text
stringlengths
56
1.16k
[2023-09-02 01:08:12,706::train::INFO] [train] Iter 04291 | loss 2.0537 | loss(rot) 1.6678 | loss(pos) 0.2277 | loss(seq) 0.1583 | grad 5.4753 | lr 0.0010 | time_forward 4.3350 | time_backward 6.1220
[2023-09-02 01:08:22,774::train::INFO] [train] Iter 04292 | loss 1.7551 | loss(rot) 1.6236 | loss(pos) 0.1285 | loss(seq) 0.0030 | grad 3.9429 | lr 0.0010 | time_forward 4.1610 | time_backward 5.9030
[2023-09-02 01:08:30,888::train::INFO] [train] Iter 04293 | loss 2.7631 | loss(rot) 2.4977 | loss(pos) 0.2652 | loss(seq) 0.0001 | grad 5.4118 | lr 0.0010 | time_forward 3.3990 | time_backward 4.6950
[2023-09-02 01:08:41,056::train::INFO] [train] Iter 04294 | loss 0.8313 | loss(rot) 0.3505 | loss(pos) 0.4016 | loss(seq) 0.0792 | grad 3.3828 | lr 0.0010 | time_forward 4.1350 | time_backward 6.0310
[2023-09-02 01:08:50,029::train::INFO] [train] Iter 04295 | loss 1.6816 | loss(rot) 0.4095 | loss(pos) 1.1590 | loss(seq) 0.1131 | grad 5.9030 | lr 0.0010 | time_forward 3.9070 | time_backward 5.0630
[2023-09-02 01:08:59,989::train::INFO] [train] Iter 04296 | loss 2.4782 | loss(rot) 1.3137 | loss(pos) 0.5404 | loss(seq) 0.6241 | grad 4.8438 | lr 0.0010 | time_forward 4.0560 | time_backward 5.9010
[2023-09-02 01:09:02,846::train::INFO] [train] Iter 04297 | loss 1.1023 | loss(rot) 0.0807 | loss(pos) 0.7753 | loss(seq) 0.2463 | grad 5.2029 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5120
[2023-09-02 01:09:12,948::train::INFO] [train] Iter 04298 | loss 1.9941 | loss(rot) 1.3340 | loss(pos) 0.1843 | loss(seq) 0.4758 | grad 4.0450 | lr 0.0010 | time_forward 4.1790 | time_backward 5.8910
[2023-09-02 01:09:15,825::train::INFO] [train] Iter 04299 | loss 1.1362 | loss(rot) 0.1996 | loss(pos) 0.9211 | loss(seq) 0.0156 | grad 4.9477 | lr 0.0010 | time_forward 1.3910 | time_backward 1.4810
[2023-09-02 01:09:25,975::train::INFO] [train] Iter 04300 | loss 2.2181 | loss(rot) 1.5579 | loss(pos) 0.1364 | loss(seq) 0.5238 | grad 3.7651 | lr 0.0010 | time_forward 4.1220 | time_backward 6.0250
[2023-09-02 01:09:34,574::train::INFO] [train] Iter 04301 | loss 1.3714 | loss(rot) 0.4135 | loss(pos) 0.3317 | loss(seq) 0.6262 | grad 3.0109 | lr 0.0010 | time_forward 3.6000 | time_backward 4.9960
[2023-09-02 01:09:44,798::train::INFO] [train] Iter 04302 | loss 3.0550 | loss(rot) 2.4853 | loss(pos) 0.5697 | loss(seq) 0.0000 | grad 6.0587 | lr 0.0010 | time_forward 4.2660 | time_backward 5.9540
[2023-09-02 01:09:53,604::train::INFO] [train] Iter 04303 | loss 2.5078 | loss(rot) 2.3821 | loss(pos) 0.1229 | loss(seq) 0.0029 | grad 3.3946 | lr 0.0010 | time_forward 3.7810 | time_backward 5.0090
[2023-09-02 01:09:56,317::train::INFO] [train] Iter 04304 | loss 2.5445 | loss(rot) 2.4184 | loss(pos) 0.1137 | loss(seq) 0.0124 | grad 4.4894 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4340
[2023-09-02 01:10:04,794::train::INFO] [train] Iter 04305 | loss 3.2658 | loss(rot) 2.9499 | loss(pos) 0.3153 | loss(seq) 0.0006 | grad 4.8491 | lr 0.0010 | time_forward 3.5700 | time_backward 4.9050
[2023-09-02 01:10:07,200::train::INFO] [train] Iter 04306 | loss 1.2933 | loss(rot) 0.0597 | loss(pos) 1.2314 | loss(seq) 0.0022 | grad 10.6589 | lr 0.0010 | time_forward 1.1000 | time_backward 1.3030
[2023-09-02 01:10:17,138::train::INFO] [train] Iter 04307 | loss 2.7690 | loss(rot) 2.4600 | loss(pos) 0.1373 | loss(seq) 0.1717 | grad 4.0795 | lr 0.0010 | time_forward 4.0420 | time_backward 5.8930
[2023-09-02 01:10:25,368::train::INFO] [train] Iter 04308 | loss 1.6411 | loss(rot) 0.8032 | loss(pos) 0.7046 | loss(seq) 0.1333 | grad 6.7173 | lr 0.0010 | time_forward 3.5650 | time_backward 4.6620
[2023-09-02 01:10:33,455::train::INFO] [train] Iter 04309 | loss 0.6674 | loss(rot) 0.0977 | loss(pos) 0.5438 | loss(seq) 0.0259 | grad 4.5920 | lr 0.0010 | time_forward 3.4240 | time_backward 4.6600
[2023-09-02 01:10:41,589::train::INFO] [train] Iter 04310 | loss 1.0714 | loss(rot) 0.3408 | loss(pos) 0.3897 | loss(seq) 0.3409 | grad 4.0286 | lr 0.0010 | time_forward 3.3980 | time_backward 4.7330
[2023-09-02 01:10:49,982::train::INFO] [train] Iter 04311 | loss 2.5494 | loss(rot) 2.2467 | loss(pos) 0.2118 | loss(seq) 0.0909 | grad 4.6327 | lr 0.0010 | time_forward 3.4950 | time_backward 4.8950
[2023-09-02 01:10:58,637::train::INFO] [train] Iter 04312 | loss 0.9888 | loss(rot) 0.2668 | loss(pos) 0.6839 | loss(seq) 0.0381 | grad 4.5663 | lr 0.0010 | time_forward 3.5880 | time_backward 5.0640
[2023-09-02 01:11:08,088::train::INFO] [train] Iter 04313 | loss 2.3157 | loss(rot) 2.0274 | loss(pos) 0.1617 | loss(seq) 0.1265 | grad 13.6194 | lr 0.0010 | time_forward 3.9100 | time_backward 5.5370
[2023-09-02 01:11:16,517::train::INFO] [train] Iter 04314 | loss 2.4713 | loss(rot) 2.1747 | loss(pos) 0.1355 | loss(seq) 0.1611 | grad 5.5168 | lr 0.0010 | time_forward 3.5650 | time_backward 4.8620
[2023-09-02 01:11:26,426::train::INFO] [train] Iter 04315 | loss 1.7001 | loss(rot) 1.5700 | loss(pos) 0.1091 | loss(seq) 0.0210 | grad 5.3228 | lr 0.0010 | time_forward 3.9960 | time_backward 5.9090
[2023-09-02 01:11:36,721::train::INFO] [train] Iter 04316 | loss 1.3591 | loss(rot) 0.1265 | loss(pos) 1.2202 | loss(seq) 0.0123 | grad 8.1274 | lr 0.0010 | time_forward 4.3940 | time_backward 5.8980
[2023-09-02 01:11:45,971::train::INFO] [train] Iter 04317 | loss 2.3074 | loss(rot) 1.5868 | loss(pos) 0.2551 | loss(seq) 0.4655 | grad 3.9766 | lr 0.0010 | time_forward 3.8750 | time_backward 5.3710
[2023-09-02 01:11:56,310::train::INFO] [train] Iter 04318 | loss 1.3954 | loss(rot) 1.2374 | loss(pos) 0.0877 | loss(seq) 0.0702 | grad 4.5232 | lr 0.0010 | time_forward 4.1940 | time_backward 6.1410
[2023-09-02 01:12:05,253::train::INFO] [train] Iter 04319 | loss 1.1425 | loss(rot) 1.0351 | loss(pos) 0.0886 | loss(seq) 0.0189 | grad 4.2012 | lr 0.0010 | time_forward 3.8000 | time_backward 5.1390
[2023-09-02 01:12:08,192::train::INFO] [train] Iter 04320 | loss 2.6951 | loss(rot) 2.0729 | loss(pos) 0.1370 | loss(seq) 0.4851 | grad 4.1911 | lr 0.0010 | time_forward 1.3220 | time_backward 1.6130
[2023-09-02 01:12:19,629::train::INFO] [train] Iter 04321 | loss 1.4750 | loss(rot) 0.4263 | loss(pos) 0.5315 | loss(seq) 0.5172 | grad 3.6310 | lr 0.0010 | time_forward 5.2920 | time_backward 6.1420
[2023-09-02 01:12:27,800::train::INFO] [train] Iter 04322 | loss 3.2453 | loss(rot) 0.1107 | loss(pos) 3.1337 | loss(seq) 0.0009 | grad 4.3465 | lr 0.0010 | time_forward 3.3580 | time_backward 4.8100
[2023-09-02 01:12:30,591::train::INFO] [train] Iter 04323 | loss 3.1456 | loss(rot) 2.0252 | loss(pos) 0.6317 | loss(seq) 0.4887 | grad 4.7938 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4630
[2023-09-02 01:12:41,083::train::INFO] [train] Iter 04324 | loss 2.4746 | loss(rot) 2.2350 | loss(pos) 0.2390 | loss(seq) 0.0007 | grad 4.1326 | lr 0.0010 | time_forward 4.0180 | time_backward 6.4700
[2023-09-02 01:12:51,354::train::INFO] [train] Iter 04325 | loss 0.9711 | loss(rot) 0.2545 | loss(pos) 0.6592 | loss(seq) 0.0573 | grad 4.6287 | lr 0.0010 | time_forward 4.6660 | time_backward 5.6020
[2023-09-02 01:13:01,384::train::INFO] [train] Iter 04326 | loss 2.2508 | loss(rot) 1.2201 | loss(pos) 0.4838 | loss(seq) 0.5468 | grad 3.8080 | lr 0.0010 | time_forward 4.2280 | time_backward 5.7970
[2023-09-02 01:13:09,841::train::INFO] [train] Iter 04327 | loss 2.5129 | loss(rot) 2.4539 | loss(pos) 0.0587 | loss(seq) 0.0003 | grad 3.7435 | lr 0.0010 | time_forward 3.5400 | time_backward 4.9140
[2023-09-02 01:13:19,118::train::INFO] [train] Iter 04328 | loss 2.0873 | loss(rot) 1.6090 | loss(pos) 0.1790 | loss(seq) 0.2993 | grad 3.8669 | lr 0.0010 | time_forward 3.8920 | time_backward 5.3790
[2023-09-02 01:13:27,905::train::INFO] [train] Iter 04329 | loss 1.6117 | loss(rot) 0.7127 | loss(pos) 0.4720 | loss(seq) 0.4270 | grad 2.8893 | lr 0.0010 | time_forward 3.6910 | time_backward 5.0920
[2023-09-02 01:13:35,397::train::INFO] [train] Iter 04330 | loss 1.8035 | loss(rot) 0.8082 | loss(pos) 0.5994 | loss(seq) 0.3960 | grad 5.8943 | lr 0.0010 | time_forward 3.2210 | time_backward 4.2680
[2023-09-02 01:13:38,128::train::INFO] [train] Iter 04331 | loss 2.0049 | loss(rot) 1.0379 | loss(pos) 0.7719 | loss(seq) 0.1951 | grad 6.4479 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4720
[2023-09-02 01:13:40,941::train::INFO] [train] Iter 04332 | loss 1.6217 | loss(rot) 0.7425 | loss(pos) 0.3397 | loss(seq) 0.5394 | grad 4.0057 | lr 0.0010 | time_forward 1.3010 | time_backward 1.5090
[2023-09-02 01:13:42,683::train::INFO] [train] Iter 04333 | loss 3.6761 | loss(rot) 2.8954 | loss(pos) 0.6109 | loss(seq) 0.1698 | grad 6.0355 | lr 0.0010 | time_forward 0.7770 | time_backward 0.9610
[2023-09-02 01:13:45,505::train::INFO] [train] Iter 04334 | loss 1.9079 | loss(rot) 1.5992 | loss(pos) 0.2925 | loss(seq) 0.0162 | grad 5.2143 | lr 0.0010 | time_forward 1.3060 | time_backward 1.5130
[2023-09-02 01:13:47,923::train::INFO] [train] Iter 04335 | loss 2.1581 | loss(rot) 1.9411 | loss(pos) 0.1662 | loss(seq) 0.0508 | grad 2.9765 | lr 0.0010 | time_forward 1.1230 | time_backward 1.2910
[2023-09-02 01:13:50,728::train::INFO] [train] Iter 04336 | loss 2.7530 | loss(rot) 2.0243 | loss(pos) 0.3853 | loss(seq) 0.3433 | grad 7.1819 | lr 0.0010 | time_forward 1.3220 | time_backward 1.4620
[2023-09-02 01:14:00,467::train::INFO] [train] Iter 04337 | loss 2.9772 | loss(rot) 2.1883 | loss(pos) 0.3685 | loss(seq) 0.4204 | grad 5.8761 | lr 0.0010 | time_forward 3.9400 | time_backward 5.7950
[2023-09-02 01:14:08,701::train::INFO] [train] Iter 04338 | loss 3.0905 | loss(rot) 2.9515 | loss(pos) 0.1389 | loss(seq) 0.0000 | grad 3.9356 | lr 0.0010 | time_forward 3.4080 | time_backward 4.8240
[2023-09-02 01:14:17,861::train::INFO] [train] Iter 04339 | loss 1.7962 | loss(rot) 0.0336 | loss(pos) 1.3941 | loss(seq) 0.3685 | grad 5.6496 | lr 0.0010 | time_forward 3.7990 | time_backward 5.3570
[2023-09-02 01:14:20,592::train::INFO] [train] Iter 04340 | loss 1.0961 | loss(rot) 0.4145 | loss(pos) 0.5289 | loss(seq) 0.1527 | grad 3.2949 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4660
[2023-09-02 01:14:29,522::train::INFO] [train] Iter 04341 | loss 2.5446 | loss(rot) 2.2386 | loss(pos) 0.1185 | loss(seq) 0.1875 | grad 2.6101 | lr 0.0010 | time_forward 3.7720 | time_backward 5.1540
[2023-09-02 01:14:31,053::train::INFO] [train] Iter 04342 | loss 2.6716 | loss(rot) 2.0259 | loss(pos) 0.4372 | loss(seq) 0.2085 | grad 5.6348 | lr 0.0010 | time_forward 0.6820 | time_backward 0.8450
[2023-09-02 01:14:34,614::train::INFO] [train] Iter 04343 | loss 2.5444 | loss(rot) 2.1931 | loss(pos) 0.3119 | loss(seq) 0.0394 | grad 4.6085 | lr 0.0010 | time_forward 1.5180 | time_backward 2.0180
[2023-09-02 01:14:44,892::train::INFO] [train] Iter 04344 | loss 0.8875 | loss(rot) 0.1745 | loss(pos) 0.6349 | loss(seq) 0.0780 | grad 4.3104 | lr 0.0010 | time_forward 4.3010 | time_backward 5.9730
[2023-09-02 01:14:47,722::train::INFO] [train] Iter 04345 | loss 2.3849 | loss(rot) 1.7816 | loss(pos) 0.2163 | loss(seq) 0.3869 | grad 4.5419 | lr 0.0010 | time_forward 1.3070 | time_backward 1.5200
[2023-09-02 01:14:50,535::train::INFO] [train] Iter 04346 | loss 1.3688 | loss(rot) 0.0643 | loss(pos) 1.2991 | loss(seq) 0.0054 | grad 5.1220 | lr 0.0010 | time_forward 1.4240 | time_backward 1.3860
[2023-09-02 01:15:00,805::train::INFO] [train] Iter 04347 | loss 1.3143 | loss(rot) 0.8064 | loss(pos) 0.2233 | loss(seq) 0.2846 | grad 2.3710 | lr 0.0010 | time_forward 4.2190 | time_backward 6.0120
[2023-09-02 01:15:03,621::train::INFO] [train] Iter 04348 | loss 1.7015 | loss(rot) 1.1426 | loss(pos) 0.1959 | loss(seq) 0.3631 | grad 4.4904 | lr 0.0010 | time_forward 1.2850 | time_backward 1.5270
[2023-09-02 01:15:12,254::train::INFO] [train] Iter 04349 | loss 0.7772 | loss(rot) 0.1665 | loss(pos) 0.5637 | loss(seq) 0.0470 | grad 4.1248 | lr 0.0010 | time_forward 3.7820 | time_backward 4.8480
[2023-09-02 01:15:21,669::train::INFO] [train] Iter 04350 | loss 2.1319 | loss(rot) 1.9513 | loss(pos) 0.1202 | loss(seq) 0.0604 | grad 4.1163 | lr 0.0010 | time_forward 3.9580 | time_backward 5.4530
[2023-09-02 01:15:31,819::train::INFO] [train] Iter 04351 | loss 3.4142 | loss(rot) 2.7984 | loss(pos) 0.5935 | loss(seq) 0.0222 | grad 4.7034 | lr 0.0010 | time_forward 4.1970 | time_backward 5.9490
[2023-09-02 01:15:41,137::train::INFO] [train] Iter 04352 | loss 2.3483 | loss(rot) 1.4740 | loss(pos) 0.4026 | loss(seq) 0.4717 | grad 5.3731 | lr 0.0010 | time_forward 3.9730 | time_backward 5.3410
[2023-09-02 01:15:43,846::train::INFO] [train] Iter 04353 | loss 2.4270 | loss(rot) 2.3482 | loss(pos) 0.0725 | loss(seq) 0.0064 | grad 5.6590 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4310
[2023-09-02 01:15:46,685::train::INFO] [train] Iter 04354 | loss 2.2740 | loss(rot) 1.3462 | loss(pos) 0.2932 | loss(seq) 0.6346 | grad 4.0330 | lr 0.0010 | time_forward 1.3460 | time_backward 1.4890
[2023-09-02 01:15:56,967::train::INFO] [train] Iter 04355 | loss 0.6388 | loss(rot) 0.3356 | loss(pos) 0.2185 | loss(seq) 0.0847 | grad 3.0359 | lr 0.0010 | time_forward 4.1920 | time_backward 6.0870
[2023-09-02 01:16:07,240::train::INFO] [train] Iter 04356 | loss 2.2350 | loss(rot) 2.1054 | loss(pos) 0.1130 | loss(seq) 0.0166 | grad 3.3468 | lr 0.0010 | time_forward 4.1890 | time_backward 6.0810
[2023-09-02 01:16:10,042::train::INFO] [train] Iter 04357 | loss 1.2650 | loss(rot) 0.0979 | loss(pos) 1.1514 | loss(seq) 0.0158 | grad 6.2549 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4720
[2023-09-02 01:16:12,877::train::INFO] [train] Iter 04358 | loss 2.3038 | loss(rot) 1.4207 | loss(pos) 0.3786 | loss(seq) 0.5045 | grad 5.2447 | lr 0.0010 | time_forward 1.3430 | time_backward 1.4890
[2023-09-02 01:16:20,085::train::INFO] [train] Iter 04359 | loss 2.1888 | loss(rot) 1.9793 | loss(pos) 0.2087 | loss(seq) 0.0007 | grad 3.4961 | lr 0.0010 | time_forward 3.0060 | time_backward 4.1730
[2023-09-02 01:16:29,592::train::INFO] [train] Iter 04360 | loss 2.4966 | loss(rot) 2.2516 | loss(pos) 0.2353 | loss(seq) 0.0097 | grad 4.5506 | lr 0.0010 | time_forward 4.0740 | time_backward 5.4290
[2023-09-02 01:16:38,879::train::INFO] [train] Iter 04361 | loss 3.4583 | loss(rot) 3.3643 | loss(pos) 0.0940 | loss(seq) 0.0000 | grad 2.7862 | lr 0.0010 | time_forward 3.8870 | time_backward 5.3960
[2023-09-02 01:16:41,609::train::INFO] [train] Iter 04362 | loss 2.4576 | loss(rot) 1.9891 | loss(pos) 0.1350 | loss(seq) 0.3334 | grad 5.0135 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4400
[2023-09-02 01:16:48,742::train::INFO] [train] Iter 04363 | loss 0.7007 | loss(rot) 0.2478 | loss(pos) 0.3823 | loss(seq) 0.0707 | grad 3.6908 | lr 0.0010 | time_forward 3.0340 | time_backward 4.0880
[2023-09-02 01:16:51,463::train::INFO] [train] Iter 04364 | loss 1.2985 | loss(rot) 0.2984 | loss(pos) 0.9519 | loss(seq) 0.0482 | grad 3.3968 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4580
[2023-09-02 01:16:54,867::train::INFO] [train] Iter 04365 | loss 1.8426 | loss(rot) 0.7668 | loss(pos) 0.5431 | loss(seq) 0.5327 | grad 3.4039 | lr 0.0010 | time_forward 1.4530 | time_backward 1.9470
[2023-09-02 01:17:04,901::train::INFO] [train] Iter 04366 | loss 2.4736 | loss(rot) 2.1091 | loss(pos) 0.2156 | loss(seq) 0.1489 | grad 4.3201 | lr 0.0010 | time_forward 4.0510 | time_backward 5.9790
[2023-09-02 01:17:14,163::train::INFO] [train] Iter 04367 | loss 3.0112 | loss(rot) 2.7518 | loss(pos) 0.2529 | loss(seq) 0.0066 | grad 4.6937 | lr 0.0010 | time_forward 3.8770 | time_backward 5.3810
[2023-09-02 01:17:22,820::train::INFO] [train] Iter 04368 | loss 1.5885 | loss(rot) 0.6937 | loss(pos) 0.4237 | loss(seq) 0.4712 | grad 4.6769 | lr 0.0010 | time_forward 3.6470 | time_backward 5.0070
[2023-09-02 01:17:31,351::train::INFO] [train] Iter 04369 | loss 3.4754 | loss(rot) 3.2888 | loss(pos) 0.1678 | loss(seq) 0.0188 | grad 3.8012 | lr 0.0010 | time_forward 3.6670 | time_backward 4.8610
[2023-09-02 01:17:39,921::train::INFO] [train] Iter 04370 | loss 1.4429 | loss(rot) 0.3968 | loss(pos) 0.6393 | loss(seq) 0.4068 | grad 3.5905 | lr 0.0010 | time_forward 3.5900 | time_backward 4.9770
[2023-09-02 01:17:49,746::train::INFO] [train] Iter 04371 | loss 2.3752 | loss(rot) 1.7214 | loss(pos) 0.1672 | loss(seq) 0.4866 | grad 4.3010 | lr 0.0010 | time_forward 3.8670 | time_backward 5.9550
[2023-09-02 01:17:52,457::train::INFO] [train] Iter 04372 | loss 2.7186 | loss(rot) 2.0951 | loss(pos) 0.2126 | loss(seq) 0.4109 | grad 2.8944 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4490
[2023-09-02 01:18:02,481::train::INFO] [train] Iter 04373 | loss 2.6209 | loss(rot) 2.3351 | loss(pos) 0.2803 | loss(seq) 0.0054 | grad 4.1951 | lr 0.0010 | time_forward 4.0960 | time_backward 5.9240
[2023-09-02 01:18:12,462::train::INFO] [train] Iter 04374 | loss 2.7149 | loss(rot) 2.1498 | loss(pos) 0.2847 | loss(seq) 0.2804 | grad 5.1002 | lr 0.0010 | time_forward 4.0310 | time_backward 5.9460
[2023-09-02 01:18:15,171::train::INFO] [train] Iter 04375 | loss 2.9177 | loss(rot) 2.7331 | loss(pos) 0.0994 | loss(seq) 0.0851 | grad 3.4657 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4390
[2023-09-02 01:18:22,696::train::INFO] [train] Iter 04376 | loss 0.6634 | loss(rot) 0.1231 | loss(pos) 0.5144 | loss(seq) 0.0259 | grad 3.2959 | lr 0.0010 | time_forward 3.2440 | time_backward 4.2620
[2023-09-02 01:18:29,868::train::INFO] [train] Iter 04377 | loss 1.0229 | loss(rot) 0.0497 | loss(pos) 0.9666 | loss(seq) 0.0066 | grad 4.0308 | lr 0.0010 | time_forward 3.0500 | time_backward 4.1190
[2023-09-02 01:18:38,201::train::INFO] [train] Iter 04378 | loss 0.7053 | loss(rot) 0.2481 | loss(pos) 0.4217 | loss(seq) 0.0355 | grad 4.0390 | lr 0.0010 | time_forward 3.4680 | time_backward 4.8610
[2023-09-02 01:18:40,951::train::INFO] [train] Iter 04379 | loss 1.2760 | loss(rot) 0.0288 | loss(pos) 1.2403 | loss(seq) 0.0068 | grad 5.6645 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4760
[2023-09-02 01:18:43,418::train::INFO] [train] Iter 04380 | loss 2.8559 | loss(rot) 2.6839 | loss(pos) 0.1346 | loss(seq) 0.0374 | grad 2.5568 | lr 0.0010 | time_forward 1.1790 | time_backward 1.2840
[2023-09-02 01:18:53,437::train::INFO] [train] Iter 04381 | loss 3.9596 | loss(rot) 0.0262 | loss(pos) 3.9334 | loss(seq) 0.0000 | grad 6.8281 | lr 0.0010 | time_forward 4.1280 | time_backward 5.8730
[2023-09-02 01:19:03,481::train::INFO] [train] Iter 04382 | loss 0.9316 | loss(rot) 0.1099 | loss(pos) 0.5398 | loss(seq) 0.2819 | grad 3.3008 | lr 0.0010 | time_forward 3.9880 | time_backward 6.0520
[2023-09-02 01:19:13,697::train::INFO] [train] Iter 04383 | loss 2.8054 | loss(rot) 2.3763 | loss(pos) 0.1879 | loss(seq) 0.2413 | grad 3.5192 | lr 0.0010 | time_forward 4.1200 | time_backward 6.0930
[2023-09-02 01:19:23,762::train::INFO] [train] Iter 04384 | loss 2.1642 | loss(rot) 1.3137 | loss(pos) 0.2626 | loss(seq) 0.5878 | grad 3.7772 | lr 0.0010 | time_forward 4.0450 | time_backward 6.0160
[2023-09-02 01:19:26,518::train::INFO] [train] Iter 04385 | loss 3.0911 | loss(rot) 2.9752 | loss(pos) 0.1158 | loss(seq) 0.0000 | grad 3.8570 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4790
[2023-09-02 01:19:29,320::train::INFO] [train] Iter 04386 | loss 2.7298 | loss(rot) 2.5341 | loss(pos) 0.1938 | loss(seq) 0.0018 | grad 3.1146 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4760
[2023-09-02 01:19:32,184::train::INFO] [train] Iter 04387 | loss 2.4592 | loss(rot) 1.6469 | loss(pos) 0.2979 | loss(seq) 0.5145 | grad 6.3923 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4950
[2023-09-02 01:19:35,690::train::INFO] [train] Iter 04388 | loss 2.1076 | loss(rot) 0.3360 | loss(pos) 1.7385 | loss(seq) 0.0330 | grad 6.8425 | lr 0.0010 | time_forward 1.5180 | time_backward 1.9590
[2023-09-02 01:19:45,882::train::INFO] [train] Iter 04389 | loss 2.5061 | loss(rot) 1.6363 | loss(pos) 0.2336 | loss(seq) 0.6362 | grad 4.2778 | lr 0.0010 | time_forward 4.2540 | time_backward 5.9220
[2023-09-02 01:19:55,206::train::INFO] [train] Iter 04390 | loss 0.7954 | loss(rot) 0.0682 | loss(pos) 0.7173 | loss(seq) 0.0099 | grad 4.2147 | lr 0.0010 | time_forward 3.9170 | time_backward 5.4040