text
stringlengths
56
1.16k
[2023-09-02 01:31:45,030::train::INFO] [train] Iter 04491 | loss 2.2881 | loss(rot) 2.1634 | loss(pos) 0.1059 | loss(seq) 0.0188 | grad 6.8312 | lr 0.0010 | time_forward 3.6190 | time_backward 5.1210
[2023-09-02 01:31:50,146::train::INFO] [train] Iter 04492 | loss 2.7749 | loss(rot) 2.4936 | loss(pos) 0.1363 | loss(seq) 0.1450 | grad 4.1717 | lr 0.0010 | time_forward 2.1630 | time_backward 2.9490
[2023-09-02 01:31:59,197::train::INFO] [train] Iter 04493 | loss 2.6291 | loss(rot) 1.4850 | loss(pos) 0.5002 | loss(seq) 0.6440 | grad 6.1402 | lr 0.0010 | time_forward 3.9910 | time_backward 5.0550
[2023-09-02 01:32:02,536::train::INFO] [train] Iter 04494 | loss 1.2722 | loss(rot) 0.5534 | loss(pos) 0.3637 | loss(seq) 0.3552 | grad 3.0284 | lr 0.0010 | time_forward 1.4130 | time_backward 1.8650
[2023-09-02 01:32:11,289::train::INFO] [train] Iter 04495 | loss 3.1286 | loss(rot) 2.5903 | loss(pos) 0.3350 | loss(seq) 0.2033 | grad 5.4472 | lr 0.0010 | time_forward 3.8990 | time_backward 4.8510
[2023-09-02 01:32:13,980::train::INFO] [train] Iter 04496 | loss 3.1915 | loss(rot) 2.8496 | loss(pos) 0.2026 | loss(seq) 0.1392 | grad 3.6021 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4340
[2023-09-02 01:32:24,079::train::INFO] [train] Iter 04497 | loss 2.1605 | loss(rot) 1.1594 | loss(pos) 0.4826 | loss(seq) 0.5185 | grad 4.5097 | lr 0.0010 | time_forward 4.1250 | time_backward 5.9710
[2023-09-02 01:32:34,082::train::INFO] [train] Iter 04498 | loss 1.1683 | loss(rot) 0.2818 | loss(pos) 0.8500 | loss(seq) 0.0365 | grad 7.5432 | lr 0.0010 | time_forward 4.0130 | time_backward 5.9860
[2023-09-02 01:32:37,406::train::INFO] [train] Iter 04499 | loss 0.9700 | loss(rot) 0.2827 | loss(pos) 0.6011 | loss(seq) 0.0862 | grad 4.8494 | lr 0.0010 | time_forward 1.4560 | time_backward 1.8650
[2023-09-02 01:32:45,897::train::INFO] [train] Iter 04500 | loss 1.1630 | loss(rot) 0.4706 | loss(pos) 0.5781 | loss(seq) 0.1143 | grad 3.4862 | lr 0.0010 | time_forward 3.4720 | time_backward 5.0140
[2023-09-02 01:32:54,455::train::INFO] [train] Iter 04501 | loss 1.6527 | loss(rot) 0.6891 | loss(pos) 0.2514 | loss(seq) 0.7122 | grad 3.4239 | lr 0.0010 | time_forward 3.5790 | time_backward 4.9750
[2023-09-02 01:32:57,184::train::INFO] [train] Iter 04502 | loss 2.7508 | loss(rot) 2.4954 | loss(pos) 0.1620 | loss(seq) 0.0935 | grad 5.5472 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4520
[2023-09-02 01:33:05,899::train::INFO] [train] Iter 04503 | loss 0.9877 | loss(rot) 0.1614 | loss(pos) 0.4712 | loss(seq) 0.3551 | grad 4.0394 | lr 0.0010 | time_forward 3.5980 | time_backward 5.1140
[2023-09-02 01:33:08,659::train::INFO] [train] Iter 04504 | loss 2.8250 | loss(rot) 0.0145 | loss(pos) 2.4149 | loss(seq) 0.3956 | grad 13.9575 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4680
[2023-09-02 01:33:18,578::train::INFO] [train] Iter 04505 | loss 2.4758 | loss(rot) 2.0889 | loss(pos) 0.3614 | loss(seq) 0.0256 | grad 6.2467 | lr 0.0010 | time_forward 4.0670 | time_backward 5.8280
[2023-09-02 01:33:21,410::train::INFO] [train] Iter 04506 | loss 2.0714 | loss(rot) 1.0116 | loss(pos) 0.3900 | loss(seq) 0.6699 | grad 6.2910 | lr 0.0010 | time_forward 1.3100 | time_backward 1.5190
[2023-09-02 01:33:24,792::train::INFO] [train] Iter 04507 | loss 1.0575 | loss(rot) 0.2723 | loss(pos) 0.5727 | loss(seq) 0.2125 | grad 3.9589 | lr 0.0010 | time_forward 1.4410 | time_backward 1.9370
[2023-09-02 01:33:33,857::train::INFO] [train] Iter 04508 | loss 1.2633 | loss(rot) 0.6154 | loss(pos) 0.2997 | loss(seq) 0.3482 | grad 4.1358 | lr 0.0010 | time_forward 3.6890 | time_backward 5.3730
[2023-09-02 01:33:36,626::train::INFO] [train] Iter 04509 | loss 3.3596 | loss(rot) 3.0887 | loss(pos) 0.2689 | loss(seq) 0.0020 | grad 5.6460 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4750
[2023-09-02 01:33:45,159::train::INFO] [train] Iter 04510 | loss 1.3652 | loss(rot) 1.1103 | loss(pos) 0.1945 | loss(seq) 0.0604 | grad 5.0208 | lr 0.0010 | time_forward 3.4070 | time_backward 5.1220
[2023-09-02 01:33:55,367::train::INFO] [train] Iter 04511 | loss 1.4388 | loss(rot) 0.7422 | loss(pos) 0.2850 | loss(seq) 0.4116 | grad 3.5376 | lr 0.0010 | time_forward 4.0450 | time_backward 6.1600
[2023-09-02 01:34:03,977::train::INFO] [train] Iter 04512 | loss 2.9367 | loss(rot) 2.3240 | loss(pos) 0.2567 | loss(seq) 0.3559 | grad 4.6893 | lr 0.0010 | time_forward 3.5310 | time_backward 4.9180
[2023-09-02 01:34:12,674::train::INFO] [train] Iter 04513 | loss 2.6597 | loss(rot) 2.1904 | loss(pos) 0.1938 | loss(seq) 0.2755 | grad 3.8539 | lr 0.0010 | time_forward 3.7010 | time_backward 4.9920
[2023-09-02 01:34:22,807::train::INFO] [train] Iter 04514 | loss 1.5547 | loss(rot) 0.3205 | loss(pos) 1.1217 | loss(seq) 0.1125 | grad 5.8412 | lr 0.0010 | time_forward 4.1060 | time_backward 6.0220
[2023-09-02 01:34:31,029::train::INFO] [train] Iter 04515 | loss 1.9499 | loss(rot) 0.6021 | loss(pos) 0.8281 | loss(seq) 0.5198 | grad 6.5341 | lr 0.0010 | time_forward 3.3940 | time_backward 4.8240
[2023-09-02 01:34:33,755::train::INFO] [train] Iter 04516 | loss 3.7918 | loss(rot) 0.0471 | loss(pos) 3.7448 | loss(seq) 0.0000 | grad 8.4689 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4770
[2023-09-02 01:34:41,759::train::INFO] [train] Iter 04517 | loss 2.8669 | loss(rot) 2.1830 | loss(pos) 0.2251 | loss(seq) 0.4589 | grad 4.2257 | lr 0.0010 | time_forward 3.4010 | time_backward 4.6000
[2023-09-02 01:34:44,446::train::INFO] [train] Iter 04518 | loss 2.2295 | loss(rot) 2.0141 | loss(pos) 0.2154 | loss(seq) 0.0000 | grad 4.9312 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4100
[2023-09-02 01:34:51,485::train::INFO] [train] Iter 04519 | loss 3.1525 | loss(rot) 2.7528 | loss(pos) 0.3652 | loss(seq) 0.0345 | grad 4.2080 | lr 0.0010 | time_forward 2.9200 | time_backward 4.0830
[2023-09-02 01:34:58,847::train::INFO] [train] Iter 04520 | loss 1.2159 | loss(rot) 0.3603 | loss(pos) 0.5620 | loss(seq) 0.2937 | grad 3.2611 | lr 0.0010 | time_forward 3.0320 | time_backward 4.3270
[2023-09-02 01:35:01,626::train::INFO] [train] Iter 04521 | loss 2.4480 | loss(rot) 0.0920 | loss(pos) 2.0195 | loss(seq) 0.3365 | grad 4.9641 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4490
[2023-09-02 01:35:09,465::train::INFO] [train] Iter 04522 | loss 1.9856 | loss(rot) 0.6905 | loss(pos) 0.8739 | loss(seq) 0.4212 | grad 4.2630 | lr 0.0010 | time_forward 3.2410 | time_backward 4.5610
[2023-09-02 01:35:12,827::train::INFO] [train] Iter 04523 | loss 3.0620 | loss(rot) 2.7914 | loss(pos) 0.2706 | loss(seq) 0.0000 | grad 3.7046 | lr 0.0010 | time_forward 1.4550 | time_backward 1.9030
[2023-09-02 01:35:21,773::train::INFO] [train] Iter 04524 | loss 2.9214 | loss(rot) 2.4838 | loss(pos) 0.3014 | loss(seq) 0.1362 | grad 4.3470 | lr 0.0010 | time_forward 3.5890 | time_backward 5.3530
[2023-09-02 01:35:31,301::train::INFO] [train] Iter 04525 | loss 2.2496 | loss(rot) 1.5157 | loss(pos) 0.4959 | loss(seq) 0.2380 | grad 6.5096 | lr 0.0010 | time_forward 3.9310 | time_backward 5.5930
[2023-09-02 01:35:34,109::train::INFO] [train] Iter 04526 | loss 2.7165 | loss(rot) 2.5279 | loss(pos) 0.1887 | loss(seq) 0.0000 | grad 4.3455 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4820
[2023-09-02 01:35:44,126::train::INFO] [train] Iter 04527 | loss 2.4715 | loss(rot) 2.3016 | loss(pos) 0.1696 | loss(seq) 0.0003 | grad 4.6957 | lr 0.0010 | time_forward 4.1080 | time_backward 5.9040
[2023-09-02 01:35:54,003::train::INFO] [train] Iter 04528 | loss 1.2368 | loss(rot) 0.4980 | loss(pos) 0.5656 | loss(seq) 0.1732 | grad 3.5605 | lr 0.0010 | time_forward 4.0710 | time_backward 5.8030
[2023-09-02 01:35:56,552::train::INFO] [train] Iter 04529 | loss 1.9238 | loss(rot) 1.7741 | loss(pos) 0.1143 | loss(seq) 0.0354 | grad 3.9395 | lr 0.0010 | time_forward 1.2280 | time_backward 1.3170
[2023-09-02 01:36:04,550::train::INFO] [train] Iter 04530 | loss 3.2009 | loss(rot) 2.9717 | loss(pos) 0.2288 | loss(seq) 0.0003 | grad 3.7073 | lr 0.0010 | time_forward 3.3950 | time_backward 4.5820
[2023-09-02 01:36:11,782::train::INFO] [train] Iter 04531 | loss 2.4407 | loss(rot) 2.0213 | loss(pos) 0.4192 | loss(seq) 0.0001 | grad 8.0069 | lr 0.0010 | time_forward 3.1210 | time_backward 4.1080
[2023-09-02 01:36:19,086::train::INFO] [train] Iter 04532 | loss 1.4723 | loss(rot) 0.7914 | loss(pos) 0.5909 | loss(seq) 0.0900 | grad 5.0775 | lr 0.0010 | time_forward 3.1180 | time_backward 4.1830
[2023-09-02 01:36:27,731::train::INFO] [train] Iter 04533 | loss 2.3523 | loss(rot) 1.7461 | loss(pos) 0.1031 | loss(seq) 0.5031 | grad 4.1274 | lr 0.0010 | time_forward 3.7610 | time_backward 4.8810
[2023-09-02 01:36:31,099::train::INFO] [train] Iter 04534 | loss 2.6031 | loss(rot) 2.0068 | loss(pos) 0.1623 | loss(seq) 0.4340 | grad 5.3183 | lr 0.0010 | time_forward 1.4390 | time_backward 1.9260
[2023-09-02 01:36:39,830::train::INFO] [train] Iter 04535 | loss 1.5523 | loss(rot) 0.5903 | loss(pos) 0.4122 | loss(seq) 0.5498 | grad 5.2266 | lr 0.0010 | time_forward 3.6970 | time_backward 5.0280
[2023-09-02 01:36:48,788::train::INFO] [train] Iter 04536 | loss 2.1795 | loss(rot) 1.2655 | loss(pos) 0.4393 | loss(seq) 0.4747 | grad 5.2101 | lr 0.0010 | time_forward 3.7640 | time_backward 5.1910
[2023-09-02 01:36:56,924::train::INFO] [train] Iter 04537 | loss 1.6266 | loss(rot) 0.0481 | loss(pos) 1.0095 | loss(seq) 0.5690 | grad 5.7263 | lr 0.0010 | time_forward 3.4820 | time_backward 4.6510
[2023-09-02 01:36:59,655::train::INFO] [train] Iter 04538 | loss 1.2315 | loss(rot) 0.3809 | loss(pos) 0.6149 | loss(seq) 0.2356 | grad 4.9599 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4350
[2023-09-02 01:37:02,401::train::INFO] [train] Iter 04539 | loss 2.5259 | loss(rot) 1.7582 | loss(pos) 0.2492 | loss(seq) 0.5184 | grad 3.2650 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4520
[2023-09-02 01:37:12,198::train::INFO] [train] Iter 04540 | loss 3.2192 | loss(rot) 2.9154 | loss(pos) 0.1286 | loss(seq) 0.1752 | grad 4.9554 | lr 0.0010 | time_forward 3.8970 | time_backward 5.8960
[2023-09-02 01:37:21,055::train::INFO] [train] Iter 04541 | loss 2.0940 | loss(rot) 1.8648 | loss(pos) 0.2174 | loss(seq) 0.0118 | grad 5.4820 | lr 0.0010 | time_forward 3.5670 | time_backward 5.2860
[2023-09-02 01:37:29,146::train::INFO] [train] Iter 04542 | loss 3.0007 | loss(rot) 2.6857 | loss(pos) 0.3080 | loss(seq) 0.0070 | grad 5.3124 | lr 0.0010 | time_forward 3.3460 | time_backward 4.7390
[2023-09-02 01:37:38,235::train::INFO] [train] Iter 04543 | loss 2.7266 | loss(rot) 2.5501 | loss(pos) 0.1676 | loss(seq) 0.0089 | grad 3.5036 | lr 0.0010 | time_forward 3.7440 | time_backward 5.3410
[2023-09-02 01:37:46,855::train::INFO] [train] Iter 04544 | loss 0.9792 | loss(rot) 0.3998 | loss(pos) 0.4745 | loss(seq) 0.1048 | grad 4.3711 | lr 0.0010 | time_forward 3.5560 | time_backward 5.0600
[2023-09-02 01:37:56,987::train::INFO] [train] Iter 04545 | loss 2.9077 | loss(rot) 2.7050 | loss(pos) 0.2007 | loss(seq) 0.0020 | grad 4.0673 | lr 0.0010 | time_forward 4.0560 | time_backward 6.0720
[2023-09-02 01:38:06,973::train::INFO] [train] Iter 04546 | loss 1.9493 | loss(rot) 0.2598 | loss(pos) 0.9840 | loss(seq) 0.7055 | grad 4.5272 | lr 0.0010 | time_forward 4.1070 | time_backward 5.8750
[2023-09-02 01:38:10,412::train::INFO] [train] Iter 04547 | loss 2.4552 | loss(rot) 2.1319 | loss(pos) 0.1658 | loss(seq) 0.1575 | grad 3.2205 | lr 0.0010 | time_forward 1.4440 | time_backward 1.9920
[2023-09-02 01:38:13,265::train::INFO] [train] Iter 04548 | loss 2.0362 | loss(rot) 0.0255 | loss(pos) 2.0100 | loss(seq) 0.0007 | grad 3.3097 | lr 0.0010 | time_forward 1.2560 | time_backward 1.5930
[2023-09-02 01:38:16,196::train::INFO] [train] Iter 04549 | loss 1.0853 | loss(rot) 0.3338 | loss(pos) 0.5349 | loss(seq) 0.2166 | grad 3.4219 | lr 0.0010 | time_forward 1.3800 | time_backward 1.5470
[2023-09-02 01:38:18,564::train::INFO] [train] Iter 04550 | loss 2.3627 | loss(rot) 2.1450 | loss(pos) 0.2174 | loss(seq) 0.0003 | grad 3.5946 | lr 0.0010 | time_forward 1.1180 | time_backward 1.2460
[2023-09-02 01:38:21,364::train::INFO] [train] Iter 04551 | loss 1.8355 | loss(rot) 0.9535 | loss(pos) 0.3281 | loss(seq) 0.5539 | grad 4.6943 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4880
[2023-09-02 01:38:24,309::train::INFO] [train] Iter 04552 | loss 1.7951 | loss(rot) 1.1627 | loss(pos) 0.1718 | loss(seq) 0.4606 | grad 4.0266 | lr 0.0010 | time_forward 1.5110 | time_backward 1.4290
[2023-09-02 01:38:26,593::train::INFO] [train] Iter 04553 | loss 1.5895 | loss(rot) 0.7661 | loss(pos) 0.2629 | loss(seq) 0.5605 | grad 3.1263 | lr 0.0010 | time_forward 1.0430 | time_backward 1.1940
[2023-09-02 01:38:35,890::train::INFO] [train] Iter 04554 | loss 2.3807 | loss(rot) 1.4657 | loss(pos) 0.3694 | loss(seq) 0.5456 | grad 3.9268 | lr 0.0010 | time_forward 3.9650 | time_backward 5.3290
[2023-09-02 01:38:38,596::train::INFO] [train] Iter 04555 | loss 2.1977 | loss(rot) 1.6837 | loss(pos) 0.1261 | loss(seq) 0.3879 | grad 3.2630 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4190
[2023-09-02 01:38:44,646::train::INFO] [train] Iter 04556 | loss 0.5162 | loss(rot) 0.0725 | loss(pos) 0.4316 | loss(seq) 0.0121 | grad 2.1589 | lr 0.0010 | time_forward 2.6290 | time_backward 3.4170
[2023-09-02 01:38:47,320::train::INFO] [train] Iter 04557 | loss 2.3600 | loss(rot) 2.1660 | loss(pos) 0.1908 | loss(seq) 0.0032 | grad 3.3806 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4230
[2023-09-02 01:38:57,137::train::INFO] [train] Iter 04558 | loss 2.2922 | loss(rot) 1.6351 | loss(pos) 0.1949 | loss(seq) 0.4621 | grad 3.8427 | lr 0.0010 | time_forward 4.0380 | time_backward 5.7760
[2023-09-02 01:39:05,328::train::INFO] [train] Iter 04559 | loss 1.2043 | loss(rot) 0.1361 | loss(pos) 0.6367 | loss(seq) 0.4316 | grad 3.4440 | lr 0.0010 | time_forward 3.4700 | time_backward 4.7170
[2023-09-02 01:39:12,830::train::INFO] [train] Iter 04560 | loss 3.0746 | loss(rot) 2.4660 | loss(pos) 0.2672 | loss(seq) 0.3414 | grad 6.0505 | lr 0.0010 | time_forward 3.1190 | time_backward 4.3790
[2023-09-02 01:39:22,603::train::INFO] [train] Iter 04561 | loss 0.6728 | loss(rot) 0.1178 | loss(pos) 0.5313 | loss(seq) 0.0237 | grad 3.4457 | lr 0.0010 | time_forward 4.0650 | time_backward 5.7040
[2023-09-02 01:39:30,736::train::INFO] [train] Iter 04562 | loss 1.8898 | loss(rot) 1.0793 | loss(pos) 0.3372 | loss(seq) 0.4733 | grad 4.6636 | lr 0.0010 | time_forward 3.3840 | time_backward 4.7310
[2023-09-02 01:39:39,309::train::INFO] [train] Iter 04563 | loss 2.2134 | loss(rot) 1.7697 | loss(pos) 0.1699 | loss(seq) 0.2738 | grad 4.1773 | lr 0.0010 | time_forward 3.7340 | time_backward 4.8360
[2023-09-02 01:39:42,097::train::INFO] [train] Iter 04564 | loss 1.8349 | loss(rot) 1.3880 | loss(pos) 0.2045 | loss(seq) 0.2424 | grad 4.6112 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4610
[2023-09-02 01:39:51,743::train::INFO] [train] Iter 04565 | loss 2.6721 | loss(rot) 2.5003 | loss(pos) 0.1346 | loss(seq) 0.0372 | grad 4.8782 | lr 0.0010 | time_forward 3.8720 | time_backward 5.7710
[2023-09-02 01:39:57,699::train::INFO] [train] Iter 04566 | loss 2.0922 | loss(rot) 1.9325 | loss(pos) 0.1209 | loss(seq) 0.0389 | grad 5.3608 | lr 0.0010 | time_forward 2.5840 | time_backward 3.3680
[2023-09-02 01:40:00,888::train::INFO] [train] Iter 04567 | loss 2.5554 | loss(rot) 1.8540 | loss(pos) 0.3113 | loss(seq) 0.3901 | grad 3.8022 | lr 0.0010 | time_forward 1.4180 | time_backward 1.7680
[2023-09-02 01:40:09,233::train::INFO] [train] Iter 04568 | loss 1.7041 | loss(rot) 1.4042 | loss(pos) 0.0903 | loss(seq) 0.2096 | grad 4.0953 | lr 0.0010 | time_forward 3.3730 | time_backward 4.9690
[2023-09-02 01:40:16,164::train::INFO] [train] Iter 04569 | loss 2.4887 | loss(rot) 2.1178 | loss(pos) 0.1474 | loss(seq) 0.2235 | grad 3.3512 | lr 0.0010 | time_forward 2.9880 | time_backward 3.9390
[2023-09-02 01:40:23,905::train::INFO] [train] Iter 04570 | loss 1.9520 | loss(rot) 1.8768 | loss(pos) 0.0523 | loss(seq) 0.0230 | grad 4.7040 | lr 0.0010 | time_forward 3.1420 | time_backward 4.5960
[2023-09-02 01:40:26,282::train::INFO] [train] Iter 04571 | loss 2.8354 | loss(rot) 2.4946 | loss(pos) 0.3408 | loss(seq) 0.0000 | grad 5.6238 | lr 0.0010 | time_forward 1.1140 | time_backward 1.2600
[2023-09-02 01:40:34,429::train::INFO] [train] Iter 04572 | loss 1.3307 | loss(rot) 0.1956 | loss(pos) 0.7634 | loss(seq) 0.3717 | grad 3.3524 | lr 0.0010 | time_forward 3.3830 | time_backward 4.7610
[2023-09-02 01:40:37,734::train::INFO] [train] Iter 04573 | loss 0.9783 | loss(rot) 0.3565 | loss(pos) 0.4196 | loss(seq) 0.2022 | grad 2.8741 | lr 0.0010 | time_forward 1.4600 | time_backward 1.8420
[2023-09-02 01:40:45,498::train::INFO] [train] Iter 04574 | loss 3.2557 | loss(rot) 3.0177 | loss(pos) 0.1132 | loss(seq) 0.1247 | grad 5.4277 | lr 0.0010 | time_forward 3.3370 | time_backward 4.4230
[2023-09-02 01:40:54,187::train::INFO] [train] Iter 04575 | loss 2.0953 | loss(rot) 1.5239 | loss(pos) 0.1011 | loss(seq) 0.4704 | grad 3.1847 | lr 0.0010 | time_forward 3.5240 | time_backward 5.1620
[2023-09-02 01:41:03,713::train::INFO] [train] Iter 04576 | loss 2.2359 | loss(rot) 2.1226 | loss(pos) 0.0960 | loss(seq) 0.0172 | grad 3.3109 | lr 0.0010 | time_forward 3.9380 | time_backward 5.5840
[2023-09-02 01:41:12,496::train::INFO] [train] Iter 04577 | loss 2.5126 | loss(rot) 2.4208 | loss(pos) 0.0918 | loss(seq) 0.0000 | grad 5.6283 | lr 0.0010 | time_forward 3.7390 | time_backward 5.0400
[2023-09-02 01:41:15,245::train::INFO] [train] Iter 04578 | loss 2.1058 | loss(rot) 1.8941 | loss(pos) 0.1191 | loss(seq) 0.0926 | grad 5.7562 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4690
[2023-09-02 01:41:22,924::train::INFO] [train] Iter 04579 | loss 2.4332 | loss(rot) 2.2315 | loss(pos) 0.1808 | loss(seq) 0.0209 | grad 5.0207 | lr 0.0010 | time_forward 3.2020 | time_backward 4.4740
[2023-09-02 01:41:31,930::train::INFO] [train] Iter 04580 | loss 3.5006 | loss(rot) 3.2964 | loss(pos) 0.1782 | loss(seq) 0.0261 | grad 4.2109 | lr 0.0010 | time_forward 3.7920 | time_backward 5.2100
[2023-09-02 01:41:40,115::train::INFO] [train] Iter 04581 | loss 3.3449 | loss(rot) 2.6952 | loss(pos) 0.2109 | loss(seq) 0.4388 | grad 2.9776 | lr 0.0010 | time_forward 3.4800 | time_backward 4.7020
[2023-09-02 01:41:48,387::train::INFO] [train] Iter 04582 | loss 1.1144 | loss(rot) 0.5001 | loss(pos) 0.5348 | loss(seq) 0.0795 | grad 2.6872 | lr 0.0010 | time_forward 3.6510 | time_backward 4.6180
[2023-09-02 01:41:57,000::train::INFO] [train] Iter 04583 | loss 2.4459 | loss(rot) 1.7053 | loss(pos) 0.1483 | loss(seq) 0.5923 | grad 2.5456 | lr 0.0010 | time_forward 3.6270 | time_backward 4.9830
[2023-09-02 01:42:07,231::train::INFO] [train] Iter 04584 | loss 1.9814 | loss(rot) 1.2695 | loss(pos) 0.4479 | loss(seq) 0.2639 | grad 3.5939 | lr 0.0010 | time_forward 4.2920 | time_backward 5.9350
[2023-09-02 01:42:16,799::train::INFO] [train] Iter 04585 | loss 1.3100 | loss(rot) 1.1568 | loss(pos) 0.1532 | loss(seq) 0.0000 | grad 3.2671 | lr 0.0010 | time_forward 3.8520 | time_backward 5.7130
[2023-09-02 01:42:26,762::train::INFO] [train] Iter 04586 | loss 1.3423 | loss(rot) 0.6163 | loss(pos) 0.4577 | loss(seq) 0.2683 | grad 3.6228 | lr 0.0010 | time_forward 4.0620 | time_backward 5.8970
[2023-09-02 01:42:34,850::train::INFO] [train] Iter 04587 | loss 2.4281 | loss(rot) 1.5524 | loss(pos) 0.3327 | loss(seq) 0.5430 | grad 3.6597 | lr 0.0010 | time_forward 3.5080 | time_backward 4.5770
[2023-09-02 01:42:44,301::train::INFO] [train] Iter 04588 | loss 1.7416 | loss(rot) 0.7642 | loss(pos) 0.4382 | loss(seq) 0.5393 | grad 5.1525 | lr 0.0010 | time_forward 3.7920 | time_backward 5.6550
[2023-09-02 01:42:51,960::train::INFO] [train] Iter 04589 | loss 1.4927 | loss(rot) 0.0864 | loss(pos) 1.3942 | loss(seq) 0.0121 | grad 6.7560 | lr 0.0010 | time_forward 3.2060 | time_backward 4.4500
[2023-09-02 01:43:00,476::train::INFO] [train] Iter 04590 | loss 1.9560 | loss(rot) 1.3782 | loss(pos) 0.1686 | loss(seq) 0.4093 | grad 4.8998 | lr 0.0010 | time_forward 3.6440 | time_backward 4.8690