text
stringlengths 56
1.16k
|
---|
[2023-09-02 01:54:11,064::train::INFO] [train] Iter 04691 | loss 1.9328 | loss(rot) 1.5346 | loss(pos) 0.1009 | loss(seq) 0.2973 | grad 7.7395 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4070 |
[2023-09-02 01:54:19,643::train::INFO] [train] Iter 04692 | loss 2.5340 | loss(rot) 2.3444 | loss(pos) 0.1811 | loss(seq) 0.0085 | grad 4.7950 | lr 0.0010 | time_forward 3.7330 | time_backward 4.8420 |
[2023-09-02 01:54:26,933::train::INFO] [train] Iter 04693 | loss 2.4151 | loss(rot) 1.9154 | loss(pos) 0.4781 | loss(seq) 0.0215 | grad 7.5425 | lr 0.0010 | time_forward 3.1460 | time_backward 4.1410 |
[2023-09-02 01:54:36,038::train::INFO] [train] Iter 04694 | loss 2.1070 | loss(rot) 1.4442 | loss(pos) 0.2552 | loss(seq) 0.4077 | grad 4.3904 | lr 0.0010 | time_forward 3.8900 | time_backward 5.2110 |
[2023-09-02 01:54:38,775::train::INFO] [train] Iter 04695 | loss 0.9842 | loss(rot) 0.0996 | loss(pos) 0.8678 | loss(seq) 0.0169 | grad 5.4733 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4480 |
[2023-09-02 01:54:41,522::train::INFO] [train] Iter 04696 | loss 0.4912 | loss(rot) 0.2546 | loss(pos) 0.1833 | loss(seq) 0.0532 | grad 3.3223 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4290 |
[2023-09-02 01:54:44,225::train::INFO] [train] Iter 04697 | loss 2.7258 | loss(rot) 2.4660 | loss(pos) 0.2369 | loss(seq) 0.0229 | grad 4.4381 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4320 |
[2023-09-02 01:54:52,118::train::INFO] [train] Iter 04698 | loss 2.8937 | loss(rot) 2.5750 | loss(pos) 0.0949 | loss(seq) 0.2238 | grad 6.4524 | lr 0.0010 | time_forward 3.4000 | time_backward 4.4900 |
[2023-09-02 01:54:54,917::train::INFO] [train] Iter 04699 | loss 1.1055 | loss(rot) 0.3752 | loss(pos) 0.3371 | loss(seq) 0.3932 | grad 4.5192 | lr 0.0010 | time_forward 1.2690 | time_backward 1.5270 |
[2023-09-02 01:55:04,015::train::INFO] [train] Iter 04700 | loss 3.1210 | loss(rot) 2.9641 | loss(pos) 0.1569 | loss(seq) 0.0000 | grad 4.2709 | lr 0.0010 | time_forward 3.8520 | time_backward 5.2420 |
[2023-09-02 01:55:12,740::train::INFO] [train] Iter 04701 | loss 1.2461 | loss(rot) 0.4128 | loss(pos) 0.4326 | loss(seq) 0.4007 | grad 4.6747 | lr 0.0010 | time_forward 3.6860 | time_backward 5.0360 |
[2023-09-02 01:55:21,156::train::INFO] [train] Iter 04702 | loss 1.9890 | loss(rot) 0.9945 | loss(pos) 0.3890 | loss(seq) 0.6055 | grad 4.6201 | lr 0.0010 | time_forward 3.5500 | time_backward 4.8620 |
[2023-09-02 01:55:23,889::train::INFO] [train] Iter 04703 | loss 1.5498 | loss(rot) 0.6894 | loss(pos) 0.3758 | loss(seq) 0.4846 | grad 3.7503 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4410 |
[2023-09-02 01:55:31,694::train::INFO] [train] Iter 04704 | loss 2.3308 | loss(rot) 2.2265 | loss(pos) 0.0734 | loss(seq) 0.0309 | grad 5.3099 | lr 0.0010 | time_forward 3.1310 | time_backward 4.6700 |
[2023-09-02 01:55:34,422::train::INFO] [train] Iter 04705 | loss 1.3670 | loss(rot) 0.0893 | loss(pos) 1.2544 | loss(seq) 0.0232 | grad 5.0054 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4430 |
[2023-09-02 01:55:42,713::train::INFO] [train] Iter 04706 | loss 2.0621 | loss(rot) 1.5619 | loss(pos) 0.1694 | loss(seq) 0.3308 | grad 4.4989 | lr 0.0010 | time_forward 3.3690 | time_backward 4.9180 |
[2023-09-02 01:55:52,051::train::INFO] [train] Iter 04707 | loss 0.9456 | loss(rot) 0.4724 | loss(pos) 0.2510 | loss(seq) 0.2222 | grad 2.7132 | lr 0.0010 | time_forward 3.9780 | time_backward 5.3570 |
[2023-09-02 01:56:01,918::train::INFO] [train] Iter 04708 | loss 1.9828 | loss(rot) 1.2581 | loss(pos) 0.2652 | loss(seq) 0.4595 | grad 3.8200 | lr 0.0010 | time_forward 4.2170 | time_backward 5.6310 |
[2023-09-02 01:56:09,904::train::INFO] [train] Iter 04709 | loss 2.9143 | loss(rot) 2.5408 | loss(pos) 0.1316 | loss(seq) 0.2420 | grad 3.3037 | lr 0.0010 | time_forward 3.2250 | time_backward 4.7570 |
[2023-09-02 01:56:19,437::train::INFO] [train] Iter 04710 | loss 2.3694 | loss(rot) 2.1256 | loss(pos) 0.1098 | loss(seq) 0.1340 | grad 4.1388 | lr 0.0010 | time_forward 3.7650 | time_backward 5.7660 |
[2023-09-02 01:56:22,702::train::INFO] [train] Iter 04711 | loss 2.4003 | loss(rot) 2.2612 | loss(pos) 0.1325 | loss(seq) 0.0066 | grad 2.6500 | lr 0.0010 | time_forward 1.4020 | time_backward 1.8590 |
[2023-09-02 01:56:24,932::train::INFO] [train] Iter 04712 | loss 1.6291 | loss(rot) 1.0013 | loss(pos) 0.3051 | loss(seq) 0.3226 | grad 4.3858 | lr 0.0010 | time_forward 1.0460 | time_backward 1.1810 |
[2023-09-02 01:56:27,769::train::INFO] [train] Iter 04713 | loss 2.6534 | loss(rot) 2.0607 | loss(pos) 0.1367 | loss(seq) 0.4560 | grad 4.7523 | lr 0.0010 | time_forward 1.3990 | time_backward 1.4340 |
[2023-09-02 01:56:37,257::train::INFO] [train] Iter 04714 | loss 2.6141 | loss(rot) 1.7510 | loss(pos) 0.3434 | loss(seq) 0.5197 | grad 4.8263 | lr 0.0010 | time_forward 3.7020 | time_backward 5.7840 |
[2023-09-02 01:56:46,942::train::INFO] [train] Iter 04715 | loss 2.5646 | loss(rot) 2.2644 | loss(pos) 0.0670 | loss(seq) 0.2332 | grad 4.9228 | lr 0.0010 | time_forward 3.6970 | time_backward 5.9830 |
[2023-09-02 01:56:55,260::train::INFO] [train] Iter 04716 | loss 1.6464 | loss(rot) 0.6880 | loss(pos) 0.7199 | loss(seq) 0.2385 | grad 3.6233 | lr 0.0010 | time_forward 3.4060 | time_backward 4.9090 |
[2023-09-02 01:56:57,906::train::INFO] [train] Iter 04717 | loss 2.0639 | loss(rot) 1.8418 | loss(pos) 0.0793 | loss(seq) 0.1429 | grad 4.0433 | lr 0.0010 | time_forward 1.2460 | time_backward 1.3960 |
[2023-09-02 01:57:00,636::train::INFO] [train] Iter 04718 | loss 2.4299 | loss(rot) 1.2900 | loss(pos) 0.4516 | loss(seq) 0.6883 | grad 3.5172 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4410 |
[2023-09-02 01:57:10,497::train::INFO] [train] Iter 04719 | loss 3.0923 | loss(rot) 2.5298 | loss(pos) 0.3436 | loss(seq) 0.2189 | grad 5.2033 | lr 0.0010 | time_forward 4.0620 | time_backward 5.7670 |
[2023-09-02 01:57:19,107::train::INFO] [train] Iter 04720 | loss 2.0122 | loss(rot) 0.7675 | loss(pos) 0.8938 | loss(seq) 0.3509 | grad 5.7401 | lr 0.0010 | time_forward 3.6870 | time_backward 4.9190 |
[2023-09-02 01:57:21,797::train::INFO] [train] Iter 04721 | loss 2.1878 | loss(rot) 1.8538 | loss(pos) 0.2444 | loss(seq) 0.0896 | grad 4.2453 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4090 |
[2023-09-02 01:57:24,551::train::INFO] [train] Iter 04722 | loss 2.1747 | loss(rot) 1.4554 | loss(pos) 0.1801 | loss(seq) 0.5393 | grad 6.0855 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4520 |
[2023-09-02 01:57:32,891::train::INFO] [train] Iter 04723 | loss 1.0414 | loss(rot) 0.2846 | loss(pos) 0.7350 | loss(seq) 0.0217 | grad 4.8381 | lr 0.0010 | time_forward 3.4390 | time_backward 4.8950 |
[2023-09-02 01:57:42,286::train::INFO] [train] Iter 04724 | loss 2.3314 | loss(rot) 2.0930 | loss(pos) 0.1656 | loss(seq) 0.0728 | grad 4.2558 | lr 0.0010 | time_forward 3.9140 | time_backward 5.4780 |
[2023-09-02 01:57:45,027::train::INFO] [train] Iter 04725 | loss 2.8792 | loss(rot) 2.5465 | loss(pos) 0.3121 | loss(seq) 0.0206 | grad 5.7382 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4320 |
[2023-09-02 01:57:54,816::train::INFO] [train] Iter 04726 | loss 2.3242 | loss(rot) 2.0021 | loss(pos) 0.2229 | loss(seq) 0.0991 | grad 3.8754 | lr 0.0010 | time_forward 3.9110 | time_backward 5.8750 |
[2023-09-02 01:58:03,544::train::INFO] [train] Iter 04727 | loss 1.4018 | loss(rot) 0.7830 | loss(pos) 0.3429 | loss(seq) 0.2759 | grad 1.7335 | lr 0.0010 | time_forward 3.4910 | time_backward 5.2340 |
[2023-09-02 01:58:06,242::train::INFO] [train] Iter 04728 | loss 1.4221 | loss(rot) 0.3091 | loss(pos) 1.0850 | loss(seq) 0.0280 | grad 5.7570 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4430 |
[2023-09-02 01:58:15,271::train::INFO] [train] Iter 04729 | loss 1.9527 | loss(rot) 1.4492 | loss(pos) 0.0955 | loss(seq) 0.4080 | grad 3.3665 | lr 0.0010 | time_forward 3.7240 | time_backward 5.3010 |
[2023-09-02 01:58:24,424::train::INFO] [train] Iter 04730 | loss 2.3314 | loss(rot) 2.0056 | loss(pos) 0.3239 | loss(seq) 0.0019 | grad 5.2431 | lr 0.0010 | time_forward 3.7990 | time_backward 5.3500 |
[2023-09-02 01:58:33,020::train::INFO] [train] Iter 04731 | loss 2.3771 | loss(rot) 1.5937 | loss(pos) 0.3042 | loss(seq) 0.4793 | grad 2.5692 | lr 0.0010 | time_forward 3.5590 | time_backward 5.0340 |
[2023-09-02 01:58:41,510::train::INFO] [train] Iter 04732 | loss 3.4013 | loss(rot) 3.1791 | loss(pos) 0.0774 | loss(seq) 0.1448 | grad 3.2908 | lr 0.0010 | time_forward 3.5870 | time_backward 4.8990 |
[2023-09-02 01:58:50,303::train::INFO] [train] Iter 04733 | loss 1.4051 | loss(rot) 0.7922 | loss(pos) 0.1316 | loss(seq) 0.4813 | grad 3.5300 | lr 0.0010 | time_forward 3.6950 | time_backward 5.0940 |
[2023-09-02 01:58:58,413::train::INFO] [train] Iter 04734 | loss 1.2870 | loss(rot) 0.7933 | loss(pos) 0.1078 | loss(seq) 0.3860 | grad 4.0830 | lr 0.0010 | time_forward 3.1770 | time_backward 4.9290 |
[2023-09-02 01:59:01,140::train::INFO] [train] Iter 04735 | loss 2.0175 | loss(rot) 1.5425 | loss(pos) 0.1780 | loss(seq) 0.2970 | grad 3.3974 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4190 |
[2023-09-02 01:59:03,945::train::INFO] [train] Iter 04736 | loss 1.7201 | loss(rot) 0.5509 | loss(pos) 0.9142 | loss(seq) 0.2551 | grad 4.2136 | lr 0.0010 | time_forward 1.3550 | time_backward 1.4470 |
[2023-09-02 01:59:13,147::train::INFO] [train] Iter 04737 | loss 2.7074 | loss(rot) 2.4922 | loss(pos) 0.2102 | loss(seq) 0.0050 | grad 4.3549 | lr 0.0010 | time_forward 3.9240 | time_backward 5.2750 |
[2023-09-02 01:59:22,947::train::INFO] [train] Iter 04738 | loss 1.9510 | loss(rot) 1.3094 | loss(pos) 0.1489 | loss(seq) 0.4926 | grad 3.4839 | lr 0.0010 | time_forward 3.9960 | time_backward 5.8010 |
[2023-09-02 01:59:25,701::train::INFO] [train] Iter 04739 | loss 3.2703 | loss(rot) 2.8664 | loss(pos) 0.1167 | loss(seq) 0.2872 | grad 4.8193 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4460 |
[2023-09-02 01:59:34,373::train::INFO] [train] Iter 04740 | loss 0.6359 | loss(rot) 0.0910 | loss(pos) 0.5045 | loss(seq) 0.0404 | grad 3.8509 | lr 0.0010 | time_forward 3.5330 | time_backward 5.1350 |
[2023-09-02 01:59:37,159::train::INFO] [train] Iter 04741 | loss 2.0536 | loss(rot) 1.8884 | loss(pos) 0.1632 | loss(seq) 0.0020 | grad 3.6698 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4760 |
[2023-09-02 01:59:45,836::train::INFO] [train] Iter 04742 | loss 1.0871 | loss(rot) 0.4837 | loss(pos) 0.1898 | loss(seq) 0.4137 | grad 3.9605 | lr 0.0010 | time_forward 3.5890 | time_backward 5.0630 |
[2023-09-02 01:59:53,206::train::INFO] [train] Iter 04743 | loss 1.6297 | loss(rot) 0.6551 | loss(pos) 0.3500 | loss(seq) 0.6246 | grad 4.8977 | lr 0.0010 | time_forward 3.1310 | time_backward 4.2360 |
[2023-09-02 02:00:01,466::train::INFO] [train] Iter 04744 | loss 1.0180 | loss(rot) 0.1313 | loss(pos) 0.8751 | loss(seq) 0.0116 | grad 5.2931 | lr 0.0010 | time_forward 3.4770 | time_backward 4.7790 |
[2023-09-02 02:00:03,750::train::INFO] [train] Iter 04745 | loss 1.1859 | loss(rot) 0.3127 | loss(pos) 0.6821 | loss(seq) 0.1911 | grad 5.6610 | lr 0.0010 | time_forward 1.0550 | time_backward 1.2260 |
[2023-09-02 02:00:13,417::train::INFO] [train] Iter 04746 | loss 2.3656 | loss(rot) 1.6287 | loss(pos) 0.1605 | loss(seq) 0.5764 | grad 3.5107 | lr 0.0010 | time_forward 3.6980 | time_backward 5.9430 |
[2023-09-02 02:00:21,193::train::INFO] [train] Iter 04747 | loss 2.2732 | loss(rot) 1.3705 | loss(pos) 0.2935 | loss(seq) 0.6092 | grad 2.9851 | lr 0.0010 | time_forward 3.1070 | time_backward 4.6650 |
[2023-09-02 02:00:28,697::train::INFO] [train] Iter 04748 | loss 1.1063 | loss(rot) 0.4372 | loss(pos) 0.3021 | loss(seq) 0.3670 | grad 5.3256 | lr 0.0010 | time_forward 3.1950 | time_backward 4.3050 |
[2023-09-02 02:00:38,252::train::INFO] [train] Iter 04749 | loss 2.3590 | loss(rot) 1.3791 | loss(pos) 0.3233 | loss(seq) 0.6566 | grad 3.5891 | lr 0.0010 | time_forward 3.9280 | time_backward 5.6240 |
[2023-09-02 02:00:47,677::train::INFO] [train] Iter 04750 | loss 2.1630 | loss(rot) 1.1780 | loss(pos) 0.5956 | loss(seq) 0.3894 | grad 8.1373 | lr 0.0010 | time_forward 4.0020 | time_backward 5.4200 |
[2023-09-02 02:00:55,113::train::INFO] [train] Iter 04751 | loss 2.3534 | loss(rot) 2.1267 | loss(pos) 0.2266 | loss(seq) 0.0000 | grad 5.3027 | lr 0.0010 | time_forward 3.1920 | time_backward 4.2400 |
[2023-09-02 02:01:06,220::train::INFO] [train] Iter 04752 | loss 2.9650 | loss(rot) 2.6197 | loss(pos) 0.3404 | loss(seq) 0.0049 | grad 5.7680 | lr 0.0010 | time_forward 5.3560 | time_backward 5.7480 |
[2023-09-02 02:01:14,253::train::INFO] [train] Iter 04753 | loss 2.2531 | loss(rot) 1.5086 | loss(pos) 0.2738 | loss(seq) 0.4706 | grad 4.1615 | lr 0.0010 | time_forward 3.2310 | time_backward 4.7980 |
[2023-09-02 02:01:23,650::train::INFO] [train] Iter 04754 | loss 2.9443 | loss(rot) 2.6055 | loss(pos) 0.1709 | loss(seq) 0.1679 | grad 7.0982 | lr 0.0010 | time_forward 3.7580 | time_backward 5.6360 |
[2023-09-02 02:01:33,209::train::INFO] [train] Iter 04755 | loss 2.6816 | loss(rot) 1.8199 | loss(pos) 0.4788 | loss(seq) 0.3830 | grad 5.6409 | lr 0.0010 | time_forward 3.9170 | time_backward 5.6380 |
[2023-09-02 02:01:41,475::train::INFO] [train] Iter 04756 | loss 2.2539 | loss(rot) 2.1050 | loss(pos) 0.1447 | loss(seq) 0.0043 | grad 4.1285 | lr 0.0010 | time_forward 3.4770 | time_backward 4.7780 |
[2023-09-02 02:01:49,492::train::INFO] [train] Iter 04757 | loss 1.8355 | loss(rot) 0.6118 | loss(pos) 1.1818 | loss(seq) 0.0420 | grad 7.6512 | lr 0.0010 | time_forward 3.3760 | time_backward 4.6380 |
[2023-09-02 02:01:57,470::train::INFO] [train] Iter 04758 | loss 1.3778 | loss(rot) 0.7620 | loss(pos) 0.2186 | loss(seq) 0.3972 | grad 2.9044 | lr 0.0010 | time_forward 3.3540 | time_backward 4.6200 |
[2023-09-02 02:02:03,873::train::INFO] [train] Iter 04759 | loss 1.9215 | loss(rot) 1.6149 | loss(pos) 0.3015 | loss(seq) 0.0051 | grad 5.3905 | lr 0.0010 | time_forward 2.5720 | time_backward 3.8270 |
[2023-09-02 02:02:06,194::train::INFO] [train] Iter 04760 | loss 1.7044 | loss(rot) 0.1614 | loss(pos) 1.5148 | loss(seq) 0.0282 | grad 5.9746 | lr 0.0010 | time_forward 1.0890 | time_backward 1.2280 |
[2023-09-02 02:02:14,493::train::INFO] [train] Iter 04761 | loss 1.7947 | loss(rot) 0.9316 | loss(pos) 0.3997 | loss(seq) 0.4634 | grad 3.0853 | lr 0.0010 | time_forward 3.4100 | time_backward 4.8730 |
[2023-09-02 02:02:17,960::train::INFO] [train] Iter 04762 | loss 1.9497 | loss(rot) 1.2580 | loss(pos) 0.3039 | loss(seq) 0.3878 | grad 3.2113 | lr 0.0010 | time_forward 1.5030 | time_backward 1.9610 |
[2023-09-02 02:02:27,711::train::INFO] [train] Iter 04763 | loss 1.2496 | loss(rot) 0.4260 | loss(pos) 0.2318 | loss(seq) 0.5918 | grad 3.7443 | lr 0.0010 | time_forward 3.8180 | time_backward 5.9300 |
[2023-09-02 02:02:35,749::train::INFO] [train] Iter 04764 | loss 1.7352 | loss(rot) 0.8433 | loss(pos) 0.3546 | loss(seq) 0.5373 | grad 6.2806 | lr 0.0010 | time_forward 3.2820 | time_backward 4.7530 |
[2023-09-02 02:02:44,717::train::INFO] [train] Iter 04765 | loss 2.7170 | loss(rot) 1.8639 | loss(pos) 0.3272 | loss(seq) 0.5259 | grad 5.4561 | lr 0.0010 | time_forward 3.4970 | time_backward 5.4680 |
[2023-09-02 02:02:54,068::train::INFO] [train] Iter 04766 | loss 2.8178 | loss(rot) 2.5826 | loss(pos) 0.2346 | loss(seq) 0.0007 | grad 4.1361 | lr 0.0010 | time_forward 3.6450 | time_backward 5.7010 |
[2023-09-02 02:02:56,820::train::INFO] [train] Iter 04767 | loss 2.2946 | loss(rot) 2.0638 | loss(pos) 0.1691 | loss(seq) 0.0616 | grad 5.0253 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4740 |
[2023-09-02 02:03:04,376::train::INFO] [train] Iter 04768 | loss 1.0108 | loss(rot) 0.5932 | loss(pos) 0.3848 | loss(seq) 0.0329 | grad 5.4698 | lr 0.0010 | time_forward 3.2230 | time_backward 4.3170 |
[2023-09-02 02:03:12,485::train::INFO] [train] Iter 04769 | loss 1.5044 | loss(rot) 0.4709 | loss(pos) 0.5654 | loss(seq) 0.4681 | grad 4.6688 | lr 0.0010 | time_forward 3.4580 | time_backward 4.6470 |
[2023-09-02 02:03:17,083::train::INFO] [train] Iter 04770 | loss 1.2225 | loss(rot) 0.5594 | loss(pos) 0.2973 | loss(seq) 0.3658 | grad 5.7944 | lr 0.0010 | time_forward 1.9800 | time_backward 2.6150 |
[2023-09-02 02:03:24,410::train::INFO] [train] Iter 04771 | loss 1.5830 | loss(rot) 1.1344 | loss(pos) 0.2091 | loss(seq) 0.2395 | grad 6.0597 | lr 0.0010 | time_forward 3.0680 | time_backward 4.2550 |
[2023-09-02 02:03:32,498::train::INFO] [train] Iter 04772 | loss 3.0574 | loss(rot) 2.3128 | loss(pos) 0.3365 | loss(seq) 0.4081 | grad 5.4367 | lr 0.0010 | time_forward 3.3590 | time_backward 4.7270 |
[2023-09-02 02:03:42,029::train::INFO] [train] Iter 04773 | loss 0.8617 | loss(rot) 0.2281 | loss(pos) 0.5731 | loss(seq) 0.0605 | grad 4.0337 | lr 0.0010 | time_forward 3.7620 | time_backward 5.7200 |
[2023-09-02 02:03:44,755::train::INFO] [train] Iter 04774 | loss 2.5611 | loss(rot) 1.2417 | loss(pos) 0.9683 | loss(seq) 0.3512 | grad 4.6706 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4550 |
[2023-09-02 02:03:53,909::train::INFO] [train] Iter 04775 | loss 0.8842 | loss(rot) 0.1713 | loss(pos) 0.6671 | loss(seq) 0.0459 | grad 4.0789 | lr 0.0010 | time_forward 3.6920 | time_backward 5.4590 |
[2023-09-02 02:03:56,785::train::INFO] [train] Iter 04776 | loss 2.9480 | loss(rot) 2.5786 | loss(pos) 0.3673 | loss(seq) 0.0021 | grad 6.2043 | lr 0.0010 | time_forward 1.3440 | time_backward 1.5280 |
[2023-09-02 02:04:05,432::train::INFO] [train] Iter 04777 | loss 3.0950 | loss(rot) 2.7788 | loss(pos) 0.2541 | loss(seq) 0.0622 | grad 6.4948 | lr 0.0010 | time_forward 3.6410 | time_backward 4.9770 |
[2023-09-02 02:04:08,175::train::INFO] [train] Iter 04778 | loss 1.7558 | loss(rot) 0.9265 | loss(pos) 0.3659 | loss(seq) 0.4634 | grad 3.8800 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4770 |
[2023-09-02 02:04:18,136::train::INFO] [train] Iter 04779 | loss 2.8561 | loss(rot) 1.5496 | loss(pos) 0.6880 | loss(seq) 0.6185 | grad 4.3086 | lr 0.0010 | time_forward 4.2170 | time_backward 5.7420 |
[2023-09-02 02:04:25,580::train::INFO] [train] Iter 04780 | loss 1.9416 | loss(rot) 1.5495 | loss(pos) 0.1731 | loss(seq) 0.2190 | grad 6.5535 | lr 0.0010 | time_forward 3.0480 | time_backward 4.3920 |
[2023-09-02 02:04:28,244::train::INFO] [train] Iter 04781 | loss 0.7940 | loss(rot) 0.2150 | loss(pos) 0.5430 | loss(seq) 0.0359 | grad 3.5460 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4020 |
[2023-09-02 02:04:36,871::train::INFO] [train] Iter 04782 | loss 1.4362 | loss(rot) 0.6130 | loss(pos) 0.3925 | loss(seq) 0.4307 | grad 3.7899 | lr 0.0010 | time_forward 3.6150 | time_backward 5.0000 |
[2023-09-02 02:04:46,265::train::INFO] [train] Iter 04783 | loss 0.7814 | loss(rot) 0.2319 | loss(pos) 0.3255 | loss(seq) 0.2240 | grad 2.6399 | lr 0.0010 | time_forward 3.8380 | time_backward 5.5520 |
[2023-09-02 02:04:55,710::train::INFO] [train] Iter 04784 | loss 2.0550 | loss(rot) 1.6579 | loss(pos) 0.1790 | loss(seq) 0.2180 | grad 4.8166 | lr 0.0010 | time_forward 3.7060 | time_backward 5.7360 |
[2023-09-02 02:04:58,375::train::INFO] [train] Iter 04785 | loss 2.0861 | loss(rot) 1.8695 | loss(pos) 0.1958 | loss(seq) 0.0207 | grad 5.8209 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4260 |
[2023-09-02 02:05:00,653::train::INFO] [train] Iter 04786 | loss 2.6372 | loss(rot) 2.4147 | loss(pos) 0.2223 | loss(seq) 0.0001 | grad 3.1572 | lr 0.0010 | time_forward 1.0840 | time_backward 1.1910 |
[2023-09-02 02:05:09,850::train::INFO] [train] Iter 04787 | loss 1.4501 | loss(rot) 0.1446 | loss(pos) 1.2776 | loss(seq) 0.0279 | grad 4.5715 | lr 0.0010 | time_forward 4.0190 | time_backward 5.1740 |
[2023-09-02 02:05:18,199::train::INFO] [train] Iter 04788 | loss 2.9055 | loss(rot) 2.7560 | loss(pos) 0.1290 | loss(seq) 0.0204 | grad 3.7895 | lr 0.0010 | time_forward 3.6670 | time_backward 4.6780 |
[2023-09-02 02:05:26,788::train::INFO] [train] Iter 04789 | loss 2.8169 | loss(rot) 2.2935 | loss(pos) 0.1778 | loss(seq) 0.3456 | grad 4.0636 | lr 0.0010 | time_forward 3.5630 | time_backward 5.0220 |
[2023-09-02 02:05:36,415::train::INFO] [train] Iter 04790 | loss 2.7938 | loss(rot) 2.4810 | loss(pos) 0.0812 | loss(seq) 0.2316 | grad 3.2860 | lr 0.0010 | time_forward 3.8600 | time_backward 5.7630 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.