3.6030 | time_backward 4.8140 |
[2023-09-01 23:59:27,009::train::INFO] [train] Iter 03750 | loss 1.9661 | loss(rot) 1.1270 | loss(pos) 0.3592 | loss(seq) 0.4799 | grad 3.7890 | lr 0.0010 | time_forward 1.3930 | time_backward 1.6740 |
[2023-09-01 23:59:36,239::train::INFO] [train] Iter 03751 | loss 2.4028 | loss(rot) 0.0058 | loss(pos) 2.3969 | loss(seq) 0.0000 | grad 9.6989 | lr 0.0010 | time_forward 3.8390 | time_backward 5.3870 |
[2023-09-01 23:59:46,404::train::INFO] [train] Iter 03752 | loss 1.0093 | loss(rot) 0.4944 | loss(pos) 0.3216 | loss(seq) 0.1932 | grad 2.7894 | lr 0.0010 | time_forward 4.2210 | time_backward 5.9400 |
[2023-09-01 23:59:56,243::train::INFO] [train] Iter 03753 | loss 2.3840 | loss(rot) 2.1062 | loss(pos) 0.1855 | loss(seq) 0.0923 | grad 4.9472 | lr 0.0010 | time_forward 3.9920 | time_backward 5.8440 |
[2023-09-02 00:00:04,665::train::INFO] [train] Iter 03754 | loss 2.9692 | loss(rot) 2.7346 | loss(pos) 0.2326 | loss(seq) 0.0020 | grad 2.8511 | lr 0.0010 | time_forward 3.5180 | time_backward 4.9000 |
[2023-09-02 00:00:12,869::train::INFO] [train] Iter 03755 | loss 4.5268 | loss(rot) 0.0747 | loss(pos) 4.4522 | loss(seq) 0.0000 | grad 6.0461 | lr 0.0010 | time_forward 3.3690 | time_backward 4.8310 |
[2023-09-02 00:00:20,701::train::INFO] [train] Iter 03756 | loss 3.2636 | loss(rot) 2.6659 | loss(pos) 0.1698 | loss(seq) 0.4279 | grad 4.0019 | lr 0.0010 | time_forward 3.2730 | time_backward 4.5550 |
[2023-09-02 00:00:23,720::train::INFO] [train] Iter 03757 | loss 2.1188 | loss(rot) 1.0654 | loss(pos) 0.3509 | loss(seq) 0.7025 | grad 3.5482 | lr 0.0010 | time_forward 1.3860 | time_backward 1.6310 |
[2023-09-02 00:00:31,716::train::INFO] [train] Iter 03758 | loss 4.3129 | loss(rot) 0.0457 | loss(pos) 4.2647 | loss(seq) 0.0025 | grad 5.8268 | lr 0.0010 | time_forward 3.3350 | time_backward 4.6570 |
[2023-09-02 00:00:40,395::train::INFO] [train] Iter 03759 | loss 2.4583 | loss(rot) 2.1925 | loss(pos) 0.2286 | loss(seq) 0.0372 | grad 4.2684 | lr 0.0010 | time_forward 3.6860 | time_backward 4.9910 |
[2023-09-02 00:00:50,607::train::INFO] [train] Iter 03760 | loss 1.8586 | loss(rot) 0.9573 | loss(pos) 0.5187 | loss(seq) 0.3826 | grad 4.4766 | lr 0.0010 | time_forward 4.0920 | time_backward 6.1160 |
[2023-09-02 00:00:53,307::train::INFO] [train] Iter 03761 | loss 2.1732 | loss(rot) 0.8768 | loss(pos) 0.7490 | loss(seq) 0.5474 | grad 6.5623 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4140 |
[2023-09-02 00:01:00,895::train::INFO] [train] Iter 03762 | loss 2.2161 | loss(rot) 1.9556 | loss(pos) 0.1705 | loss(seq) 0.0900 | grad 4.0035 | lr 0.0010 | time_forward 3.2560 | time_backward 4.3280 |
[2023-09-02 00:01:08,985::train::INFO] [train] Iter 03763 | loss 1.9341 | loss(rot) 0.3638 | loss(pos) 1.3354 | loss(seq) 0.2349 | grad 4.6555 | lr 0.0010 | time_forward 3.4250 | time_backward 4.6620 |
[2023-09-02 00:01:19,030::train::INFO] [train] Iter 03764 | loss 1.6550 | loss(rot) 0.1780 | loss(pos) 1.3134 | loss(seq) 0.1636 | grad 5.5452 | lr 0.0010 | time_forward 4.2090 | time_backward 5.8320 |
[2023-09-02 00:01:29,010::train::INFO] [train] Iter 03765 | loss 1.3974 | loss(rot) 0.3250 | loss(pos) 0.8288 | loss(seq) 0.2436 | grad 5.1541 | lr 0.0010 | time_forward 3.9740 | time_backward 6.0020 |
[2023-09-02 00:01:37,032::train::INFO] [train] Iter 03766 | loss 2.5708 | loss(rot) 1.7429 | loss(pos) 0.3376 | loss(seq) 0.4903 | grad 4.8439 | lr 0.0010 | time_forward 3.3430 | time_backward 4.6650 |
[2023-09-02 00:01:39,667::train::INFO] [train] Iter 03767 | loss 2.1655 | loss(rot) 1.7169 | loss(pos) 0.2371 | loss(seq) 0.2116 | grad 5.8172 | lr 0.0010 | time_forward 1.2430 | time_backward 1.3880 |
[2023-09-02 00:01:41,893::train::INFO] [train] Iter 03768 | loss 2.9047 | loss(rot) 2.3884 | loss(pos) 0.2923 | loss(seq) 0.2240 | grad 4.3181 | lr 0.0010 | time_forward 1.0180 | time_backward 1.1700 |
[2023-09-02 00:01:50,823::train::INFO] [train] Iter 03769 | loss 3.0727 | loss(rot) 2.2951 | loss(pos) 0.4207 | loss(seq) 0.3569 | grad 8.2465 | lr 0.0010 | time_forward 3.8430 | time_backward 5.0850 |
[2023-09-02 00:02:00,627::train::INFO] [train] Iter 03770 | loss 2.3169 | loss(rot) 1.4823 | loss(pos) 0.3575 | loss(seq) 0.4770 | grad 6.6037 | lr 0.0010 | time_forward 3.9870 | time_backward 5.8130 |
[2023-09-02 00:02:09,158::train::INFO] [train] Iter 03771 | loss 2.8400 | loss(rot) 2.1586 | loss(pos) 0.4055 | loss(seq) 0.2759 | grad 7.6470 | lr 0.0010 | time_forward 3.4960 | time_backward 5.0310 |
[2023-09-02 00:02:19,256::train::INFO] [train] Iter 03772 | loss 3.1371 | loss(rot) 2.2125 | loss(pos) 0.4043 | loss(seq) 0.5203 | grad 5.4231 | lr 0.0010 | time_forward 4.0420 | time_backward 6.0530 |
[2023-09-02 00:02:29,366::train::INFO] [train] Iter 03773 | loss 2.2817 | loss(rot) 1.3818 | loss(pos) 0.4827 | loss(seq) 0.4172 | grad 4.5160 | lr 0.0010 | time_forward 4.1160 | time_backward 5.9900 |
[2023-09-02 00:02:37,641::train::INFO] [train] Iter 03774 | loss 1.4439 | loss(rot) 0.6943 | loss(pos) 0.3021 | loss(seq) 0.4476 | grad 3.0728 | lr 0.0010 | time_forward 3.4450 | time_backward 4.8160 |
[2023-09-02 00:02:45,782::train::INFO] [train] Iter 03775 | loss 1.2943 | loss(rot) 0.4137 | loss(pos) 0.6631 | loss(seq) 0.2174 | grad 3.9182 | lr 0.0010 | time_forward 3.4010 | time_backward 4.7360 |
[2023-09-02 00:02:48,400::train::INFO] [train] Iter 03776 | loss 1.3059 | loss(rot) 0.6378 | loss(pos) 0.4225 | loss(seq) 0.2456 | grad 3.7102 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3840 |
[2023-09-02 00:02:51,194::train::INFO] [train] Iter 03777 | loss 2.1444 | loss(rot) 1.9896 | loss(pos) 0.1476 | loss(seq) 0.0073 | grad 5.1378 | lr 0.0010 | time_forward 1.3450 | time_backward 1.4450 |
[2023-09-02 00:03:01,281::train::INFO] [train] Iter 03778 | loss 1.7776 | loss(rot) 0.8769 | loss(pos) 0.5419 | loss(seq) 0.3588 | grad 3.0690 | lr 0.0010 | time_forward 4.1730 | time_backward 5.9120 |
[2023-09-02 00:03:04,058::train::INFO] [train] Iter 03779 | loss 2.1616 | loss(rot) 1.4688 | loss(pos) 0.2170 | loss(seq) 0.4758 | grad 4.1476 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4560 |
[2023-09-02 00:03:14,539::train::INFO] [train] Iter 03780 | loss 2.5793 | loss(rot) 1.6018 | loss(pos) 0.5375 | loss(seq) 0.4400 | grad 4.7955 | lr 0.0010 | time_forward 4.2520 | time_backward 6.2250 |
[2023-09-02 00:03:17,245::train::INFO] [train] Iter 03781 | loss 1.8333 | loss(rot) 1.4333 | loss(pos) 0.1845 | loss(seq) 0.2155 | grad 3.3902 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4420 |
[2023-09-02 00:03:27,641::train::INFO] [train] Iter 03782 | loss 1.7091 | loss(rot) 0.9691 | loss(pos) 0.3499 | loss(seq) 0.3902 | grad 2.3688 | lr 0.0010 | time_forward 4.3590 | time_backward 6.0320 |
[2023-09-02 00:03:37,944::train::INFO] [train] Iter 03783 | loss 1.5275 | loss(rot) 0.6572 | loss(pos) 0.6499 | loss(seq) 0.2204 | grad 4.1396 | lr 0.0010 | time_forward 4.1120 | time_backward 6.1870 |
[2023-09-02 00:03:48,427::train::INFO] [train] Iter 03784 | loss 1.8573 | loss(rot) 0.7432 | loss(pos) 0.7905 | loss(seq) 0.3236 | grad 4.1928 | lr 0.0010 | time_forward 4.3160 | time_backward 6.1510 |
[2023-09-02 00:03:50,871::train::INFO] [train] Iter 03785 | loss 0.7250 | loss(rot) 0.2064 | loss(pos) 0.4746 | loss(seq) 0.0440 | grad 3.6599 | lr 0.0010 | time_forward 1.1620 | time_backward 1.2790 |
[2023-09-02 00:03:58,689::train::INFO] [train] Iter 03786 | loss 3.0987 | loss(rot) 2.4541 | loss(pos) 0.2419 | loss(seq) 0.4027 | grad 5.7064 | lr 0.0010 | time_forward 3.4500 | time_backward 4.3340 |
[2023-09-02 00:04:01,404::train::INFO] [train] Iter 03787 | loss 2.5579 | loss(rot) 2.3842 | loss(pos) 0.1736 | loss(seq) 0.0001 | grad 4.7904 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4220 |
[2023-09-02 00:04:11,571::train::INFO] [train] Iter 03788 | loss 2.8922 | loss(rot) 2.6262 | loss(pos) 0.2656 | loss(seq) 0.0003 | grad 4.1740 | lr 0.0010 | time_forward 4.2150 | time_backward 5.9490 |
[2023-09-02 00:04:20,313::train::INFO] [train] Iter 03789 | loss 2.7599 | loss(rot) 2.6186 | loss(pos) 0.1184 | loss(seq) 0.0229 | grad 5.5279 | lr 0.0010 | time_forward 3.7610 | time_backward 4.9790 |
[2023-09-02 00:04:23,026::train::INFO] [train] Iter 03790 | loss 1.9138 | loss(rot) 1.0791 | loss(pos) 0.2749 | loss(seq) 0.5599 | grad 4.7600 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4670 |
[2023-09-02 00:04:33,077::train::INFO] [train] Iter 03791 | loss 1.4584 | loss(rot) 0.2676 | loss(pos) 1.1531 | loss(seq) 0.0378 | grad 5.1806 | lr 0.0010 | time_forward 4.1020 | time_backward 5.9450 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.