text
stringlengths 56
1.16k
|
---|
[2023-09-02 00:42:08,294::train::INFO] [train] Iter 04091 | loss 1.5551 | loss(rot) 0.8017 | loss(pos) 0.4826 | loss(seq) 0.2708 | grad 3.2525 | lr 0.0010 | time_forward 3.5580 | time_backward 4.9620 |
[2023-09-02 00:42:17,008::train::INFO] [train] Iter 04092 | loss 1.9007 | loss(rot) 1.7937 | loss(pos) 0.0996 | loss(seq) 0.0075 | grad 6.2350 | lr 0.0010 | time_forward 3.6030 | time_backward 5.1070 |
[2023-09-02 00:42:25,900::train::INFO] [train] Iter 04093 | loss 1.8801 | loss(rot) 0.6930 | loss(pos) 0.5149 | loss(seq) 0.6722 | grad 3.8597 | lr 0.0010 | time_forward 3.6160 | time_backward 5.2720 |
[2023-09-02 00:42:28,790::train::INFO] [train] Iter 04094 | loss 2.1720 | loss(rot) 1.6881 | loss(pos) 0.1590 | loss(seq) 0.3249 | grad 3.4490 | lr 0.0010 | time_forward 1.2880 | time_backward 1.5990 |
[2023-09-02 00:42:36,340::train::INFO] [train] Iter 04095 | loss 2.4864 | loss(rot) 1.5529 | loss(pos) 0.4051 | loss(seq) 0.5283 | grad 3.3841 | lr 0.0010 | time_forward 3.2520 | time_backward 4.2940 |
[2023-09-02 00:42:39,164::train::INFO] [train] Iter 04096 | loss 2.3121 | loss(rot) 1.9889 | loss(pos) 0.1819 | loss(seq) 0.1414 | grad 3.5650 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5070 |
[2023-09-02 00:42:48,290::train::INFO] [train] Iter 04097 | loss 2.6295 | loss(rot) 2.3488 | loss(pos) 0.1043 | loss(seq) 0.1764 | grad 4.0450 | lr 0.0010 | time_forward 3.7760 | time_backward 5.3100 |
[2023-09-02 00:42:49,915::train::INFO] [train] Iter 04098 | loss 2.5256 | loss(rot) 2.1989 | loss(pos) 0.3255 | loss(seq) 0.0012 | grad 4.8316 | lr 0.0010 | time_forward 0.7350 | time_backward 0.8860 |
[2023-09-02 00:42:59,873::train::INFO] [train] Iter 04099 | loss 1.2432 | loss(rot) 0.6213 | loss(pos) 0.4391 | loss(seq) 0.1827 | grad 4.9926 | lr 0.0010 | time_forward 4.2070 | time_backward 5.7470 |
[2023-09-02 00:43:09,488::train::INFO] [train] Iter 04100 | loss 2.3076 | loss(rot) 1.5101 | loss(pos) 0.3043 | loss(seq) 0.4932 | grad 4.9508 | lr 0.0010 | time_forward 4.0750 | time_backward 5.5370 |
[2023-09-02 00:43:18,369::train::INFO] [train] Iter 04101 | loss 2.2029 | loss(rot) 1.7077 | loss(pos) 0.1924 | loss(seq) 0.3029 | grad 4.8213 | lr 0.0010 | time_forward 3.8050 | time_backward 5.0720 |
[2023-09-02 00:43:27,299::train::INFO] [train] Iter 04102 | loss 2.6150 | loss(rot) 2.3001 | loss(pos) 0.2874 | loss(seq) 0.0276 | grad 3.9018 | lr 0.0010 | time_forward 3.7420 | time_backward 5.1860 |
[2023-09-02 00:43:29,775::train::INFO] [train] Iter 04103 | loss 2.2890 | loss(rot) 1.2347 | loss(pos) 0.4540 | loss(seq) 0.6002 | grad 5.1495 | lr 0.0010 | time_forward 1.1810 | time_backward 1.2910 |
[2023-09-02 00:43:40,082::train::INFO] [train] Iter 04104 | loss 2.4429 | loss(rot) 1.6802 | loss(pos) 0.3068 | loss(seq) 0.4559 | grad 4.9755 | lr 0.0010 | time_forward 4.7260 | time_backward 5.5560 |
[2023-09-02 00:43:51,008::train::INFO] [train] Iter 04105 | loss 2.8480 | loss(rot) 2.4196 | loss(pos) 0.1385 | loss(seq) 0.2899 | grad 3.3260 | lr 0.0010 | time_forward 4.8910 | time_backward 6.0310 |
[2023-09-02 00:43:59,261::train::INFO] [train] Iter 04106 | loss 2.6423 | loss(rot) 2.4807 | loss(pos) 0.1417 | loss(seq) 0.0199 | grad 4.9608 | lr 0.0010 | time_forward 3.4400 | time_backward 4.8110 |
[2023-09-02 00:44:08,984::train::INFO] [train] Iter 04107 | loss 2.4485 | loss(rot) 1.6266 | loss(pos) 0.2914 | loss(seq) 0.5305 | grad 3.3887 | lr 0.0010 | time_forward 4.0640 | time_backward 5.6560 |
[2023-09-02 00:44:19,235::train::INFO] [train] Iter 04108 | loss 2.2743 | loss(rot) 2.0190 | loss(pos) 0.2139 | loss(seq) 0.0414 | grad 5.4553 | lr 0.0010 | time_forward 4.2500 | time_backward 5.9970 |
[2023-09-02 00:44:29,614::train::INFO] [train] Iter 04109 | loss 3.2703 | loss(rot) 0.0595 | loss(pos) 3.2101 | loss(seq) 0.0007 | grad 5.4231 | lr 0.0010 | time_forward 4.3410 | time_backward 6.0340 |
[2023-09-02 00:44:41,156::train::INFO] [train] Iter 04110 | loss 2.3003 | loss(rot) 1.6343 | loss(pos) 0.2155 | loss(seq) 0.4506 | grad 3.6647 | lr 0.0010 | time_forward 5.4460 | time_backward 6.0930 |
[2023-09-02 00:44:43,906::train::INFO] [train] Iter 04111 | loss 1.3999 | loss(rot) 0.6559 | loss(pos) 0.2679 | loss(seq) 0.4761 | grad 3.1569 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4600 |
[2023-09-02 00:44:52,778::train::INFO] [train] Iter 04112 | loss 1.4657 | loss(rot) 1.2214 | loss(pos) 0.2399 | loss(seq) 0.0044 | grad 5.1998 | lr 0.0010 | time_forward 3.7090 | time_backward 5.1600 |
[2023-09-02 00:44:55,529::train::INFO] [train] Iter 04113 | loss 1.3399 | loss(rot) 0.3134 | loss(pos) 0.8634 | loss(seq) 0.1630 | grad 3.1868 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4760 |
[2023-09-02 00:45:05,540::train::INFO] [train] Iter 04114 | loss 1.7016 | loss(rot) 0.1066 | loss(pos) 1.5873 | loss(seq) 0.0077 | grad 4.3462 | lr 0.0010 | time_forward 4.1270 | time_backward 5.8800 |
[2023-09-02 00:45:15,012::train::INFO] [train] Iter 04115 | loss 2.4860 | loss(rot) 2.0800 | loss(pos) 0.1555 | loss(seq) 0.2504 | grad 3.4819 | lr 0.0010 | time_forward 4.0680 | time_backward 5.4010 |
[2023-09-02 00:45:17,358::train::INFO] [train] Iter 04116 | loss 1.6376 | loss(rot) 0.1832 | loss(pos) 1.4201 | loss(seq) 0.0343 | grad 5.1773 | lr 0.0010 | time_forward 1.0600 | time_backward 1.2810 |
[2023-09-02 00:45:26,379::train::INFO] [train] Iter 04117 | loss 1.2570 | loss(rot) 0.1090 | loss(pos) 1.1373 | loss(seq) 0.0107 | grad 8.3706 | lr 0.0010 | time_forward 3.8130 | time_backward 5.2050 |
[2023-09-02 00:45:29,105::train::INFO] [train] Iter 04118 | loss 1.8355 | loss(rot) 1.5865 | loss(pos) 0.1392 | loss(seq) 0.1098 | grad 4.7192 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4430 |
[2023-09-02 00:45:38,412::train::INFO] [train] Iter 04119 | loss 1.3808 | loss(rot) 0.3876 | loss(pos) 0.4794 | loss(seq) 0.5138 | grad 4.1648 | lr 0.0010 | time_forward 3.9810 | time_backward 5.3220 |
[2023-09-02 00:45:41,177::train::INFO] [train] Iter 04120 | loss 2.8430 | loss(rot) 2.3255 | loss(pos) 0.5176 | loss(seq) 0.0000 | grad 5.5064 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4530 |
[2023-09-02 00:45:49,887::train::INFO] [train] Iter 04121 | loss 1.6439 | loss(rot) 0.7530 | loss(pos) 0.3550 | loss(seq) 0.5359 | grad 3.7953 | lr 0.0010 | time_forward 3.6330 | time_backward 5.0730 |
[2023-09-02 00:45:52,650::train::INFO] [train] Iter 04122 | loss 3.0651 | loss(rot) 2.6481 | loss(pos) 0.1479 | loss(seq) 0.2692 | grad 4.4342 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4630 |
[2023-09-02 00:46:00,697::train::INFO] [train] Iter 04123 | loss 2.2685 | loss(rot) 2.0369 | loss(pos) 0.2234 | loss(seq) 0.0081 | grad 4.7051 | lr 0.0010 | time_forward 3.4030 | time_backward 4.6410 |
[2023-09-02 00:46:07,910::train::INFO] [train] Iter 04124 | loss 2.0460 | loss(rot) 1.8055 | loss(pos) 0.2398 | loss(seq) 0.0007 | grad 3.8856 | lr 0.0010 | time_forward 3.0150 | time_backward 4.1950 |
[2023-09-02 00:46:15,519::train::INFO] [train] Iter 04125 | loss 2.4629 | loss(rot) 2.0617 | loss(pos) 0.1979 | loss(seq) 0.2033 | grad 5.0504 | lr 0.0010 | time_forward 3.1660 | time_backward 4.4400 |
[2023-09-02 00:46:22,169::train::INFO] [train] Iter 04126 | loss 1.7459 | loss(rot) 0.3705 | loss(pos) 1.1205 | loss(seq) 0.2549 | grad 7.6353 | lr 0.0010 | time_forward 2.7910 | time_backward 3.8550 |
[2023-09-02 00:46:30,422::train::INFO] [train] Iter 04127 | loss 1.0206 | loss(rot) 0.2125 | loss(pos) 0.7718 | loss(seq) 0.0363 | grad 4.4254 | lr 0.0010 | time_forward 3.5180 | time_backward 4.7310 |
[2023-09-02 00:46:32,652::train::INFO] [train] Iter 04128 | loss 4.1248 | loss(rot) 0.2794 | loss(pos) 3.8405 | loss(seq) 0.0049 | grad 13.4542 | lr 0.0010 | time_forward 1.0890 | time_backward 1.1370 |
[2023-09-02 00:46:42,770::train::INFO] [train] Iter 04129 | loss 2.3329 | loss(rot) 2.2334 | loss(pos) 0.0892 | loss(seq) 0.0103 | grad 3.8548 | lr 0.0010 | time_forward 4.1150 | time_backward 5.9990 |
[2023-09-02 00:46:45,278::train::INFO] [train] Iter 04130 | loss 2.5170 | loss(rot) 2.2531 | loss(pos) 0.2034 | loss(seq) 0.0604 | grad 5.3092 | lr 0.0010 | time_forward 1.2300 | time_backward 1.2740 |
[2023-09-02 00:46:54,627::train::INFO] [train] Iter 04131 | loss 1.2168 | loss(rot) 1.0337 | loss(pos) 0.1819 | loss(seq) 0.0011 | grad 5.3926 | lr 0.0010 | time_forward 3.8940 | time_backward 5.4330 |
[2023-09-02 00:47:02,865::train::INFO] [train] Iter 04132 | loss 1.7159 | loss(rot) 0.9607 | loss(pos) 0.4740 | loss(seq) 0.2812 | grad 6.0035 | lr 0.0010 | time_forward 3.4020 | time_backward 4.8320 |
[2023-09-02 00:47:10,506::train::INFO] [train] Iter 04133 | loss 3.7014 | loss(rot) 0.1137 | loss(pos) 3.5877 | loss(seq) 0.0000 | grad 14.5278 | lr 0.0010 | time_forward 3.1860 | time_backward 4.4510 |
[2023-09-02 00:47:17,360::train::INFO] [train] Iter 04134 | loss 2.5433 | loss(rot) 2.4099 | loss(pos) 0.1330 | loss(seq) 0.0003 | grad 4.4410 | lr 0.0010 | time_forward 2.8640 | time_backward 3.9860 |
[2023-09-02 00:47:26,276::train::INFO] [train] Iter 04135 | loss 1.5369 | loss(rot) 1.2784 | loss(pos) 0.1626 | loss(seq) 0.0958 | grad 3.9552 | lr 0.0010 | time_forward 3.4680 | time_backward 5.4450 |
[2023-09-02 00:47:28,621::train::INFO] [train] Iter 04136 | loss 1.4730 | loss(rot) 0.7453 | loss(pos) 0.4245 | loss(seq) 0.3032 | grad 4.0062 | lr 0.0010 | time_forward 1.1030 | time_backward 1.2380 |
[2023-09-02 00:47:30,929::train::INFO] [train] Iter 04137 | loss 2.3856 | loss(rot) 1.5804 | loss(pos) 0.3211 | loss(seq) 0.4842 | grad 4.5367 | lr 0.0010 | time_forward 1.0890 | time_backward 1.2160 |
[2023-09-02 00:47:41,670::train::INFO] [train] Iter 04138 | loss 2.4235 | loss(rot) 2.1515 | loss(pos) 0.2708 | loss(seq) 0.0013 | grad 3.7490 | lr 0.0010 | time_forward 4.7080 | time_backward 6.0300 |
[2023-09-02 00:47:48,336::train::INFO] [train] Iter 04139 | loss 1.6865 | loss(rot) 0.2477 | loss(pos) 1.4168 | loss(seq) 0.0220 | grad 5.4607 | lr 0.0010 | time_forward 2.8240 | time_backward 3.8240 |
[2023-09-02 00:47:51,090::train::INFO] [train] Iter 04140 | loss 2.0500 | loss(rot) 1.7517 | loss(pos) 0.1203 | loss(seq) 0.1781 | grad 4.3381 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4500 |
[2023-09-02 00:48:02,389::train::INFO] [train] Iter 04141 | loss 2.4826 | loss(rot) 2.1698 | loss(pos) 0.2408 | loss(seq) 0.0720 | grad 3.7641 | lr 0.0010 | time_forward 4.9110 | time_backward 6.3840 |
[2023-09-02 00:48:04,833::train::INFO] [train] Iter 04142 | loss 1.9740 | loss(rot) 1.1564 | loss(pos) 0.3794 | loss(seq) 0.4382 | grad 5.3044 | lr 0.0010 | time_forward 1.1640 | time_backward 1.2760 |
[2023-09-02 00:48:12,299::train::INFO] [train] Iter 04143 | loss 2.9146 | loss(rot) 2.6462 | loss(pos) 0.1206 | loss(seq) 0.1478 | grad 5.0166 | lr 0.0010 | time_forward 3.1350 | time_backward 4.3280 |
[2023-09-02 00:48:22,310::train::INFO] [train] Iter 04144 | loss 2.0008 | loss(rot) 1.4519 | loss(pos) 0.1891 | loss(seq) 0.3598 | grad 3.4463 | lr 0.0010 | time_forward 4.1020 | time_backward 5.9050 |
[2023-09-02 00:48:31,006::train::INFO] [train] Iter 04145 | loss 2.1434 | loss(rot) 1.0992 | loss(pos) 0.4151 | loss(seq) 0.6291 | grad 5.0970 | lr 0.0010 | time_forward 3.7490 | time_backward 4.9430 |
[2023-09-02 00:48:40,944::train::INFO] [train] Iter 04146 | loss 1.3534 | loss(rot) 0.3451 | loss(pos) 0.5221 | loss(seq) 0.4862 | grad 4.2712 | lr 0.0010 | time_forward 4.1460 | time_backward 5.7880 |
[2023-09-02 00:48:52,699::train::INFO] [train] Iter 04147 | loss 2.2345 | loss(rot) 1.4605 | loss(pos) 0.2863 | loss(seq) 0.4877 | grad 3.7891 | lr 0.0010 | time_forward 4.8310 | time_backward 6.9190 |
[2023-09-02 00:49:04,983::train::INFO] [train] Iter 04148 | loss 1.1489 | loss(rot) 0.0899 | loss(pos) 1.0315 | loss(seq) 0.0276 | grad 3.6371 | lr 0.0010 | time_forward 5.7730 | time_backward 6.5070 |
[2023-09-02 00:49:07,320::train::INFO] [train] Iter 04149 | loss 0.8994 | loss(rot) 0.3186 | loss(pos) 0.5068 | loss(seq) 0.0739 | grad 3.4408 | lr 0.0010 | time_forward 1.1220 | time_backward 1.2100 |
[2023-09-02 00:49:16,678::train::INFO] [train] Iter 04150 | loss 1.3678 | loss(rot) 0.8661 | loss(pos) 0.2721 | loss(seq) 0.2296 | grad 3.1534 | lr 0.0010 | time_forward 3.9310 | time_backward 5.4220 |
[2023-09-02 00:49:25,572::train::INFO] [train] Iter 04151 | loss 2.2793 | loss(rot) 2.0513 | loss(pos) 0.2013 | loss(seq) 0.0267 | grad 6.0545 | lr 0.0010 | time_forward 3.7200 | time_backward 5.1710 |
[2023-09-02 00:49:34,908::train::INFO] [train] Iter 04152 | loss 2.4668 | loss(rot) 1.9253 | loss(pos) 0.1491 | loss(seq) 0.3923 | grad 3.6767 | lr 0.0010 | time_forward 3.8990 | time_backward 5.4330 |
[2023-09-02 00:49:37,639::train::INFO] [train] Iter 04153 | loss 1.3472 | loss(rot) 0.7221 | loss(pos) 0.3315 | loss(seq) 0.2937 | grad 4.5317 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4690 |
[2023-09-02 00:49:47,926::train::INFO] [train] Iter 04154 | loss 1.1035 | loss(rot) 0.4398 | loss(pos) 0.3620 | loss(seq) 0.3017 | grad 2.6321 | lr 0.0010 | time_forward 4.1080 | time_backward 6.1750 |
[2023-09-02 00:49:50,658::train::INFO] [train] Iter 04155 | loss 2.3768 | loss(rot) 1.4227 | loss(pos) 0.5464 | loss(seq) 0.4076 | grad 5.1400 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4600 |
[2023-09-02 00:49:58,616::train::INFO] [train] Iter 04156 | loss 1.9872 | loss(rot) 1.8274 | loss(pos) 0.1298 | loss(seq) 0.0300 | grad 5.2971 | lr 0.0010 | time_forward 3.3820 | time_backward 4.5720 |
[2023-09-02 00:50:01,407::train::INFO] [train] Iter 04157 | loss 2.2630 | loss(rot) 1.9715 | loss(pos) 0.2852 | loss(seq) 0.0063 | grad 4.7037 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4930 |
[2023-09-02 00:50:03,925::train::INFO] [train] Iter 04158 | loss 1.5009 | loss(rot) 0.7734 | loss(pos) 0.3122 | loss(seq) 0.4152 | grad 4.0595 | lr 0.0010 | time_forward 1.2140 | time_backward 1.3000 |
[2023-09-02 00:50:14,033::train::INFO] [train] Iter 04159 | loss 3.2638 | loss(rot) 2.7697 | loss(pos) 0.3930 | loss(seq) 0.1011 | grad 3.8250 | lr 0.0010 | time_forward 4.1870 | time_backward 5.9180 |
[2023-09-02 00:50:20,701::train::INFO] [train] Iter 04160 | loss 2.6984 | loss(rot) 2.2153 | loss(pos) 0.1831 | loss(seq) 0.3000 | grad 3.0920 | lr 0.0010 | time_forward 2.7810 | time_backward 3.8840 |
[2023-09-02 00:50:23,553::train::INFO] [train] Iter 04161 | loss 2.4868 | loss(rot) 1.9096 | loss(pos) 0.0940 | loss(seq) 0.4831 | grad 3.4762 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5350 |
[2023-09-02 00:50:33,915::train::INFO] [train] Iter 04162 | loss 2.3253 | loss(rot) 1.2645 | loss(pos) 0.4457 | loss(seq) 0.6151 | grad 3.3775 | lr 0.0010 | time_forward 4.2180 | time_backward 6.1410 |
[2023-09-02 00:50:43,547::train::INFO] [train] Iter 04163 | loss 2.8391 | loss(rot) 2.4669 | loss(pos) 0.2143 | loss(seq) 0.1580 | grad 4.7538 | lr 0.0010 | time_forward 4.1180 | time_backward 5.5110 |
[2023-09-02 00:50:52,245::train::INFO] [train] Iter 04164 | loss 2.5573 | loss(rot) 2.0935 | loss(pos) 0.4619 | loss(seq) 0.0019 | grad 7.7614 | lr 0.0010 | time_forward 3.8060 | time_backward 4.8870 |
[2023-09-02 00:51:02,512::train::INFO] [train] Iter 04165 | loss 2.2477 | loss(rot) 1.9769 | loss(pos) 0.1523 | loss(seq) 0.1184 | grad 3.0708 | lr 0.0010 | time_forward 4.1650 | time_backward 6.0990 |
[2023-09-02 00:51:05,267::train::INFO] [train] Iter 04166 | loss 2.3547 | loss(rot) 2.0305 | loss(pos) 0.1478 | loss(seq) 0.1764 | grad 3.5158 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4800 |
[2023-09-02 00:51:11,047::train::INFO] [train] Iter 04167 | loss 2.0903 | loss(rot) 0.0976 | loss(pos) 1.9783 | loss(seq) 0.0144 | grad 6.2934 | lr 0.0010 | time_forward 2.4500 | time_backward 3.3270 |
[2023-09-02 00:51:20,644::train::INFO] [train] Iter 04168 | loss 1.6682 | loss(rot) 0.7711 | loss(pos) 0.4296 | loss(seq) 0.4675 | grad 4.0974 | lr 0.0010 | time_forward 3.9610 | time_backward 5.6340 |
[2023-09-02 00:51:27,114::train::INFO] [train] Iter 04169 | loss 2.3125 | loss(rot) 1.8453 | loss(pos) 0.1159 | loss(seq) 0.3513 | grad 4.8143 | lr 0.0010 | time_forward 2.6720 | time_backward 3.7840 |
[2023-09-02 00:51:37,258::train::INFO] [train] Iter 04170 | loss 2.9370 | loss(rot) 2.5220 | loss(pos) 0.1712 | loss(seq) 0.2438 | grad 2.5659 | lr 0.0010 | time_forward 3.8610 | time_backward 6.2790 |
[2023-09-02 00:51:40,020::train::INFO] [train] Iter 04171 | loss 1.5361 | loss(rot) 0.0394 | loss(pos) 1.0471 | loss(seq) 0.4496 | grad 4.2126 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4660 |
[2023-09-02 00:51:50,482::train::INFO] [train] Iter 04172 | loss 2.1315 | loss(rot) 1.4055 | loss(pos) 0.2021 | loss(seq) 0.5239 | grad 4.8965 | lr 0.0010 | time_forward 4.1320 | time_backward 6.3270 |
[2023-09-02 00:51:57,229::train::INFO] [train] Iter 04173 | loss 1.6658 | loss(rot) 0.6878 | loss(pos) 0.3174 | loss(seq) 0.6607 | grad 2.9910 | lr 0.0010 | time_forward 2.8550 | time_backward 3.8880 |
[2023-09-02 00:52:00,695::train::INFO] [train] Iter 04174 | loss 1.9987 | loss(rot) 0.8695 | loss(pos) 0.6889 | loss(seq) 0.4403 | grad 3.7724 | lr 0.0010 | time_forward 1.5120 | time_backward 1.9500 |
[2023-09-02 00:52:08,842::train::INFO] [train] Iter 04175 | loss 2.4011 | loss(rot) 1.4687 | loss(pos) 0.5040 | loss(seq) 0.4283 | grad 5.7798 | lr 0.0010 | time_forward 3.4140 | time_backward 4.7130 |
[2023-09-02 00:52:17,068::train::INFO] [train] Iter 04176 | loss 2.8996 | loss(rot) 2.6629 | loss(pos) 0.2119 | loss(seq) 0.0247 | grad 5.4239 | lr 0.0010 | time_forward 3.4310 | time_backward 4.7900 |
[2023-09-02 00:52:25,776::train::INFO] [train] Iter 04177 | loss 1.8525 | loss(rot) 1.2679 | loss(pos) 0.2219 | loss(seq) 0.3627 | grad 6.5617 | lr 0.0010 | time_forward 3.6810 | time_backward 5.0240 |
[2023-09-02 00:52:37,847::train::INFO] [train] Iter 04178 | loss 1.6111 | loss(rot) 0.8914 | loss(pos) 0.2865 | loss(seq) 0.4332 | grad 3.2844 | lr 0.0010 | time_forward 5.4110 | time_backward 6.6570 |
[2023-09-02 00:52:39,601::train::INFO] [train] Iter 04179 | loss 3.3405 | loss(rot) 2.8126 | loss(pos) 0.4106 | loss(seq) 0.1173 | grad 4.7625 | lr 0.0010 | time_forward 0.8060 | time_backward 0.9440 |
[2023-09-02 00:52:49,565::train::INFO] [train] Iter 04180 | loss 2.3220 | loss(rot) 2.2106 | loss(pos) 0.1014 | loss(seq) 0.0101 | grad 3.3168 | lr 0.0010 | time_forward 4.0830 | time_backward 5.8770 |
[2023-09-02 00:52:59,119::train::INFO] [train] Iter 04181 | loss 1.0498 | loss(rot) 0.4081 | loss(pos) 0.2983 | loss(seq) 0.3435 | grad 3.5669 | lr 0.0010 | time_forward 3.9230 | time_backward 5.6270 |
[2023-09-02 00:53:07,057::train::INFO] [train] Iter 04182 | loss 1.8637 | loss(rot) 0.0981 | loss(pos) 1.7593 | loss(seq) 0.0063 | grad 5.8502 | lr 0.0010 | time_forward 3.3640 | time_backward 4.5710 |
[2023-09-02 00:53:14,609::train::INFO] [train] Iter 04183 | loss 1.3347 | loss(rot) 0.1801 | loss(pos) 1.1068 | loss(seq) 0.0478 | grad 3.3366 | lr 0.0010 | time_forward 3.2260 | time_backward 4.3210 |
[2023-09-02 00:53:23,346::train::INFO] [train] Iter 04184 | loss 3.1452 | loss(rot) 2.9824 | loss(pos) 0.1595 | loss(seq) 0.0034 | grad 2.3710 | lr 0.0010 | time_forward 3.6740 | time_backward 5.0600 |
[2023-09-02 00:53:30,561::train::INFO] [train] Iter 04185 | loss 2.7713 | loss(rot) 2.3901 | loss(pos) 0.1173 | loss(seq) 0.2640 | grad 4.9117 | lr 0.0010 | time_forward 3.0090 | time_backward 4.2020 |
[2023-09-02 00:53:39,132::train::INFO] [train] Iter 04186 | loss 1.6505 | loss(rot) 1.0202 | loss(pos) 0.1443 | loss(seq) 0.4859 | grad 4.2630 | lr 0.0010 | time_forward 3.6120 | time_backward 4.9570 |
[2023-09-02 00:53:49,381::train::INFO] [train] Iter 04187 | loss 0.9009 | loss(rot) 0.2612 | loss(pos) 0.5997 | loss(seq) 0.0400 | grad 4.4187 | lr 0.0010 | time_forward 4.1710 | time_backward 6.0740 |
[2023-09-02 00:53:59,492::train::INFO] [train] Iter 04188 | loss 1.0106 | loss(rot) 0.5086 | loss(pos) 0.3409 | loss(seq) 0.1611 | grad 4.3996 | lr 0.0010 | time_forward 4.0720 | time_backward 6.0350 |
[2023-09-02 00:54:12,093::train::INFO] [train] Iter 04189 | loss 3.0884 | loss(rot) 1.8937 | loss(pos) 0.5657 | loss(seq) 0.6291 | grad 5.4963 | lr 0.0010 | time_forward 4.4880 | time_backward 8.1100 |
[2023-09-02 00:54:19,822::train::INFO] [train] Iter 04190 | loss 1.2504 | loss(rot) 0.7893 | loss(pos) 0.3087 | loss(seq) 0.1524 | grad 4.1608 | lr 0.0010 | time_forward 3.2210 | time_backward 4.5050 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.