text
stringlengths
56
1.16k
[2023-09-02 00:29:20,278::train::INFO] [train] Iter 03992 | loss 1.0103 | loss(rot) 0.2977 | loss(pos) 0.6611 | loss(seq) 0.0515 | grad 4.2715 | lr 0.0010 | time_forward 3.3470 | time_backward 4.8230
[2023-09-02 00:29:30,586::train::INFO] [train] Iter 03993 | loss 4.2745 | loss(rot) 0.1963 | loss(pos) 4.0772 | loss(seq) 0.0009 | grad 7.0290 | lr 0.0010 | time_forward 4.2860 | time_backward 6.0190
[2023-09-02 00:29:33,328::train::INFO] [train] Iter 03994 | loss 2.2410 | loss(rot) 2.1225 | loss(pos) 0.1095 | loss(seq) 0.0090 | grad 4.7208 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4410
[2023-09-02 00:29:36,842::train::INFO] [train] Iter 03995 | loss 2.6765 | loss(rot) 1.9370 | loss(pos) 0.1775 | loss(seq) 0.5620 | grad 2.7379 | lr 0.0010 | time_forward 1.5620 | time_backward 1.9470
[2023-09-02 00:29:39,667::train::INFO] [train] Iter 03996 | loss 0.8902 | loss(rot) 0.1168 | loss(pos) 0.7245 | loss(seq) 0.0488 | grad 5.2489 | lr 0.0010 | time_forward 1.3920 | time_backward 1.4290
[2023-09-02 00:29:49,154::train::INFO] [train] Iter 03997 | loss 1.7587 | loss(rot) 1.0408 | loss(pos) 0.5216 | loss(seq) 0.1963 | grad 4.4225 | lr 0.0010 | time_forward 4.2390 | time_backward 5.2450
[2023-09-02 00:29:57,851::train::INFO] [train] Iter 03998 | loss 2.4803 | loss(rot) 0.0360 | loss(pos) 2.4437 | loss(seq) 0.0006 | grad 5.0034 | lr 0.0010 | time_forward 3.7190 | time_backward 4.9750
[2023-09-02 00:30:05,151::train::INFO] [train] Iter 03999 | loss 3.1383 | loss(rot) 3.0480 | loss(pos) 0.0752 | loss(seq) 0.0152 | grad 4.4096 | lr 0.0010 | time_forward 3.1340 | time_backward 4.1620
[2023-09-02 00:30:15,661::train::INFO] [train] Iter 04000 | loss 2.0181 | loss(rot) 1.2134 | loss(pos) 0.3611 | loss(seq) 0.4436 | grad 3.6312 | lr 0.0010 | time_forward 4.3620 | time_backward 6.1440
[2023-09-02 00:30:49,186::train::INFO] [val] Iter 04000 | loss 2.3142 | loss(rot) 1.5105 | loss(pos) 0.5987 | loss(seq) 0.2050
[2023-09-02 00:30:58,183::train::INFO] [train] Iter 04001 | loss 2.0720 | loss(rot) 1.4083 | loss(pos) 0.3745 | loss(seq) 0.2892 | grad 4.4534 | lr 0.0010 | time_forward 3.3060 | time_backward 4.5410
[2023-09-02 00:31:08,333::train::INFO] [train] Iter 04002 | loss 2.2306 | loss(rot) 0.0094 | loss(pos) 2.2205 | loss(seq) 0.0006 | grad 5.3838 | lr 0.0010 | time_forward 4.3560 | time_backward 5.7900
[2023-09-02 00:31:17,523::train::INFO] [train] Iter 04003 | loss 1.0964 | loss(rot) 0.2577 | loss(pos) 0.7819 | loss(seq) 0.0568 | grad 6.3760 | lr 0.0010 | time_forward 3.9810 | time_backward 5.2060
[2023-09-02 00:31:20,215::train::INFO] [train] Iter 04004 | loss 1.3833 | loss(rot) 0.2863 | loss(pos) 1.0878 | loss(seq) 0.0092 | grad 5.1945 | lr 0.0010 | time_forward 1.3920 | time_backward 1.2960
[2023-09-02 00:31:29,579::train::INFO] [train] Iter 04005 | loss 3.1516 | loss(rot) 2.7481 | loss(pos) 0.1989 | loss(seq) 0.2046 | grad 2.6025 | lr 0.0010 | time_forward 3.9660 | time_backward 5.3660
[2023-09-02 00:31:32,283::train::INFO] [train] Iter 04006 | loss 0.5378 | loss(rot) 0.1518 | loss(pos) 0.3544 | loss(seq) 0.0316 | grad 3.5367 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4310
[2023-09-02 00:31:41,911::train::INFO] [train] Iter 04007 | loss 2.5396 | loss(rot) 1.6757 | loss(pos) 0.3386 | loss(seq) 0.5253 | grad 4.2614 | lr 0.0010 | time_forward 4.1400 | time_backward 5.4840
[2023-09-02 00:31:50,879::train::INFO] [train] Iter 04008 | loss 1.5322 | loss(rot) 1.1326 | loss(pos) 0.1526 | loss(seq) 0.2469 | grad 4.0530 | lr 0.0010 | time_forward 3.7480 | time_backward 5.2170
[2023-09-02 00:31:53,662::train::INFO] [train] Iter 04009 | loss 2.4570 | loss(rot) 2.3437 | loss(pos) 0.1127 | loss(seq) 0.0006 | grad 3.8137 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4890
[2023-09-02 00:32:03,773::train::INFO] [train] Iter 04010 | loss 1.0784 | loss(rot) 0.1461 | loss(pos) 0.7704 | loss(seq) 0.1619 | grad 4.9106 | lr 0.0010 | time_forward 4.3030 | time_backward 5.8040
[2023-09-02 00:32:06,501::train::INFO] [train] Iter 04011 | loss 2.0881 | loss(rot) 0.0181 | loss(pos) 2.0690 | loss(seq) 0.0011 | grad 7.7334 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4620
[2023-09-02 00:32:14,594::train::INFO] [train] Iter 04012 | loss 1.2120 | loss(rot) 0.6199 | loss(pos) 0.4964 | loss(seq) 0.0957 | grad 3.3982 | lr 0.0010 | time_forward 3.4340 | time_backward 4.6560
[2023-09-02 00:32:22,969::train::INFO] [train] Iter 04013 | loss 2.7121 | loss(rot) 2.5029 | loss(pos) 0.2073 | loss(seq) 0.0019 | grad 5.3668 | lr 0.0010 | time_forward 3.5220 | time_backward 4.8500
[2023-09-02 00:32:33,396::train::INFO] [train] Iter 04014 | loss 1.4125 | loss(rot) 0.3900 | loss(pos) 0.7934 | loss(seq) 0.2291 | grad 5.8182 | lr 0.0010 | time_forward 4.0970 | time_backward 6.3260
[2023-09-02 00:32:42,170::train::INFO] [train] Iter 04015 | loss 0.8653 | loss(rot) 0.0327 | loss(pos) 0.8277 | loss(seq) 0.0049 | grad 4.4532 | lr 0.0010 | time_forward 3.8160 | time_backward 4.9550
[2023-09-02 00:32:44,438::train::INFO] [train] Iter 04016 | loss 1.1977 | loss(rot) 0.3961 | loss(pos) 0.7933 | loss(seq) 0.0084 | grad 4.3524 | lr 0.0010 | time_forward 1.0790 | time_backward 1.1870
[2023-09-02 00:32:53,741::train::INFO] [train] Iter 04017 | loss 0.7982 | loss(rot) 0.1821 | loss(pos) 0.5717 | loss(seq) 0.0444 | grad 5.1237 | lr 0.0010 | time_forward 3.9500 | time_backward 5.3490
[2023-09-02 00:33:03,785::train::INFO] [train] Iter 04018 | loss 2.8241 | loss(rot) 1.8815 | loss(pos) 0.4100 | loss(seq) 0.5325 | grad 3.3745 | lr 0.0010 | time_forward 4.1780 | time_backward 5.8630
[2023-09-02 00:33:13,106::train::INFO] [train] Iter 04019 | loss 1.8099 | loss(rot) 0.8824 | loss(pos) 0.4476 | loss(seq) 0.4799 | grad 4.2076 | lr 0.0010 | time_forward 3.9730 | time_backward 5.3450
[2023-09-02 00:33:22,305::train::INFO] [train] Iter 04020 | loss 2.8242 | loss(rot) 2.1417 | loss(pos) 0.1948 | loss(seq) 0.4876 | grad 3.4599 | lr 0.0010 | time_forward 3.9110 | time_backward 5.2840
[2023-09-02 00:33:29,418::train::INFO] [train] Iter 04021 | loss 1.4025 | loss(rot) 0.7430 | loss(pos) 0.2863 | loss(seq) 0.3732 | grad 3.5858 | lr 0.0010 | time_forward 3.0630 | time_backward 4.0460
[2023-09-02 00:33:39,588::train::INFO] [train] Iter 04022 | loss 3.6009 | loss(rot) 0.0094 | loss(pos) 3.5915 | loss(seq) 0.0000 | grad 10.7467 | lr 0.0010 | time_forward 4.0970 | time_backward 6.0700
[2023-09-02 00:33:49,462::train::INFO] [train] Iter 04023 | loss 2.7405 | loss(rot) 2.4440 | loss(pos) 0.1712 | loss(seq) 0.1253 | grad 4.9628 | lr 0.0010 | time_forward 4.0450 | time_backward 5.8160
[2023-09-02 00:33:52,294::train::INFO] [train] Iter 04024 | loss 2.0593 | loss(rot) 1.9451 | loss(pos) 0.0868 | loss(seq) 0.0275 | grad 3.2871 | lr 0.0010 | time_forward 1.3740 | time_backward 1.4550
[2023-09-02 00:33:55,691::train::INFO] [train] Iter 04025 | loss 2.1374 | loss(rot) 1.1948 | loss(pos) 0.3510 | loss(seq) 0.5916 | grad 3.1436 | lr 0.0010 | time_forward 1.5010 | time_backward 1.8920
[2023-09-02 00:34:05,808::train::INFO] [train] Iter 04026 | loss 1.9082 | loss(rot) 1.0698 | loss(pos) 0.3605 | loss(seq) 0.4779 | grad 5.0645 | lr 0.0010 | time_forward 4.2070 | time_backward 5.9060
[2023-09-02 00:34:14,695::train::INFO] [train] Iter 04027 | loss 1.6874 | loss(rot) 1.0641 | loss(pos) 0.2452 | loss(seq) 0.3782 | grad 2.8387 | lr 0.0010 | time_forward 3.7970 | time_backward 5.0870
[2023-09-02 00:34:23,995::train::INFO] [train] Iter 04028 | loss 1.5475 | loss(rot) 0.8870 | loss(pos) 0.3686 | loss(seq) 0.2919 | grad 4.2563 | lr 0.0010 | time_forward 3.8980 | time_backward 5.3990
[2023-09-02 00:34:34,099::train::INFO] [train] Iter 04029 | loss 2.8623 | loss(rot) 2.6209 | loss(pos) 0.2415 | loss(seq) 0.0000 | grad 4.6407 | lr 0.0010 | time_forward 3.9610 | time_backward 6.1380
[2023-09-02 00:34:42,747::train::INFO] [train] Iter 04030 | loss 2.3637 | loss(rot) 2.0733 | loss(pos) 0.2457 | loss(seq) 0.0447 | grad 4.7776 | lr 0.0010 | time_forward 3.6100 | time_backward 5.0230
[2023-09-02 00:34:51,317::train::INFO] [train] Iter 04031 | loss 1.7957 | loss(rot) 1.4923 | loss(pos) 0.2880 | loss(seq) 0.0154 | grad 4.6236 | lr 0.0010 | time_forward 3.5900 | time_backward 4.9760
[2023-09-02 00:35:05,134::train::INFO] [train] Iter 04032 | loss 1.9665 | loss(rot) 1.1438 | loss(pos) 0.7138 | loss(seq) 0.1089 | grad 4.8939 | lr 0.0010 | time_forward 3.4840 | time_backward 10.3310
[2023-09-02 00:35:08,654::train::INFO] [train] Iter 04033 | loss 2.5332 | loss(rot) 2.1971 | loss(pos) 0.2188 | loss(seq) 0.1172 | grad 3.4931 | lr 0.0010 | time_forward 1.5720 | time_backward 1.9440
[2023-09-02 00:35:28,119::train::INFO] [train] Iter 04034 | loss 1.7450 | loss(rot) 1.0253 | loss(pos) 0.2080 | loss(seq) 0.5116 | grad 4.1799 | lr 0.0010 | time_forward 12.9820 | time_backward 6.4800
[2023-09-02 00:35:38,304::train::INFO] [train] Iter 04035 | loss 2.4926 | loss(rot) 1.9469 | loss(pos) 0.1532 | loss(seq) 0.3925 | grad 3.0352 | lr 0.0010 | time_forward 4.0550 | time_backward 6.1270
[2023-09-02 00:35:45,985::train::INFO] [train] Iter 04036 | loss 1.3653 | loss(rot) 0.0933 | loss(pos) 0.8916 | loss(seq) 0.3804 | grad 4.6710 | lr 0.0010 | time_forward 3.2420 | time_backward 4.4340
[2023-09-02 00:36:04,699::train::INFO] [train] Iter 04037 | loss 1.5652 | loss(rot) 0.2988 | loss(pos) 0.8796 | loss(seq) 0.3868 | grad 5.7304 | lr 0.0010 | time_forward 12.4970 | time_backward 6.2140
[2023-09-02 00:36:07,009::train::INFO] [train] Iter 04038 | loss 1.2400 | loss(rot) 0.5230 | loss(pos) 0.4129 | loss(seq) 0.3041 | grad 3.1618 | lr 0.0010 | time_forward 1.0260 | time_backward 1.2800
[2023-09-02 00:36:18,342::train::INFO] [train] Iter 04039 | loss 2.6626 | loss(rot) 2.3385 | loss(pos) 0.2107 | loss(seq) 0.1134 | grad 4.2220 | lr 0.0010 | time_forward 4.5060 | time_backward 6.8240
[2023-09-02 00:36:20,749::train::INFO] [train] Iter 04040 | loss 2.4183 | loss(rot) 1.7094 | loss(pos) 0.2568 | loss(seq) 0.4521 | grad 4.9059 | lr 0.0010 | time_forward 1.1030 | time_backward 1.3000
[2023-09-02 00:36:23,559::train::INFO] [train] Iter 04041 | loss 3.0125 | loss(rot) 2.0453 | loss(pos) 0.4343 | loss(seq) 0.5329 | grad 3.7865 | lr 0.0010 | time_forward 1.2760 | time_backward 1.5290
[2023-09-02 00:36:26,451::train::INFO] [train] Iter 04042 | loss 1.5227 | loss(rot) 0.6290 | loss(pos) 0.5673 | loss(seq) 0.3264 | grad 7.5899 | lr 0.0010 | time_forward 1.3660 | time_backward 1.5230
[2023-09-02 00:36:36,806::train::INFO] [train] Iter 04043 | loss 2.9475 | loss(rot) 2.7281 | loss(pos) 0.2162 | loss(seq) 0.0032 | grad 4.2798 | lr 0.0010 | time_forward 4.2190 | time_backward 6.1310
[2023-09-02 00:36:39,697::train::INFO] [train] Iter 04044 | loss 1.9956 | loss(rot) 1.5523 | loss(pos) 0.1010 | loss(seq) 0.3424 | grad 3.5147 | lr 0.0010 | time_forward 1.2970 | time_backward 1.5910
[2023-09-02 00:36:50,682::train::INFO] [train] Iter 04045 | loss 2.1433 | loss(rot) 0.7982 | loss(pos) 0.7967 | loss(seq) 0.5484 | grad 3.7643 | lr 0.0010 | time_forward 4.4730 | time_backward 6.4670
[2023-09-02 00:36:53,438::train::INFO] [train] Iter 04046 | loss 1.1253 | loss(rot) 0.2977 | loss(pos) 0.4930 | loss(seq) 0.3346 | grad 5.0361 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4940
[2023-09-02 00:37:02,837::train::INFO] [train] Iter 04047 | loss 0.8784 | loss(rot) 0.2015 | loss(pos) 0.6389 | loss(seq) 0.0380 | grad 4.1171 | lr 0.0010 | time_forward 3.9750 | time_backward 5.3930
[2023-09-02 00:37:10,580::train::INFO] [train] Iter 04048 | loss 2.9735 | loss(rot) 0.0734 | loss(pos) 2.9001 | loss(seq) 0.0000 | grad 8.1478 | lr 0.0010 | time_forward 3.2060 | time_backward 4.5340
[2023-09-02 00:37:18,757::train::INFO] [train] Iter 04049 | loss 2.0473 | loss(rot) 1.3505 | loss(pos) 0.2724 | loss(seq) 0.4243 | grad 3.8925 | lr 0.0010 | time_forward 3.3710 | time_backward 4.8020
[2023-09-02 00:37:29,384::train::INFO] [train] Iter 04050 | loss 2.4833 | loss(rot) 1.2329 | loss(pos) 0.7167 | loss(seq) 0.5337 | grad 5.5875 | lr 0.0010 | time_forward 4.1810 | time_backward 6.4440
[2023-09-02 00:37:32,290::train::INFO] [train] Iter 04051 | loss 2.6938 | loss(rot) 1.8479 | loss(pos) 0.3081 | loss(seq) 0.5378 | grad 6.0806 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5890
[2023-09-02 00:37:40,350::train::INFO] [train] Iter 04052 | loss 1.2832 | loss(rot) 0.6435 | loss(pos) 0.2172 | loss(seq) 0.4225 | grad 3.5073 | lr 0.0010 | time_forward 3.2870 | time_backward 4.7700
[2023-09-02 00:37:49,684::train::INFO] [train] Iter 04053 | loss 3.5165 | loss(rot) 2.6095 | loss(pos) 0.4821 | loss(seq) 0.4249 | grad 6.0518 | lr 0.0010 | time_forward 3.7980 | time_backward 5.5320
[2023-09-02 00:37:58,248::train::INFO] [train] Iter 04054 | loss 2.1470 | loss(rot) 1.5732 | loss(pos) 0.1687 | loss(seq) 0.4051 | grad 3.9182 | lr 0.0010 | time_forward 3.6690 | time_backward 4.8920
[2023-09-02 00:38:01,111::train::INFO] [train] Iter 04055 | loss 1.1855 | loss(rot) 0.3000 | loss(pos) 0.4689 | loss(seq) 0.4166 | grad 3.5496 | lr 0.0010 | time_forward 1.3120 | time_backward 1.5470
[2023-09-02 00:38:04,566::train::INFO] [train] Iter 04056 | loss 2.2307 | loss(rot) 1.1885 | loss(pos) 0.4918 | loss(seq) 0.5504 | grad 5.1261 | lr 0.0010 | time_forward 1.5020 | time_backward 1.9500
[2023-09-02 00:38:15,352::train::INFO] [train] Iter 04057 | loss 1.1501 | loss(rot) 0.4476 | loss(pos) 0.4621 | loss(seq) 0.2404 | grad 4.7902 | lr 0.0010 | time_forward 4.4620 | time_backward 6.3210
[2023-09-02 00:38:24,326::train::INFO] [train] Iter 04058 | loss 1.8084 | loss(rot) 1.5227 | loss(pos) 0.1462 | loss(seq) 0.1396 | grad 3.6407 | lr 0.0010 | time_forward 3.6730 | time_backward 5.2980
[2023-09-02 00:38:34,474::train::INFO] [train] Iter 04059 | loss 2.4066 | loss(rot) 1.6845 | loss(pos) 0.1993 | loss(seq) 0.5228 | grad 4.8530 | lr 0.0010 | time_forward 4.1300 | time_backward 6.0150
[2023-09-02 00:38:42,577::train::INFO] [train] Iter 04060 | loss 1.8961 | loss(rot) 1.2100 | loss(pos) 0.2771 | loss(seq) 0.4090 | grad 4.5274 | lr 0.0010 | time_forward 3.3510 | time_backward 4.7360
[2023-09-02 00:38:50,411::train::INFO] [train] Iter 04061 | loss 2.7116 | loss(rot) 1.7308 | loss(pos) 0.5236 | loss(seq) 0.4572 | grad 5.5269 | lr 0.0010 | time_forward 3.2350 | time_backward 4.5960
[2023-09-02 00:38:53,252::train::INFO] [train] Iter 04062 | loss 1.6361 | loss(rot) 0.2475 | loss(pos) 1.3371 | loss(seq) 0.0515 | grad 7.6626 | lr 0.0010 | time_forward 1.2690 | time_backward 1.5690
[2023-09-02 00:39:03,795::train::INFO] [train] Iter 04063 | loss 1.1867 | loss(rot) 0.4513 | loss(pos) 0.3999 | loss(seq) 0.3355 | grad 2.7888 | lr 0.0010 | time_forward 4.1620 | time_backward 6.3780
[2023-09-02 00:39:07,112::train::INFO] [train] Iter 04064 | loss 2.7296 | loss(rot) 2.4791 | loss(pos) 0.2493 | loss(seq) 0.0012 | grad 3.9603 | lr 0.0010 | time_forward 1.4940 | time_backward 1.8180
[2023-09-02 00:39:10,005::train::INFO] [train] Iter 04065 | loss 2.4561 | loss(rot) 1.7338 | loss(pos) 0.2282 | loss(seq) 0.4941 | grad 4.7144 | lr 0.0010 | time_forward 1.3290 | time_backward 1.5600
[2023-09-02 00:39:21,166::train::INFO] [train] Iter 04066 | loss 3.0797 | loss(rot) 2.8576 | loss(pos) 0.2117 | loss(seq) 0.0105 | grad 3.8685 | lr 0.0010 | time_forward 4.8350 | time_backward 6.3220
[2023-09-02 00:39:33,244::train::INFO] [train] Iter 04067 | loss 3.5305 | loss(rot) 0.0122 | loss(pos) 3.5176 | loss(seq) 0.0006 | grad 8.6634 | lr 0.0010 | time_forward 5.6960 | time_backward 6.3780
[2023-09-02 00:39:46,399::train::INFO] [train] Iter 04068 | loss 2.1863 | loss(rot) 1.3142 | loss(pos) 0.2590 | loss(seq) 0.6131 | grad 3.1421 | lr 0.0010 | time_forward 6.4420 | time_backward 6.7100
[2023-09-02 00:39:55,573::train::INFO] [train] Iter 04069 | loss 3.1800 | loss(rot) 2.8365 | loss(pos) 0.3311 | loss(seq) 0.0124 | grad 4.2426 | lr 0.0010 | time_forward 3.7380 | time_backward 5.4190
[2023-09-02 00:39:58,465::train::INFO] [train] Iter 04070 | loss 2.2915 | loss(rot) 1.9469 | loss(pos) 0.2304 | loss(seq) 0.1142 | grad 4.9573 | lr 0.0010 | time_forward 1.2850 | time_backward 1.6030
[2023-09-02 00:40:09,710::train::INFO] [train] Iter 04071 | loss 1.8569 | loss(rot) 0.9277 | loss(pos) 0.4736 | loss(seq) 0.4556 | grad 4.6682 | lr 0.0010 | time_forward 4.6450 | time_backward 6.5960
[2023-09-02 00:40:12,626::train::INFO] [train] Iter 04072 | loss 2.2856 | loss(rot) 1.9202 | loss(pos) 0.2283 | loss(seq) 0.1371 | grad 6.0226 | lr 0.0010 | time_forward 1.3710 | time_backward 1.5410
[2023-09-02 00:40:15,568::train::INFO] [train] Iter 04073 | loss 2.2403 | loss(rot) 1.0485 | loss(pos) 0.7400 | loss(seq) 0.4518 | grad 6.5021 | lr 0.0010 | time_forward 1.3460 | time_backward 1.5920
[2023-09-02 00:40:18,513::train::INFO] [train] Iter 04074 | loss 2.4013 | loss(rot) 1.8424 | loss(pos) 0.1893 | loss(seq) 0.3696 | grad 5.7437 | lr 0.0010 | time_forward 1.3750 | time_backward 1.5670
[2023-09-02 00:40:21,481::train::INFO] [train] Iter 04075 | loss 2.3292 | loss(rot) 0.9572 | loss(pos) 0.9406 | loss(seq) 0.4313 | grad 4.7576 | lr 0.0010 | time_forward 1.3420 | time_backward 1.5610
[2023-09-02 00:40:32,538::train::INFO] [train] Iter 04076 | loss 1.4233 | loss(rot) 0.6248 | loss(pos) 0.5279 | loss(seq) 0.2706 | grad 4.6671 | lr 0.0010 | time_forward 4.3510 | time_backward 6.6600
[2023-09-02 00:40:35,418::train::INFO] [train] Iter 04077 | loss 1.2221 | loss(rot) 0.3326 | loss(pos) 0.8521 | loss(seq) 0.0374 | grad 4.0678 | lr 0.0010 | time_forward 1.3150 | time_backward 1.5370
[2023-09-02 00:40:38,390::train::INFO] [train] Iter 04078 | loss 2.2692 | loss(rot) 1.8208 | loss(pos) 0.2288 | loss(seq) 0.2196 | grad 4.4508 | lr 0.0010 | time_forward 1.3980 | time_backward 1.5690
[2023-09-02 00:40:47,164::train::INFO] [train] Iter 04079 | loss 2.1168 | loss(rot) 1.5801 | loss(pos) 0.3118 | loss(seq) 0.2249 | grad 4.7166 | lr 0.0010 | time_forward 3.6690 | time_backward 5.1010
[2023-09-02 00:40:54,747::train::INFO] [train] Iter 04080 | loss 2.7331 | loss(rot) 2.5514 | loss(pos) 0.1817 | loss(seq) 0.0000 | grad 3.7245 | lr 0.0010 | time_forward 3.1080 | time_backward 4.4710
[2023-09-02 00:40:57,644::train::INFO] [train] Iter 04081 | loss 1.6670 | loss(rot) 0.2410 | loss(pos) 1.3574 | loss(seq) 0.0685 | grad 6.4169 | lr 0.0010 | time_forward 1.3280 | time_backward 1.5650
[2023-09-02 00:41:04,132::train::INFO] [train] Iter 04082 | loss 1.9642 | loss(rot) 1.1892 | loss(pos) 0.2523 | loss(seq) 0.5226 | grad 3.3839 | lr 0.0010 | time_forward 2.6350 | time_backward 3.8490
[2023-09-02 00:41:14,718::train::INFO] [train] Iter 04083 | loss 2.3846 | loss(rot) 1.9640 | loss(pos) 0.1457 | loss(seq) 0.2749 | grad 4.6287 | lr 0.0010 | time_forward 4.3030 | time_backward 6.2800
[2023-09-02 00:41:24,892::train::INFO] [train] Iter 04084 | loss 2.9093 | loss(rot) 2.4980 | loss(pos) 0.1971 | loss(seq) 0.2142 | grad 4.2976 | lr 0.0010 | time_forward 4.0780 | time_backward 6.0930
[2023-09-02 00:41:33,846::train::INFO] [train] Iter 04085 | loss 1.8778 | loss(rot) 1.1741 | loss(pos) 0.1945 | loss(seq) 0.5092 | grad 3.5261 | lr 0.0010 | time_forward 3.7220 | time_backward 5.2270
[2023-09-02 00:41:36,219::train::INFO] [train] Iter 04086 | loss 1.5653 | loss(rot) 0.9092 | loss(pos) 0.3545 | loss(seq) 0.3016 | grad 3.7792 | lr 0.0010 | time_forward 1.0860 | time_backward 1.2820
[2023-09-02 00:41:44,717::train::INFO] [train] Iter 04087 | loss 2.8382 | loss(rot) 2.5465 | loss(pos) 0.2875 | loss(seq) 0.0043 | grad 6.1712 | lr 0.0010 | time_forward 3.4900 | time_backward 5.0040
[2023-09-02 00:41:47,562::train::INFO] [train] Iter 04088 | loss 1.0436 | loss(rot) 0.0481 | loss(pos) 0.9894 | loss(seq) 0.0061 | grad 4.2790 | lr 0.0010 | time_forward 1.2900 | time_backward 1.5500
[2023-09-02 00:41:56,736::train::INFO] [train] Iter 04089 | loss 1.5338 | loss(rot) 1.3251 | loss(pos) 0.2081 | loss(seq) 0.0007 | grad 5.1255 | lr 0.0010 | time_forward 3.8150 | time_backward 5.3330
[2023-09-02 00:41:59,770::train::INFO] [train] Iter 04090 | loss 2.4915 | loss(rot) 2.2830 | loss(pos) 0.2084 | loss(seq) 0.0000 | grad 4.3341 | lr 0.0010 | time_forward 1.4820 | time_backward 1.5480