text
stringlengths
56
1.16k
[2023-09-02 01:20:03,616::train::INFO] [train] Iter 04391 | loss 1.7038 | loss(rot) 0.9527 | loss(pos) 0.4072 | loss(seq) 0.3440 | grad 5.3329 | lr 0.0010 | time_forward 3.5470 | time_backward 4.8600
[2023-09-02 01:20:13,482::train::INFO] [train] Iter 04392 | loss 0.7738 | loss(rot) 0.2217 | loss(pos) 0.3834 | loss(seq) 0.1687 | grad 4.0825 | lr 0.0010 | time_forward 4.1680 | time_backward 5.6950
[2023-09-02 01:20:22,558::train::INFO] [train] Iter 04393 | loss 1.9987 | loss(rot) 1.6560 | loss(pos) 0.1015 | loss(seq) 0.2412 | grad 5.7129 | lr 0.0010 | time_forward 3.7320 | time_backward 5.3400
[2023-09-02 01:20:25,343::train::INFO] [train] Iter 04394 | loss 2.2607 | loss(rot) 1.1986 | loss(pos) 0.5003 | loss(seq) 0.5618 | grad 4.9087 | lr 0.0010 | time_forward 1.3310 | time_backward 1.4500
[2023-09-02 01:20:34,885::train::INFO] [train] Iter 04395 | loss 1.5240 | loss(rot) 0.6164 | loss(pos) 0.4342 | loss(seq) 0.4734 | grad 5.6754 | lr 0.0010 | time_forward 4.1580 | time_backward 5.3800
[2023-09-02 01:20:44,918::train::INFO] [train] Iter 04396 | loss 2.9853 | loss(rot) 2.5652 | loss(pos) 0.1648 | loss(seq) 0.2553 | grad 3.4067 | lr 0.0010 | time_forward 4.2700 | time_backward 5.7600
[2023-09-02 01:20:47,629::train::INFO] [train] Iter 04397 | loss 1.3112 | loss(rot) 0.1602 | loss(pos) 0.8294 | loss(seq) 0.3216 | grad 5.6466 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4370
[2023-09-02 01:20:56,039::train::INFO] [train] Iter 04398 | loss 2.5514 | loss(rot) 1.8650 | loss(pos) 0.3688 | loss(seq) 0.3176 | grad 4.8343 | lr 0.0010 | time_forward 3.5670 | time_backward 4.8390
[2023-09-02 01:20:58,705::train::INFO] [train] Iter 04399 | loss 2.3319 | loss(rot) 1.7416 | loss(pos) 0.0886 | loss(seq) 0.5017 | grad 2.2977 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4060
[2023-09-02 01:21:08,690::train::INFO] [train] Iter 04400 | loss 1.2494 | loss(rot) 0.2956 | loss(pos) 0.7132 | loss(seq) 0.2406 | grad 3.9964 | lr 0.0010 | time_forward 4.2210 | time_backward 5.7610
[2023-09-02 01:21:11,424::train::INFO] [train] Iter 04401 | loss 2.0337 | loss(rot) 1.3602 | loss(pos) 0.2042 | loss(seq) 0.4693 | grad 4.0631 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4020
[2023-09-02 01:21:21,634::train::INFO] [train] Iter 04402 | loss 1.3046 | loss(rot) 0.3593 | loss(pos) 0.7721 | loss(seq) 0.1733 | grad 3.2904 | lr 0.0010 | time_forward 4.2870 | time_backward 5.9200
[2023-09-02 01:21:31,467::train::INFO] [train] Iter 04403 | loss 2.3682 | loss(rot) 1.6428 | loss(pos) 0.3488 | loss(seq) 0.3766 | grad 4.4932 | lr 0.0010 | time_forward 3.7780 | time_backward 6.0510
[2023-09-02 01:21:40,031::train::INFO] [train] Iter 04404 | loss 2.3549 | loss(rot) 2.1672 | loss(pos) 0.1418 | loss(seq) 0.0459 | grad 3.8807 | lr 0.0010 | time_forward 3.5100 | time_backward 5.0510
[2023-09-02 01:21:49,293::train::INFO] [train] Iter 04405 | loss 2.6707 | loss(rot) 2.5828 | loss(pos) 0.0879 | loss(seq) 0.0000 | grad 5.0691 | lr 0.0010 | time_forward 3.8970 | time_backward 5.3620
[2023-09-02 01:21:59,406::train::INFO] [train] Iter 04406 | loss 2.5841 | loss(rot) 1.8134 | loss(pos) 0.2490 | loss(seq) 0.5217 | grad 4.2239 | lr 0.0010 | time_forward 4.0530 | time_backward 6.0560
[2023-09-02 01:22:09,400::train::INFO] [train] Iter 04407 | loss 2.3899 | loss(rot) 1.5138 | loss(pos) 0.4382 | loss(seq) 0.4380 | grad 3.5887 | lr 0.0010 | time_forward 4.0900 | time_backward 5.9010
[2023-09-02 01:22:18,613::train::INFO] [train] Iter 04408 | loss 1.3023 | loss(rot) 0.4475 | loss(pos) 0.5016 | loss(seq) 0.3532 | grad 3.2206 | lr 0.0010 | time_forward 3.7710 | time_backward 5.4390
[2023-09-02 01:22:21,459::train::INFO] [train] Iter 04409 | loss 1.9073 | loss(rot) 1.2369 | loss(pos) 0.3261 | loss(seq) 0.3444 | grad 3.8618 | lr 0.0010 | time_forward 1.3070 | time_backward 1.5210
[2023-09-02 01:22:29,405::train::INFO] [train] Iter 04410 | loss 1.2850 | loss(rot) 0.5422 | loss(pos) 0.2627 | loss(seq) 0.4801 | grad 3.7038 | lr 0.0010 | time_forward 3.2430 | time_backward 4.6780
[2023-09-02 01:22:32,197::train::INFO] [train] Iter 04411 | loss 1.4961 | loss(rot) 0.6682 | loss(pos) 0.4982 | loss(seq) 0.3296 | grad 5.0721 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4950
[2023-09-02 01:22:38,247::train::INFO] [train] Iter 04412 | loss 2.6031 | loss(rot) 2.4032 | loss(pos) 0.1988 | loss(seq) 0.0011 | grad 5.3524 | lr 0.0010 | time_forward 2.5130 | time_backward 3.5350
[2023-09-02 01:22:47,224::train::INFO] [train] Iter 04413 | loss 1.2840 | loss(rot) 0.4309 | loss(pos) 0.7552 | loss(seq) 0.0980 | grad 4.1000 | lr 0.0010 | time_forward 3.7320 | time_backward 5.2400
[2023-09-02 01:22:56,636::train::INFO] [train] Iter 04414 | loss 2.2898 | loss(rot) 0.0319 | loss(pos) 2.2568 | loss(seq) 0.0011 | grad 7.3894 | lr 0.0010 | time_forward 3.9170 | time_backward 5.4910
[2023-09-02 01:23:06,613::train::INFO] [train] Iter 04415 | loss 1.8311 | loss(rot) 1.5857 | loss(pos) 0.2454 | loss(seq) 0.0000 | grad 4.3078 | lr 0.0010 | time_forward 4.0450 | time_backward 5.9290
[2023-09-02 01:23:09,438::train::INFO] [train] Iter 04416 | loss 0.8034 | loss(rot) 0.1565 | loss(pos) 0.5781 | loss(seq) 0.0688 | grad 4.7311 | lr 0.0010 | time_forward 1.3970 | time_backward 1.4240
[2023-09-02 01:23:17,882::train::INFO] [train] Iter 04417 | loss 2.5895 | loss(rot) 2.3247 | loss(pos) 0.2645 | loss(seq) 0.0003 | grad 4.9472 | lr 0.0010 | time_forward 3.6340 | time_backward 4.8070
[2023-09-02 01:23:27,686::train::INFO] [train] Iter 04418 | loss 2.2010 | loss(rot) 1.7749 | loss(pos) 0.1234 | loss(seq) 0.3026 | grad 3.7876 | lr 0.0010 | time_forward 3.9780 | time_backward 5.8230
[2023-09-02 01:23:35,077::train::INFO] [train] Iter 04419 | loss 2.8424 | loss(rot) 2.4218 | loss(pos) 0.2792 | loss(seq) 0.1413 | grad 4.7581 | lr 0.0010 | time_forward 3.1180 | time_backward 4.2700
[2023-09-02 01:23:41,561::train::INFO] [train] Iter 04420 | loss 2.2792 | loss(rot) 2.0845 | loss(pos) 0.1904 | loss(seq) 0.0044 | grad 3.3891 | lr 0.0010 | time_forward 2.7090 | time_backward 3.7710
[2023-09-02 01:23:50,481::train::INFO] [train] Iter 04421 | loss 1.3745 | loss(rot) 0.8029 | loss(pos) 0.2311 | loss(seq) 0.3405 | grad 7.5597 | lr 0.0010 | time_forward 3.8190 | time_backward 5.0990
[2023-09-02 01:23:52,764::train::INFO] [train] Iter 04422 | loss 2.0721 | loss(rot) 1.5952 | loss(pos) 0.3073 | loss(seq) 0.1697 | grad 6.1131 | lr 0.0010 | time_forward 1.0650 | time_backward 1.2140
[2023-09-02 01:24:03,065::train::INFO] [train] Iter 04423 | loss 3.0859 | loss(rot) 2.3895 | loss(pos) 0.2483 | loss(seq) 0.4481 | grad 4.1792 | lr 0.0010 | time_forward 4.3460 | time_backward 5.9510
[2023-09-02 01:24:05,785::train::INFO] [train] Iter 04424 | loss 2.7925 | loss(rot) 2.5354 | loss(pos) 0.2551 | loss(seq) 0.0020 | grad 4.1035 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4400
[2023-09-02 01:24:15,714::train::INFO] [train] Iter 04425 | loss 2.3784 | loss(rot) 2.2644 | loss(pos) 0.0943 | loss(seq) 0.0198 | grad 5.4081 | lr 0.0010 | time_forward 3.9260 | time_backward 5.9990
[2023-09-02 01:24:24,462::train::INFO] [train] Iter 04426 | loss 1.1208 | loss(rot) 0.7025 | loss(pos) 0.3609 | loss(seq) 0.0573 | grad 6.1481 | lr 0.0010 | time_forward 3.6710 | time_backward 5.0740
[2023-09-02 01:24:34,507::train::INFO] [train] Iter 04427 | loss 2.4363 | loss(rot) 2.0946 | loss(pos) 0.1834 | loss(seq) 0.1582 | grad 4.2711 | lr 0.0010 | time_forward 4.0770 | time_backward 5.9640
[2023-09-02 01:24:37,223::train::INFO] [train] Iter 04428 | loss 1.0774 | loss(rot) 0.2492 | loss(pos) 0.7581 | loss(seq) 0.0701 | grad 6.8111 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4360
[2023-09-02 01:24:40,011::train::INFO] [train] Iter 04429 | loss 1.9210 | loss(rot) 1.0171 | loss(pos) 0.3959 | loss(seq) 0.5081 | grad 4.0658 | lr 0.0010 | time_forward 1.3570 | time_backward 1.4290
[2023-09-02 01:24:48,920::train::INFO] [train] Iter 04430 | loss 1.7955 | loss(rot) 0.8313 | loss(pos) 0.6545 | loss(seq) 0.3098 | grad 3.9146 | lr 0.0010 | time_forward 3.6950 | time_backward 5.2110
[2023-09-02 01:24:51,650::train::INFO] [train] Iter 04431 | loss 2.6753 | loss(rot) 2.3656 | loss(pos) 0.3085 | loss(seq) 0.0013 | grad 3.9579 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4480
[2023-09-02 01:24:58,690::train::INFO] [train] Iter 04432 | loss 1.4949 | loss(rot) 0.4482 | loss(pos) 0.7421 | loss(seq) 0.3045 | grad 5.5325 | lr 0.0010 | time_forward 2.8920 | time_backward 4.1450
[2023-09-02 01:25:08,591::train::INFO] [train] Iter 04433 | loss 1.9132 | loss(rot) 0.0387 | loss(pos) 1.8702 | loss(seq) 0.0043 | grad 7.2878 | lr 0.0010 | time_forward 4.0280 | time_backward 5.8690
[2023-09-02 01:25:18,440::train::INFO] [train] Iter 04434 | loss 2.7655 | loss(rot) 1.6977 | loss(pos) 0.5402 | loss(seq) 0.5277 | grad 5.0703 | lr 0.0010 | time_forward 3.9500 | time_backward 5.8950
[2023-09-02 01:25:26,142::train::INFO] [train] Iter 04435 | loss 1.8219 | loss(rot) 1.6358 | loss(pos) 0.1858 | loss(seq) 0.0003 | grad 4.5260 | lr 0.0010 | time_forward 3.2140 | time_backward 4.4840
[2023-09-02 01:25:34,896::train::INFO] [train] Iter 04436 | loss 2.7168 | loss(rot) 2.4142 | loss(pos) 0.2118 | loss(seq) 0.0908 | grad 4.7199 | lr 0.0010 | time_forward 3.7930 | time_backward 4.9580
[2023-09-02 01:25:44,846::train::INFO] [train] Iter 04437 | loss 3.0295 | loss(rot) 2.2186 | loss(pos) 0.4538 | loss(seq) 0.3571 | grad 4.9353 | lr 0.0010 | time_forward 3.8940 | time_backward 6.0530
[2023-09-02 01:25:54,286::train::INFO] [train] Iter 04438 | loss 2.7899 | loss(rot) 0.0413 | loss(pos) 2.7481 | loss(seq) 0.0005 | grad 12.3669 | lr 0.0010 | time_forward 4.0040 | time_backward 5.4290
[2023-09-02 01:26:04,188::train::INFO] [train] Iter 04439 | loss 0.7081 | loss(rot) 0.0710 | loss(pos) 0.6155 | loss(seq) 0.0216 | grad 4.1926 | lr 0.0010 | time_forward 3.9300 | time_backward 5.9680
[2023-09-02 01:26:13,204::train::INFO] [train] Iter 04440 | loss 1.6456 | loss(rot) 0.6395 | loss(pos) 0.5952 | loss(seq) 0.4109 | grad 5.2215 | lr 0.0010 | time_forward 3.7780 | time_backward 5.2360
[2023-09-02 01:26:23,488::train::INFO] [train] Iter 04441 | loss 1.5120 | loss(rot) 0.5993 | loss(pos) 0.4594 | loss(seq) 0.4534 | grad 4.1126 | lr 0.0010 | time_forward 4.1620 | time_backward 6.1190
[2023-09-02 01:26:33,829::train::INFO] [train] Iter 04442 | loss 1.9967 | loss(rot) 1.8718 | loss(pos) 0.1218 | loss(seq) 0.0031 | grad 3.5601 | lr 0.0010 | time_forward 4.2280 | time_backward 6.1090
[2023-09-02 01:26:43,084::train::INFO] [train] Iter 04443 | loss 2.4485 | loss(rot) 2.0239 | loss(pos) 0.1488 | loss(seq) 0.2759 | grad 3.7420 | lr 0.0010 | time_forward 3.9020 | time_backward 5.3500
[2023-09-02 01:26:53,343::train::INFO] [train] Iter 04444 | loss 2.0770 | loss(rot) 0.9132 | loss(pos) 0.8712 | loss(seq) 0.2926 | grad 3.1291 | lr 0.0010 | time_forward 4.2440 | time_backward 6.0110
[2023-09-02 01:26:56,176::train::INFO] [train] Iter 04445 | loss 2.6469 | loss(rot) 2.5089 | loss(pos) 0.1346 | loss(seq) 0.0033 | grad 4.7217 | lr 0.0010 | time_forward 1.3220 | time_backward 1.5070
[2023-09-02 01:26:59,040::train::INFO] [train] Iter 04446 | loss 3.0426 | loss(rot) 2.8188 | loss(pos) 0.2238 | loss(seq) 0.0000 | grad 4.4742 | lr 0.0010 | time_forward 1.3530 | time_backward 1.5080
[2023-09-02 01:27:01,782::train::INFO] [train] Iter 04447 | loss 2.3272 | loss(rot) 1.5116 | loss(pos) 0.3131 | loss(seq) 0.5026 | grad 4.7780 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4710
[2023-09-02 01:27:10,387::train::INFO] [train] Iter 04448 | loss 2.4520 | loss(rot) 1.4545 | loss(pos) 0.3983 | loss(seq) 0.5991 | grad 8.0614 | lr 0.0010 | time_forward 3.6330 | time_backward 4.9680
[2023-09-02 01:27:20,380::train::INFO] [train] Iter 04449 | loss 1.9457 | loss(rot) 1.4709 | loss(pos) 0.2756 | loss(seq) 0.1992 | grad 3.3359 | lr 0.0010 | time_forward 3.9780 | time_backward 6.0110
[2023-09-02 01:27:28,990::train::INFO] [train] Iter 04450 | loss 2.5676 | loss(rot) 2.0016 | loss(pos) 0.2169 | loss(seq) 0.3490 | grad 4.5620 | lr 0.0010 | time_forward 3.4090 | time_backward 5.1970
[2023-09-02 01:27:31,724::train::INFO] [train] Iter 04451 | loss 1.7133 | loss(rot) 0.9242 | loss(pos) 0.2568 | loss(seq) 0.5322 | grad 4.6465 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4700
[2023-09-02 01:27:34,499::train::INFO] [train] Iter 04452 | loss 2.5763 | loss(rot) 1.9126 | loss(pos) 0.2565 | loss(seq) 0.4073 | grad 4.0213 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4540
[2023-09-02 01:27:41,624::train::INFO] [train] Iter 04453 | loss 0.9615 | loss(rot) 0.4651 | loss(pos) 0.2905 | loss(seq) 0.2059 | grad 3.8821 | lr 0.0010 | time_forward 3.0310 | time_backward 4.0900
[2023-09-02 01:27:52,181::train::INFO] [train] Iter 04454 | loss 1.9871 | loss(rot) 1.1095 | loss(pos) 0.5242 | loss(seq) 0.3533 | grad 5.1994 | lr 0.0010 | time_forward 4.2480 | time_backward 6.3050
[2023-09-02 01:27:59,671::train::INFO] [train] Iter 04455 | loss 1.4957 | loss(rot) 0.3779 | loss(pos) 0.4578 | loss(seq) 0.6599 | grad 5.6365 | lr 0.0010 | time_forward 3.1580 | time_backward 4.3280
[2023-09-02 01:28:02,012::train::INFO] [train] Iter 04456 | loss 2.7616 | loss(rot) 1.5400 | loss(pos) 0.8223 | loss(seq) 0.3993 | grad 4.0481 | lr 0.0010 | time_forward 1.1030 | time_backward 1.2340
[2023-09-02 01:28:12,094::train::INFO] [train] Iter 04457 | loss 1.6881 | loss(rot) 0.3756 | loss(pos) 0.9747 | loss(seq) 0.3378 | grad 4.5294 | lr 0.0010 | time_forward 4.2140 | time_backward 5.8650
[2023-09-02 01:28:22,005::train::INFO] [train] Iter 04458 | loss 2.4691 | loss(rot) 2.2250 | loss(pos) 0.2180 | loss(seq) 0.0261 | grad 5.1603 | lr 0.0010 | time_forward 3.9120 | time_backward 5.9950
[2023-09-02 01:28:24,681::train::INFO] [train] Iter 04459 | loss 2.0667 | loss(rot) 1.7144 | loss(pos) 0.3311 | loss(seq) 0.0211 | grad 5.4557 | lr 0.0010 | time_forward 1.2770 | time_backward 1.3960
[2023-09-02 01:28:28,013::train::INFO] [train] Iter 04460 | loss 1.6027 | loss(rot) 0.1801 | loss(pos) 1.2558 | loss(seq) 0.1669 | grad 4.1913 | lr 0.0010 | time_forward 1.4640 | time_backward 1.8640
[2023-09-02 01:28:30,642::train::INFO] [train] Iter 04461 | loss 2.8494 | loss(rot) 2.2630 | loss(pos) 0.2573 | loss(seq) 0.3291 | grad 4.8824 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3810
[2023-09-02 01:28:33,345::train::INFO] [train] Iter 04462 | loss 0.8778 | loss(rot) 0.3991 | loss(pos) 0.3670 | loss(seq) 0.1117 | grad 4.6861 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4020
[2023-09-02 01:28:42,329::train::INFO] [train] Iter 04463 | loss 1.0870 | loss(rot) 0.0795 | loss(pos) 0.9965 | loss(seq) 0.0110 | grad 7.0133 | lr 0.0010 | time_forward 3.9060 | time_backward 5.0490
[2023-09-02 01:28:44,756::train::INFO] [train] Iter 04464 | loss 1.5108 | loss(rot) 0.6781 | loss(pos) 0.3313 | loss(seq) 0.5014 | grad 4.5323 | lr 0.0010 | time_forward 1.1770 | time_backward 1.2440
[2023-09-02 01:28:54,864::train::INFO] [train] Iter 04465 | loss 1.4908 | loss(rot) 0.3956 | loss(pos) 0.9122 | loss(seq) 0.1830 | grad 4.6256 | lr 0.0010 | time_forward 4.2780 | time_backward 5.8070
[2023-09-02 01:29:04,622::train::INFO] [train] Iter 04466 | loss 2.7236 | loss(rot) 2.3762 | loss(pos) 0.3453 | loss(seq) 0.0021 | grad 7.7150 | lr 0.0010 | time_forward 3.8580 | time_backward 5.8960
[2023-09-02 01:29:07,322::train::INFO] [train] Iter 04467 | loss 1.8203 | loss(rot) 1.0305 | loss(pos) 0.2918 | loss(seq) 0.4980 | grad 4.7919 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4460
[2023-09-02 01:29:16,552::train::INFO] [train] Iter 04468 | loss 1.8955 | loss(rot) 1.5879 | loss(pos) 0.2383 | loss(seq) 0.0693 | grad 5.1292 | lr 0.0010 | time_forward 3.9290 | time_backward 5.2950
[2023-09-02 01:29:19,256::train::INFO] [train] Iter 04469 | loss 2.6308 | loss(rot) 2.1359 | loss(pos) 0.2019 | loss(seq) 0.2930 | grad 4.1523 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4420
[2023-09-02 01:29:27,674::train::INFO] [train] Iter 04470 | loss 2.6937 | loss(rot) 2.4991 | loss(pos) 0.1883 | loss(seq) 0.0064 | grad 3.8724 | lr 0.0010 | time_forward 3.6390 | time_backward 4.7750
[2023-09-02 01:29:37,403::train::INFO] [train] Iter 04471 | loss 2.4084 | loss(rot) 2.3072 | loss(pos) 0.0784 | loss(seq) 0.0227 | grad 4.4062 | lr 0.0010 | time_forward 4.0760 | time_backward 5.6490
[2023-09-02 01:29:47,556::train::INFO] [train] Iter 04472 | loss 2.0963 | loss(rot) 1.3487 | loss(pos) 0.2539 | loss(seq) 0.4937 | grad 3.6618 | lr 0.0010 | time_forward 4.1580 | time_backward 5.9900
[2023-09-02 01:29:54,633::train::INFO] [train] Iter 04473 | loss 1.8619 | loss(rot) 0.2341 | loss(pos) 1.6152 | loss(seq) 0.0126 | grad 5.9825 | lr 0.0010 | time_forward 3.0230 | time_backward 4.0510
[2023-09-02 01:30:02,947::train::INFO] [train] Iter 04474 | loss 1.7607 | loss(rot) 0.1046 | loss(pos) 1.6324 | loss(seq) 0.0237 | grad 9.7725 | lr 0.0010 | time_forward 3.4800 | time_backward 4.8310
[2023-09-02 01:30:12,522::train::INFO] [train] Iter 04475 | loss 2.5678 | loss(rot) 2.1227 | loss(pos) 0.1570 | loss(seq) 0.2881 | grad 4.7587 | lr 0.0010 | time_forward 3.8600 | time_backward 5.7090
[2023-09-02 01:30:15,295::train::INFO] [train] Iter 04476 | loss 2.1669 | loss(rot) 1.7765 | loss(pos) 0.1955 | loss(seq) 0.1949 | grad 4.5283 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4800
[2023-09-02 01:30:23,656::train::INFO] [train] Iter 04477 | loss 1.6324 | loss(rot) 0.8655 | loss(pos) 0.1576 | loss(seq) 0.6092 | grad 3.6052 | lr 0.0010 | time_forward 3.5350 | time_backward 4.8220
[2023-09-02 01:30:26,022::train::INFO] [train] Iter 04478 | loss 1.6546 | loss(rot) 0.8694 | loss(pos) 0.3217 | loss(seq) 0.4635 | grad 3.2179 | lr 0.0010 | time_forward 1.1600 | time_backward 1.2030
[2023-09-02 01:30:34,398::train::INFO] [train] Iter 04479 | loss 1.7193 | loss(rot) 0.0950 | loss(pos) 1.6168 | loss(seq) 0.0075 | grad 8.7853 | lr 0.0010 | time_forward 3.5470 | time_backward 4.8030
[2023-09-02 01:30:44,294::train::INFO] [train] Iter 04480 | loss 2.6784 | loss(rot) 2.4019 | loss(pos) 0.1244 | loss(seq) 0.1521 | grad 3.7764 | lr 0.0010 | time_forward 4.0340 | time_backward 5.8580
[2023-09-02 01:30:52,406::train::INFO] [train] Iter 04481 | loss 1.9874 | loss(rot) 0.5669 | loss(pos) 0.6783 | loss(seq) 0.7422 | grad 4.8494 | lr 0.0010 | time_forward 3.4370 | time_backward 4.6730
[2023-09-02 01:30:55,108::train::INFO] [train] Iter 04482 | loss 3.2258 | loss(rot) 3.0548 | loss(pos) 0.1710 | loss(seq) 0.0000 | grad 5.5279 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4030
[2023-09-02 01:31:04,889::train::INFO] [train] Iter 04483 | loss 2.9498 | loss(rot) 2.5685 | loss(pos) 0.2303 | loss(seq) 0.1511 | grad 4.0016 | lr 0.0010 | time_forward 4.0310 | time_backward 5.7460
[2023-09-02 01:31:07,168::train::INFO] [train] Iter 04484 | loss 1.1218 | loss(rot) 0.4348 | loss(pos) 0.6229 | loss(seq) 0.0641 | grad 4.3327 | lr 0.0010 | time_forward 1.0670 | time_backward 1.2090
[2023-09-02 01:31:10,639::train::INFO] [train] Iter 04485 | loss 2.8051 | loss(rot) 1.9189 | loss(pos) 0.3854 | loss(seq) 0.5008 | grad 3.4307 | lr 0.0010 | time_forward 1.4970 | time_backward 1.9700
[2023-09-02 01:31:19,403::train::INFO] [train] Iter 04486 | loss 1.2770 | loss(rot) 0.4938 | loss(pos) 0.2364 | loss(seq) 0.5468 | grad 4.7130 | lr 0.0010 | time_forward 3.7200 | time_backward 5.0420
[2023-09-02 01:31:22,132::train::INFO] [train] Iter 04487 | loss 2.6576 | loss(rot) 2.3459 | loss(pos) 0.2926 | loss(seq) 0.0191 | grad 4.8070 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4410
[2023-09-02 01:31:24,879::train::INFO] [train] Iter 04488 | loss 1.3355 | loss(rot) 0.6420 | loss(pos) 0.2821 | loss(seq) 0.4113 | grad 5.4765 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4310
[2023-09-02 01:31:27,172::train::INFO] [train] Iter 04489 | loss 2.2305 | loss(rot) 1.5835 | loss(pos) 0.2509 | loss(seq) 0.3960 | grad 3.8191 | lr 0.0010 | time_forward 1.0870 | time_backward 1.2020
[2023-09-02 01:31:36,287::train::INFO] [train] Iter 04490 | loss 1.7763 | loss(rot) 0.2349 | loss(pos) 1.5318 | loss(seq) 0.0095 | grad 5.1897 | lr 0.0010 | time_forward 3.8250 | time_backward 5.2860