text
stringlengths
56
1.16k
[2023-09-02 00:04:42,997::train::INFO] [train] Iter 03792 | loss 2.6477 | loss(rot) 2.0395 | loss(pos) 0.4639 | loss(seq) 0.1443 | grad 5.7574 | lr 0.0010 | time_forward 4.0310 | time_backward 5.8850
[2023-09-02 00:04:45,767::train::INFO] [train] Iter 03793 | loss 2.4046 | loss(rot) 2.2681 | loss(pos) 0.1153 | loss(seq) 0.0212 | grad 3.9491 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4510
[2023-09-02 00:04:53,497::train::INFO] [train] Iter 03794 | loss 3.6675 | loss(rot) 2.7442 | loss(pos) 0.5219 | loss(seq) 0.4014 | grad 5.6527 | lr 0.0010 | time_forward 3.3340 | time_backward 4.3930
[2023-09-02 00:05:02,338::train::INFO] [train] Iter 03795 | loss 2.3474 | loss(rot) 1.4698 | loss(pos) 0.2475 | loss(seq) 0.6301 | grad 4.2088 | lr 0.0010 | time_forward 3.7570 | time_backward 5.0810
[2023-09-02 00:05:09,497::train::INFO] [train] Iter 03796 | loss 1.8882 | loss(rot) 1.0477 | loss(pos) 0.3434 | loss(seq) 0.4972 | grad 5.2139 | lr 0.0010 | time_forward 3.0620 | time_backward 4.0930
[2023-09-02 00:05:17,028::train::INFO] [train] Iter 03797 | loss 2.6363 | loss(rot) 2.2816 | loss(pos) 0.3476 | loss(seq) 0.0071 | grad 4.1265 | lr 0.0010 | time_forward 3.2140 | time_backward 4.3140
[2023-09-02 00:05:27,525::train::INFO] [train] Iter 03798 | loss 2.1346 | loss(rot) 0.9909 | loss(pos) 0.5354 | loss(seq) 0.6083 | grad 3.5087 | lr 0.0010 | time_forward 4.3550 | time_backward 6.1390
[2023-09-02 00:05:34,977::train::INFO] [train] Iter 03799 | loss 3.5599 | loss(rot) 0.0460 | loss(pos) 3.5134 | loss(seq) 0.0005 | grad 12.6031 | lr 0.0010 | time_forward 3.1250 | time_backward 4.3230
[2023-09-02 00:05:45,026::train::INFO] [train] Iter 03800 | loss 1.0821 | loss(rot) 0.3983 | loss(pos) 0.3365 | loss(seq) 0.3473 | grad 2.3585 | lr 0.0010 | time_forward 4.0420 | time_backward 6.0040
[2023-09-02 00:05:53,099::train::INFO] [train] Iter 03801 | loss 1.6568 | loss(rot) 0.8020 | loss(pos) 0.3966 | loss(seq) 0.4582 | grad 3.5752 | lr 0.0010 | time_forward 3.3210 | time_backward 4.7480
[2023-09-02 00:05:55,816::train::INFO] [train] Iter 03802 | loss 1.4444 | loss(rot) 0.1544 | loss(pos) 1.2457 | loss(seq) 0.0444 | grad 5.7295 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4190
[2023-09-02 00:06:04,554::train::INFO] [train] Iter 03803 | loss 1.0850 | loss(rot) 0.2034 | loss(pos) 0.5157 | loss(seq) 0.3659 | grad 5.1689 | lr 0.0010 | time_forward 3.6680 | time_backward 5.0660
[2023-09-02 00:06:13,006::train::INFO] [train] Iter 03804 | loss 1.8105 | loss(rot) 0.5799 | loss(pos) 0.7225 | loss(seq) 0.5082 | grad 7.1231 | lr 0.0010 | time_forward 3.4410 | time_backward 5.0030
[2023-09-02 00:06:23,368::train::INFO] [train] Iter 03805 | loss 3.2703 | loss(rot) 2.6659 | loss(pos) 0.2868 | loss(seq) 0.3177 | grad 4.4654 | lr 0.0010 | time_forward 4.2430 | time_backward 6.1150
[2023-09-02 00:06:31,425::train::INFO] [train] Iter 03806 | loss 2.7840 | loss(rot) 2.1201 | loss(pos) 0.2385 | loss(seq) 0.4253 | grad 5.4854 | lr 0.0010 | time_forward 3.3170 | time_backward 4.7340
[2023-09-02 00:06:40,790::train::INFO] [train] Iter 03807 | loss 1.7558 | loss(rot) 0.9882 | loss(pos) 0.2729 | loss(seq) 0.4947 | grad 5.5453 | lr 0.0010 | time_forward 3.9410 | time_backward 5.4200
[2023-09-02 00:06:50,072::train::INFO] [train] Iter 03808 | loss 2.2697 | loss(rot) 1.0918 | loss(pos) 0.6464 | loss(seq) 0.5315 | grad 5.2426 | lr 0.0010 | time_forward 3.8940 | time_backward 5.3840
[2023-09-02 00:06:58,188::train::INFO] [train] Iter 03809 | loss 2.0481 | loss(rot) 1.7181 | loss(pos) 0.3042 | loss(seq) 0.0259 | grad 4.5549 | lr 0.0010 | time_forward 3.5090 | time_backward 4.6040
[2023-09-02 00:07:08,279::train::INFO] [train] Iter 03810 | loss 2.3736 | loss(rot) 2.1460 | loss(pos) 0.2139 | loss(seq) 0.0138 | grad 4.6216 | lr 0.0010 | time_forward 4.2160 | time_backward 5.8710
[2023-09-02 00:07:16,332::train::INFO] [train] Iter 03811 | loss 3.0987 | loss(rot) 2.9415 | loss(pos) 0.1421 | loss(seq) 0.0151 | grad 4.0445 | lr 0.0010 | time_forward 3.3410 | time_backward 4.7080
[2023-09-02 00:07:24,645::train::INFO] [train] Iter 03812 | loss 2.5269 | loss(rot) 2.3124 | loss(pos) 0.2112 | loss(seq) 0.0032 | grad 3.5250 | lr 0.0010 | time_forward 3.4360 | time_backward 4.8740
[2023-09-02 00:07:33,335::train::INFO] [train] Iter 03813 | loss 1.4480 | loss(rot) 0.5457 | loss(pos) 0.5972 | loss(seq) 0.3051 | grad 2.8194 | lr 0.0010 | time_forward 3.5750 | time_backward 5.1120
[2023-09-02 00:07:43,456::train::INFO] [train] Iter 03814 | loss 2.7469 | loss(rot) 2.6362 | loss(pos) 0.1106 | loss(seq) 0.0000 | grad 2.7468 | lr 0.0010 | time_forward 4.0280 | time_backward 6.0890
[2023-09-02 00:07:51,966::train::INFO] [train] Iter 03815 | loss 2.7336 | loss(rot) 2.5492 | loss(pos) 0.1261 | loss(seq) 0.0584 | grad 3.8264 | lr 0.0010 | time_forward 3.5100 | time_backward 4.9960
[2023-09-02 00:07:54,675::train::INFO] [train] Iter 03816 | loss 1.1855 | loss(rot) 0.2725 | loss(pos) 0.6773 | loss(seq) 0.2357 | grad 5.2048 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4510
[2023-09-02 00:08:03,955::train::INFO] [train] Iter 03817 | loss 1.5436 | loss(rot) 0.4691 | loss(pos) 1.0476 | loss(seq) 0.0269 | grad 4.8734 | lr 0.0010 | time_forward 3.9050 | time_backward 5.3710
[2023-09-02 00:08:14,245::train::INFO] [train] Iter 03818 | loss 1.7149 | loss(rot) 0.6520 | loss(pos) 0.6384 | loss(seq) 0.4245 | grad 3.9590 | lr 0.0010 | time_forward 4.4570 | time_backward 5.8300
[2023-09-02 00:08:23,143::train::INFO] [train] Iter 03819 | loss 2.4700 | loss(rot) 2.1570 | loss(pos) 0.3123 | loss(seq) 0.0007 | grad 6.2675 | lr 0.0010 | time_forward 3.7950 | time_backward 5.1000
[2023-09-02 00:08:33,338::train::INFO] [train] Iter 03820 | loss 3.1783 | loss(rot) 2.4232 | loss(pos) 0.6053 | loss(seq) 0.1498 | grad 5.3154 | lr 0.0010 | time_forward 4.2090 | time_backward 5.9820
[2023-09-02 00:08:43,329::train::INFO] [train] Iter 03821 | loss 2.4915 | loss(rot) 1.4521 | loss(pos) 0.3001 | loss(seq) 0.7393 | grad 4.4899 | lr 0.0010 | time_forward 4.0450 | time_backward 5.9440
[2023-09-02 00:08:52,205::train::INFO] [train] Iter 03822 | loss 1.5816 | loss(rot) 0.7470 | loss(pos) 0.5054 | loss(seq) 0.3292 | grad 4.0539 | lr 0.0010 | time_forward 3.7040 | time_backward 5.1570
[2023-09-02 00:09:00,698::train::INFO] [train] Iter 03823 | loss 1.3183 | loss(rot) 0.7186 | loss(pos) 0.2832 | loss(seq) 0.3166 | grad 6.3138 | lr 0.0010 | time_forward 3.6160 | time_backward 4.8730
[2023-09-02 00:09:03,341::train::INFO] [train] Iter 03824 | loss 1.8641 | loss(rot) 0.8377 | loss(pos) 0.5428 | loss(seq) 0.4836 | grad 6.6820 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4090
[2023-09-02 00:09:13,830::train::INFO] [train] Iter 03825 | loss 1.0957 | loss(rot) 0.2162 | loss(pos) 0.6682 | loss(seq) 0.2113 | grad 4.6887 | lr 0.0010 | time_forward 4.2490 | time_backward 6.1940
[2023-09-02 00:09:23,915::train::INFO] [train] Iter 03826 | loss 2.7986 | loss(rot) 2.4824 | loss(pos) 0.3156 | loss(seq) 0.0007 | grad 4.3793 | lr 0.0010 | time_forward 4.1520 | time_backward 5.9290
[2023-09-02 00:09:32,699::train::INFO] [train] Iter 03827 | loss 1.9664 | loss(rot) 1.6038 | loss(pos) 0.1821 | loss(seq) 0.1805 | grad 5.5708 | lr 0.0010 | time_forward 3.7310 | time_backward 5.0510
[2023-09-02 00:09:35,143::train::INFO] [train] Iter 03828 | loss 1.3403 | loss(rot) 0.0415 | loss(pos) 1.2948 | loss(seq) 0.0040 | grad 5.8809 | lr 0.0010 | time_forward 1.1720 | time_backward 1.2680
[2023-09-02 00:09:37,934::train::INFO] [train] Iter 03829 | loss 2.6018 | loss(rot) 2.2612 | loss(pos) 0.2226 | loss(seq) 0.1181 | grad 4.4015 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4450
[2023-09-02 00:09:41,302::train::INFO] [train] Iter 03830 | loss 2.6506 | loss(rot) 2.2175 | loss(pos) 0.2330 | loss(seq) 0.2001 | grad 4.5148 | lr 0.0010 | time_forward 1.5260 | time_backward 1.8370
[2023-09-02 00:09:44,018::train::INFO] [train] Iter 03831 | loss 2.0910 | loss(rot) 0.3727 | loss(pos) 1.4959 | loss(seq) 0.2225 | grad 6.7070 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4620
[2023-09-02 00:09:53,203::train::INFO] [train] Iter 03832 | loss 1.0869 | loss(rot) 0.1208 | loss(pos) 0.9454 | loss(seq) 0.0207 | grad 4.2465 | lr 0.0010 | time_forward 3.8570 | time_backward 5.3240
[2023-09-02 00:10:00,052::train::INFO] [train] Iter 03833 | loss 1.4507 | loss(rot) 0.2376 | loss(pos) 1.1827 | loss(seq) 0.0304 | grad 5.8355 | lr 0.0010 | time_forward 2.8650 | time_backward 3.9800
[2023-09-02 00:10:10,601::train::INFO] [train] Iter 03834 | loss 1.7425 | loss(rot) 0.0830 | loss(pos) 1.6529 | loss(seq) 0.0066 | grad 5.2381 | lr 0.0010 | time_forward 4.3630 | time_backward 6.1830
[2023-09-02 00:10:13,227::train::INFO] [train] Iter 03835 | loss 1.7768 | loss(rot) 0.8843 | loss(pos) 0.5443 | loss(seq) 0.3482 | grad 5.4847 | lr 0.0010 | time_forward 1.2140 | time_backward 1.4080
[2023-09-02 00:10:21,300::train::INFO] [train] Iter 03836 | loss 3.4218 | loss(rot) 3.1077 | loss(pos) 0.3046 | loss(seq) 0.0095 | grad 6.7001 | lr 0.0010 | time_forward 3.3830 | time_backward 4.6860
[2023-09-02 00:10:28,838::train::INFO] [train] Iter 03837 | loss 1.7156 | loss(rot) 0.3216 | loss(pos) 1.0954 | loss(seq) 0.2986 | grad 6.6989 | lr 0.0010 | time_forward 3.1700 | time_backward 4.3650
[2023-09-02 00:10:38,979::train::INFO] [train] Iter 03838 | loss 2.3889 | loss(rot) 1.4911 | loss(pos) 0.3541 | loss(seq) 0.5437 | grad 5.0143 | lr 0.0010 | time_forward 4.1250 | time_backward 6.0120
[2023-09-02 00:10:47,098::train::INFO] [train] Iter 03839 | loss 2.4160 | loss(rot) 0.6502 | loss(pos) 1.7490 | loss(seq) 0.0168 | grad 6.8637 | lr 0.0010 | time_forward 3.3450 | time_backward 4.7710
[2023-09-02 00:10:55,444::train::INFO] [train] Iter 03840 | loss 2.6717 | loss(rot) 2.2600 | loss(pos) 0.1949 | loss(seq) 0.2167 | grad 4.5124 | lr 0.0010 | time_forward 3.4400 | time_backward 4.9010
[2023-09-02 00:11:02,885::train::INFO] [train] Iter 03841 | loss 3.2083 | loss(rot) 0.0422 | loss(pos) 3.1630 | loss(seq) 0.0031 | grad 9.0720 | lr 0.0010 | time_forward 3.1160 | time_backward 4.3210
[2023-09-02 00:11:05,896::train::INFO] [train] Iter 03842 | loss 1.0464 | loss(rot) 0.4508 | loss(pos) 0.5136 | loss(seq) 0.0820 | grad 3.9204 | lr 0.0010 | time_forward 1.3850 | time_backward 1.6220
[2023-09-02 00:11:14,028::train::INFO] [train] Iter 03843 | loss 2.8151 | loss(rot) 2.3915 | loss(pos) 0.2175 | loss(seq) 0.2061 | grad 4.2553 | lr 0.0010 | time_forward 3.4360 | time_backward 4.6930
[2023-09-02 00:11:16,693::train::INFO] [train] Iter 03844 | loss 1.0004 | loss(rot) 0.0713 | loss(pos) 0.9198 | loss(seq) 0.0093 | grad 6.9635 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4090
[2023-09-02 00:11:19,455::train::INFO] [train] Iter 03845 | loss 0.8263 | loss(rot) 0.1154 | loss(pos) 0.6884 | loss(seq) 0.0225 | grad 3.8234 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4310
[2023-09-02 00:11:22,172::train::INFO] [train] Iter 03846 | loss 2.1621 | loss(rot) 1.5266 | loss(pos) 0.2377 | loss(seq) 0.3979 | grad 5.7217 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4110
[2023-09-02 00:11:24,899::train::INFO] [train] Iter 03847 | loss 2.3445 | loss(rot) 2.1543 | loss(pos) 0.1903 | loss(seq) 0.0000 | grad 4.7678 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4160
[2023-09-02 00:11:32,886::train::INFO] [train] Iter 03848 | loss 1.7224 | loss(rot) 0.8302 | loss(pos) 0.6057 | loss(seq) 0.2864 | grad 5.5475 | lr 0.0010 | time_forward 3.3210 | time_backward 4.6620
[2023-09-02 00:11:41,383::train::INFO] [train] Iter 03849 | loss 2.5193 | loss(rot) 1.7874 | loss(pos) 0.3547 | loss(seq) 0.3773 | grad 4.9758 | lr 0.0010 | time_forward 3.5720 | time_backward 4.9220
[2023-09-02 00:11:49,716::train::INFO] [train] Iter 03850 | loss 1.0102 | loss(rot) 0.1262 | loss(pos) 0.8586 | loss(seq) 0.0255 | grad 8.0280 | lr 0.0010 | time_forward 3.6270 | time_backward 4.7040
[2023-09-02 00:11:58,096::train::INFO] [train] Iter 03851 | loss 1.5103 | loss(rot) 0.8241 | loss(pos) 0.2880 | loss(seq) 0.3982 | grad 4.8630 | lr 0.0010 | time_forward 3.4680 | time_backward 4.9090
[2023-09-02 00:12:08,147::train::INFO] [train] Iter 03852 | loss 2.9493 | loss(rot) 2.4327 | loss(pos) 0.3955 | loss(seq) 0.1211 | grad 6.2503 | lr 0.0010 | time_forward 4.1450 | time_backward 5.9030
[2023-09-02 00:12:15,854::train::INFO] [train] Iter 03853 | loss 2.0759 | loss(rot) 1.6267 | loss(pos) 0.2018 | loss(seq) 0.2474 | grad 4.9449 | lr 0.0010 | time_forward 3.2140 | time_backward 4.4890
[2023-09-02 00:12:18,702::train::INFO] [train] Iter 03854 | loss 2.5417 | loss(rot) 2.3786 | loss(pos) 0.1625 | loss(seq) 0.0006 | grad 4.2143 | lr 0.0010 | time_forward 1.3980 | time_backward 1.4470
[2023-09-02 00:12:27,301::train::INFO] [train] Iter 03855 | loss 1.4764 | loss(rot) 0.8055 | loss(pos) 0.3431 | loss(seq) 0.3279 | grad 5.5430 | lr 0.0010 | time_forward 3.5820 | time_backward 5.0110
[2023-09-02 00:12:29,949::train::INFO] [train] Iter 03856 | loss 1.6380 | loss(rot) 0.1828 | loss(pos) 1.0357 | loss(seq) 0.4196 | grad 9.4481 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4120
[2023-09-02 00:12:40,006::train::INFO] [train] Iter 03857 | loss 2.1842 | loss(rot) 1.8327 | loss(pos) 0.1912 | loss(seq) 0.1604 | grad 3.1876 | lr 0.0010 | time_forward 3.9610 | time_backward 6.0670
[2023-09-02 00:12:48,590::train::INFO] [train] Iter 03858 | loss 2.1733 | loss(rot) 1.2294 | loss(pos) 0.4381 | loss(seq) 0.5057 | grad 4.5679 | lr 0.0010 | time_forward 3.7500 | time_backward 4.8310
[2023-09-02 00:12:59,160::train::INFO] [train] Iter 03859 | loss 2.3427 | loss(rot) 1.9842 | loss(pos) 0.1240 | loss(seq) 0.2345 | grad 6.1009 | lr 0.0010 | time_forward 4.4630 | time_backward 6.1040
[2023-09-02 00:13:08,889::train::INFO] [train] Iter 03860 | loss 2.1762 | loss(rot) 1.4346 | loss(pos) 0.3373 | loss(seq) 0.4043 | grad 3.7992 | lr 0.0010 | time_forward 4.0820 | time_backward 5.6430
[2023-09-02 00:13:18,530::train::INFO] [train] Iter 03861 | loss 1.6268 | loss(rot) 1.4267 | loss(pos) 0.1891 | loss(seq) 0.0111 | grad 5.5574 | lr 0.0010 | time_forward 3.9900 | time_backward 5.6470
[2023-09-02 00:13:27,643::train::INFO] [train] Iter 03862 | loss 2.4995 | loss(rot) 1.6243 | loss(pos) 0.2308 | loss(seq) 0.6444 | grad 3.3865 | lr 0.0010 | time_forward 3.7880 | time_backward 5.3220
[2023-09-02 00:13:36,100::train::INFO] [train] Iter 03863 | loss 2.1768 | loss(rot) 0.9856 | loss(pos) 0.7971 | loss(seq) 0.3941 | grad 5.0017 | lr 0.0010 | time_forward 3.5390 | time_backward 4.9140
[2023-09-02 00:13:46,462::train::INFO] [train] Iter 03864 | loss 3.0970 | loss(rot) 1.7790 | loss(pos) 0.7262 | loss(seq) 0.5918 | grad 5.7991 | lr 0.0010 | time_forward 4.3230 | time_backward 6.0360
[2023-09-02 00:13:49,145::train::INFO] [train] Iter 03865 | loss 2.7703 | loss(rot) 2.5205 | loss(pos) 0.1948 | loss(seq) 0.0549 | grad 5.2723 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4030
[2023-09-02 00:13:51,855::train::INFO] [train] Iter 03866 | loss 1.7831 | loss(rot) 0.6731 | loss(pos) 0.9566 | loss(seq) 0.1534 | grad 6.0746 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4610
[2023-09-02 00:14:01,250::train::INFO] [train] Iter 03867 | loss 2.0737 | loss(rot) 1.3507 | loss(pos) 0.1505 | loss(seq) 0.5724 | grad 5.9852 | lr 0.0010 | time_forward 4.0770 | time_backward 5.3140
[2023-09-02 00:14:08,851::train::INFO] [train] Iter 03868 | loss 2.3928 | loss(rot) 2.1634 | loss(pos) 0.2287 | loss(seq) 0.0006 | grad 4.9378 | lr 0.0010 | time_forward 3.3040 | time_backward 4.2940
[2023-09-02 00:14:11,565::train::INFO] [train] Iter 03869 | loss 2.1500 | loss(rot) 2.0293 | loss(pos) 0.1141 | loss(seq) 0.0066 | grad 3.6467 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4380
[2023-09-02 00:14:14,322::train::INFO] [train] Iter 03870 | loss 2.1187 | loss(rot) 1.0173 | loss(pos) 0.4440 | loss(seq) 0.6573 | grad 5.3237 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4810
[2023-09-02 00:14:23,163::train::INFO] [train] Iter 03871 | loss 1.2518 | loss(rot) 0.6807 | loss(pos) 0.3465 | loss(seq) 0.2246 | grad 4.0397 | lr 0.0010 | time_forward 3.7030 | time_backward 5.1340
[2023-09-02 00:14:31,991::train::INFO] [train] Iter 03872 | loss 1.6380 | loss(rot) 0.7387 | loss(pos) 0.3684 | loss(seq) 0.5308 | grad 3.9193 | lr 0.0010 | time_forward 3.6820 | time_backward 5.1440
[2023-09-02 00:14:42,112::train::INFO] [train] Iter 03873 | loss 2.0947 | loss(rot) 1.6029 | loss(pos) 0.1149 | loss(seq) 0.3769 | grad 5.5511 | lr 0.0010 | time_forward 4.1540 | time_backward 5.9640
[2023-09-02 00:14:44,779::train::INFO] [train] Iter 03874 | loss 1.9940 | loss(rot) 1.8861 | loss(pos) 0.1079 | loss(seq) 0.0000 | grad 5.0926 | lr 0.0010 | time_forward 1.2610 | time_backward 1.3900
[2023-09-02 00:14:54,845::train::INFO] [train] Iter 03875 | loss 3.4439 | loss(rot) 0.0471 | loss(pos) 3.3961 | loss(seq) 0.0008 | grad 7.4156 | lr 0.0010 | time_forward 4.2730 | time_backward 5.7900
[2023-09-02 00:14:57,513::train::INFO] [train] Iter 03876 | loss 2.3411 | loss(rot) 1.4973 | loss(pos) 0.3079 | loss(seq) 0.5358 | grad 4.5050 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4060
[2023-09-02 00:14:59,714::train::INFO] [train] Iter 03877 | loss 2.2952 | loss(rot) 2.0623 | loss(pos) 0.2237 | loss(seq) 0.0092 | grad 4.8264 | lr 0.0010 | time_forward 1.0420 | time_backward 1.1540
[2023-09-02 00:15:02,338::train::INFO] [train] Iter 03878 | loss 2.8650 | loss(rot) 2.4803 | loss(pos) 0.2659 | loss(seq) 0.1188 | grad 4.2424 | lr 0.0010 | time_forward 1.2150 | time_backward 1.4050
[2023-09-02 00:15:12,268::train::INFO] [train] Iter 03879 | loss 2.1212 | loss(rot) 1.9240 | loss(pos) 0.1776 | loss(seq) 0.0196 | grad 5.0194 | lr 0.0010 | time_forward 4.0670 | time_backward 5.8590
[2023-09-02 00:15:21,519::train::INFO] [train] Iter 03880 | loss 2.2632 | loss(rot) 0.6754 | loss(pos) 1.4832 | loss(seq) 0.1046 | grad 6.2490 | lr 0.0010 | time_forward 3.9380 | time_backward 5.3100
[2023-09-02 00:15:24,175::train::INFO] [train] Iter 03881 | loss 2.9411 | loss(rot) 2.4720 | loss(pos) 0.3364 | loss(seq) 0.1327 | grad 9.1260 | lr 0.0010 | time_forward 1.2570 | time_backward 1.3950
[2023-09-02 00:15:33,024::train::INFO] [train] Iter 03882 | loss 2.8872 | loss(rot) 2.2657 | loss(pos) 0.1555 | loss(seq) 0.4660 | grad 4.9178 | lr 0.0010 | time_forward 3.6520 | time_backward 5.1940
[2023-09-02 00:15:43,334::train::INFO] [train] Iter 03883 | loss 2.2097 | loss(rot) 0.8199 | loss(pos) 1.1226 | loss(seq) 0.2673 | grad 7.2577 | lr 0.0010 | time_forward 4.2180 | time_backward 6.0880
[2023-09-02 00:15:51,729::train::INFO] [train] Iter 03884 | loss 2.2497 | loss(rot) 1.2810 | loss(pos) 0.3359 | loss(seq) 0.6328 | grad 4.2394 | lr 0.0010 | time_forward 3.4860 | time_backward 4.9050
[2023-09-02 00:16:01,754::train::INFO] [train] Iter 03885 | loss 2.3822 | loss(rot) 1.4414 | loss(pos) 0.4736 | loss(seq) 0.4672 | grad 7.0645 | lr 0.0010 | time_forward 3.9940 | time_backward 6.0270
[2023-09-02 00:16:10,175::train::INFO] [train] Iter 03886 | loss 0.8749 | loss(rot) 0.2328 | loss(pos) 0.2550 | loss(seq) 0.3870 | grad 5.2729 | lr 0.0010 | time_forward 3.5120 | time_backward 4.9050
[2023-09-02 00:16:20,033::train::INFO] [train] Iter 03887 | loss 1.7955 | loss(rot) 0.6520 | loss(pos) 0.9049 | loss(seq) 0.2386 | grad 4.9441 | lr 0.0010 | time_forward 3.9830 | time_backward 5.8710
[2023-09-02 00:16:30,098::train::INFO] [train] Iter 03888 | loss 3.1327 | loss(rot) 2.3032 | loss(pos) 0.6880 | loss(seq) 0.1414 | grad 8.6053 | lr 0.0010 | time_forward 4.0090 | time_backward 6.0360
[2023-09-02 00:16:38,792::train::INFO] [train] Iter 03889 | loss 3.0297 | loss(rot) 2.5647 | loss(pos) 0.4607 | loss(seq) 0.0044 | grad 9.1554 | lr 0.0010 | time_forward 3.6200 | time_backward 5.0710
[2023-09-02 00:16:48,236::train::INFO] [train] Iter 03890 | loss 2.8719 | loss(rot) 2.6336 | loss(pos) 0.1783 | loss(seq) 0.0599 | grad 4.9261 | lr 0.0010 | time_forward 4.0960 | time_backward 5.3440
[2023-09-02 00:16:55,829::train::INFO] [train] Iter 03891 | loss 1.7966 | loss(rot) 1.2463 | loss(pos) 0.2638 | loss(seq) 0.2865 | grad 5.5151 | lr 0.0010 | time_forward 3.1890 | time_backward 4.4010