text
stringlengths
56
1.16k
[2023-09-02 01:43:13,043::train::INFO] [train] Iter 04591 | loss 3.0147 | loss(rot) 2.9362 | loss(pos) 0.0785 | loss(seq) 0.0000 | grad 4.6973 | lr 0.0010 | time_forward 7.8940 | time_backward 4.6700
[2023-09-02 01:43:21,470::train::INFO] [train] Iter 04592 | loss 1.8829 | loss(rot) 1.0534 | loss(pos) 0.4832 | loss(seq) 0.3463 | grad 4.2141 | lr 0.0010 | time_forward 3.3850 | time_backward 5.0380
[2023-09-02 01:43:24,294::train::INFO] [train] Iter 04593 | loss 1.3781 | loss(rot) 0.9627 | loss(pos) 0.3770 | loss(seq) 0.0384 | grad 5.4210 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4860
[2023-09-02 01:43:32,176::train::INFO] [train] Iter 04594 | loss 1.8192 | loss(rot) 1.0627 | loss(pos) 0.3061 | loss(seq) 0.4503 | grad 6.5425 | lr 0.0010 | time_forward 3.3110 | time_backward 4.5680
[2023-09-02 01:43:34,880::train::INFO] [train] Iter 04595 | loss 1.8603 | loss(rot) 0.6438 | loss(pos) 0.9131 | loss(seq) 0.3035 | grad 4.6526 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4710
[2023-09-02 01:43:43,008::train::INFO] [train] Iter 04596 | loss 1.6179 | loss(rot) 1.0032 | loss(pos) 0.2705 | loss(seq) 0.3442 | grad 3.3369 | lr 0.0010 | time_forward 3.4490 | time_backward 4.6560
[2023-09-02 01:43:45,823::train::INFO] [train] Iter 04597 | loss 2.4390 | loss(rot) 2.2736 | loss(pos) 0.1532 | loss(seq) 0.0123 | grad 4.1765 | lr 0.0010 | time_forward 1.2940 | time_backward 1.5170
[2023-09-02 01:43:52,659::train::INFO] [train] Iter 04598 | loss 2.0214 | loss(rot) 1.3114 | loss(pos) 0.2215 | loss(seq) 0.4885 | grad 2.9333 | lr 0.0010 | time_forward 2.9710 | time_backward 3.8610
[2023-09-02 01:44:00,902::train::INFO] [train] Iter 04599 | loss 1.1004 | loss(rot) 0.4892 | loss(pos) 0.3149 | loss(seq) 0.2963 | grad 3.0837 | lr 0.0010 | time_forward 3.4740 | time_backward 4.7650
[2023-09-02 01:44:03,626::train::INFO] [train] Iter 04600 | loss 2.2499 | loss(rot) 1.3629 | loss(pos) 0.2887 | loss(seq) 0.5984 | grad 5.0259 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4670
[2023-09-02 01:44:06,461::train::INFO] [train] Iter 04601 | loss 2.0164 | loss(rot) 1.2452 | loss(pos) 0.2378 | loss(seq) 0.5334 | grad 3.7946 | lr 0.0010 | time_forward 1.3060 | time_backward 1.5250
[2023-09-02 01:44:17,006::train::INFO] [train] Iter 04602 | loss 2.5792 | loss(rot) 1.6960 | loss(pos) 0.3925 | loss(seq) 0.4908 | grad 4.0552 | lr 0.0010 | time_forward 4.4820 | time_backward 6.0600
[2023-09-02 01:44:26,959::train::INFO] [train] Iter 04603 | loss 1.6463 | loss(rot) 0.8450 | loss(pos) 0.1755 | loss(seq) 0.6258 | grad 3.0940 | lr 0.0010 | time_forward 3.9140 | time_backward 6.0350
[2023-09-02 01:44:29,778::train::INFO] [train] Iter 04604 | loss 2.1184 | loss(rot) 1.6331 | loss(pos) 0.1523 | loss(seq) 0.3331 | grad 5.9207 | lr 0.0010 | time_forward 1.3000 | time_backward 1.5150
[2023-09-02 01:44:39,665::train::INFO] [train] Iter 04605 | loss 2.5844 | loss(rot) 1.9330 | loss(pos) 0.1657 | loss(seq) 0.4857 | grad 3.4284 | lr 0.0010 | time_forward 4.0420 | time_backward 5.8420
[2023-09-02 01:44:49,527::train::INFO] [train] Iter 04606 | loss 2.6448 | loss(rot) 2.4064 | loss(pos) 0.2353 | loss(seq) 0.0032 | grad 4.0875 | lr 0.0010 | time_forward 3.9300 | time_backward 5.9270
[2023-09-02 01:44:57,883::train::INFO] [train] Iter 04607 | loss 1.4910 | loss(rot) 0.1682 | loss(pos) 1.3117 | loss(seq) 0.0111 | grad 4.6367 | lr 0.0010 | time_forward 3.4020 | time_backward 4.9510
[2023-09-02 01:45:04,649::train::INFO] [train] Iter 04608 | loss 2.2823 | loss(rot) 0.9551 | loss(pos) 0.8728 | loss(seq) 0.4544 | grad 6.4473 | lr 0.0010 | time_forward 2.7780 | time_backward 3.9850
[2023-09-02 01:45:15,025::train::INFO] [train] Iter 04609 | loss 1.5948 | loss(rot) 1.3721 | loss(pos) 0.1758 | loss(seq) 0.0468 | grad 3.7135 | lr 0.0010 | time_forward 4.0930 | time_backward 6.2790
[2023-09-02 01:45:17,504::train::INFO] [train] Iter 04610 | loss 3.0063 | loss(rot) 2.7661 | loss(pos) 0.2401 | loss(seq) 0.0000 | grad 5.0591 | lr 0.0010 | time_forward 1.1820 | time_backward 1.2940
[2023-09-02 01:45:25,977::train::INFO] [train] Iter 04611 | loss 2.5384 | loss(rot) 2.2584 | loss(pos) 0.2214 | loss(seq) 0.0586 | grad 5.4012 | lr 0.0010 | time_forward 3.6130 | time_backward 4.8560
[2023-09-02 01:45:36,402::train::INFO] [train] Iter 04612 | loss 1.3692 | loss(rot) 0.1072 | loss(pos) 1.0204 | loss(seq) 0.2416 | grad 4.6724 | lr 0.0010 | time_forward 4.3270 | time_backward 6.0960
[2023-09-02 01:45:44,760::train::INFO] [train] Iter 04613 | loss 2.3263 | loss(rot) 1.7256 | loss(pos) 0.1961 | loss(seq) 0.4046 | grad 4.8630 | lr 0.0010 | time_forward 3.5750 | time_backward 4.7780
[2023-09-02 01:45:47,052::train::INFO] [train] Iter 04614 | loss 1.7656 | loss(rot) 0.9984 | loss(pos) 0.3737 | loss(seq) 0.3936 | grad 2.3210 | lr 0.0010 | time_forward 1.0670 | time_backward 1.2210
[2023-09-02 01:45:49,639::train::INFO] [train] Iter 04615 | loss 3.2710 | loss(rot) 3.1048 | loss(pos) 0.1422 | loss(seq) 0.0239 | grad 5.7346 | lr 0.0010 | time_forward 1.3440 | time_backward 1.2390
[2023-09-02 01:45:58,912::train::INFO] [train] Iter 04616 | loss 2.6450 | loss(rot) 1.9256 | loss(pos) 0.5559 | loss(seq) 0.1635 | grad 6.1227 | lr 0.0010 | time_forward 3.9090 | time_backward 5.3600
[2023-09-02 01:46:08,989::train::INFO] [train] Iter 04617 | loss 1.4583 | loss(rot) 0.5188 | loss(pos) 0.7716 | loss(seq) 0.1680 | grad 3.2631 | lr 0.0010 | time_forward 4.0800 | time_backward 5.9950
[2023-09-02 01:46:11,808::train::INFO] [train] Iter 04618 | loss 2.0216 | loss(rot) 1.5378 | loss(pos) 0.1060 | loss(seq) 0.3779 | grad 4.9846 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4990
[2023-09-02 01:46:20,505::train::INFO] [train] Iter 04619 | loss 2.4238 | loss(rot) 1.9920 | loss(pos) 0.1283 | loss(seq) 0.3035 | grad 3.8330 | lr 0.0010 | time_forward 3.6930 | time_backward 5.0010
[2023-09-02 01:46:22,822::train::INFO] [train] Iter 04620 | loss 2.7166 | loss(rot) 2.3522 | loss(pos) 0.3026 | loss(seq) 0.0618 | grad 5.4850 | lr 0.0010 | time_forward 1.0580 | time_backward 1.2550
[2023-09-02 01:46:30,986::train::INFO] [train] Iter 04621 | loss 2.5149 | loss(rot) 2.2045 | loss(pos) 0.1007 | loss(seq) 0.2097 | grad 3.8807 | lr 0.0010 | time_forward 3.4600 | time_backward 4.7000
[2023-09-02 01:46:39,339::train::INFO] [train] Iter 04622 | loss 0.8646 | loss(rot) 0.3756 | loss(pos) 0.3073 | loss(seq) 0.1816 | grad 3.9130 | lr 0.0010 | time_forward 3.5000 | time_backward 4.8460
[2023-09-02 01:46:48,111::train::INFO] [train] Iter 04623 | loss 1.3311 | loss(rot) 0.5043 | loss(pos) 0.5012 | loss(seq) 0.3256 | grad 3.5925 | lr 0.0010 | time_forward 3.6830 | time_backward 5.0850
[2023-09-02 01:46:50,370::train::INFO] [train] Iter 04624 | loss 2.9594 | loss(rot) 2.6643 | loss(pos) 0.2737 | loss(seq) 0.0215 | grad 3.4580 | lr 0.0010 | time_forward 1.0660 | time_backward 1.1870
[2023-09-02 01:46:58,891::train::INFO] [train] Iter 04625 | loss 2.3122 | loss(rot) 1.9674 | loss(pos) 0.1760 | loss(seq) 0.1688 | grad 3.1853 | lr 0.0010 | time_forward 3.6370 | time_backward 4.8800
[2023-09-02 01:47:02,529::train::INFO] [train] Iter 04626 | loss 2.4411 | loss(rot) 1.6557 | loss(pos) 0.2492 | loss(seq) 0.5361 | grad 2.9252 | lr 0.0010 | time_forward 1.6070 | time_backward 2.0270
[2023-09-02 01:47:04,951::train::INFO] [train] Iter 04627 | loss 1.5687 | loss(rot) 0.0642 | loss(pos) 1.4983 | loss(seq) 0.0062 | grad 4.6183 | lr 0.0010 | time_forward 1.1970 | time_backward 1.2220
[2023-09-02 01:47:13,486::train::INFO] [train] Iter 04628 | loss 1.8662 | loss(rot) 1.7278 | loss(pos) 0.1383 | loss(seq) 0.0001 | grad 4.1384 | lr 0.0010 | time_forward 3.5770 | time_backward 4.9550
[2023-09-02 01:47:20,094::train::INFO] [train] Iter 04629 | loss 2.0813 | loss(rot) 1.5383 | loss(pos) 0.1645 | loss(seq) 0.3784 | grad 3.3304 | lr 0.0010 | time_forward 2.8310 | time_backward 3.7730
[2023-09-02 01:47:22,953::train::INFO] [train] Iter 04630 | loss 2.5157 | loss(rot) 1.7022 | loss(pos) 0.2994 | loss(seq) 0.5141 | grad 3.8478 | lr 0.0010 | time_forward 1.3760 | time_backward 1.4790
[2023-09-02 01:47:31,567::train::INFO] [train] Iter 04631 | loss 0.8238 | loss(rot) 0.2842 | loss(pos) 0.1994 | loss(seq) 0.3403 | grad 2.3459 | lr 0.0010 | time_forward 3.6170 | time_backward 4.9930
[2023-09-02 01:47:41,669::train::INFO] [train] Iter 04632 | loss 1.6390 | loss(rot) 0.6481 | loss(pos) 0.4109 | loss(seq) 0.5800 | grad 2.6174 | lr 0.0010 | time_forward 4.2430 | time_backward 5.8560
[2023-09-02 01:47:51,107::train::INFO] [train] Iter 04633 | loss 2.0446 | loss(rot) 1.9613 | loss(pos) 0.0803 | loss(seq) 0.0030 | grad 3.9477 | lr 0.0010 | time_forward 4.0740 | time_backward 5.3610
[2023-09-02 01:47:53,883::train::INFO] [train] Iter 04634 | loss 2.5840 | loss(rot) 0.0105 | loss(pos) 2.5735 | loss(seq) 0.0000 | grad 4.9994 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4810
[2023-09-02 01:47:56,562::train::INFO] [train] Iter 04635 | loss 2.4698 | loss(rot) 2.2923 | loss(pos) 0.1775 | loss(seq) 0.0000 | grad 2.9615 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4430
[2023-09-02 01:48:05,868::train::INFO] [train] Iter 04636 | loss 2.3236 | loss(rot) 1.7890 | loss(pos) 0.3148 | loss(seq) 0.2197 | grad 4.5584 | lr 0.0010 | time_forward 3.9870 | time_backward 5.2990
[2023-09-02 01:48:08,525::train::INFO] [train] Iter 04637 | loss 2.8849 | loss(rot) 2.6672 | loss(pos) 0.2144 | loss(seq) 0.0032 | grad 5.0794 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4180
[2023-09-02 01:48:18,543::train::INFO] [train] Iter 04638 | loss 1.4894 | loss(rot) 0.0942 | loss(pos) 1.3803 | loss(seq) 0.0149 | grad 7.2163 | lr 0.0010 | time_forward 4.2370 | time_backward 5.7770
[2023-09-02 01:48:27,917::train::INFO] [train] Iter 04639 | loss 3.1655 | loss(rot) 2.7630 | loss(pos) 0.1359 | loss(seq) 0.2666 | grad 8.7369 | lr 0.0010 | time_forward 3.9780 | time_backward 5.3930
[2023-09-02 01:48:36,865::train::INFO] [train] Iter 04640 | loss 1.6769 | loss(rot) 1.1204 | loss(pos) 0.1296 | loss(seq) 0.4270 | grad 3.8692 | lr 0.0010 | time_forward 3.6040 | time_backward 5.3400
[2023-09-02 01:48:46,575::train::INFO] [train] Iter 04641 | loss 1.2145 | loss(rot) 0.3751 | loss(pos) 0.7442 | loss(seq) 0.0951 | grad 3.0161 | lr 0.0010 | time_forward 4.0980 | time_backward 5.6090
[2023-09-02 01:48:49,309::train::INFO] [train] Iter 04642 | loss 1.8051 | loss(rot) 0.1301 | loss(pos) 1.6558 | loss(seq) 0.0192 | grad 8.5878 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4350
[2023-09-02 01:48:57,913::train::INFO] [train] Iter 04643 | loss 1.2454 | loss(rot) 0.0313 | loss(pos) 1.2115 | loss(seq) 0.0027 | grad 4.2503 | lr 0.0010 | time_forward 3.6720 | time_backward 4.9160
[2023-09-02 01:49:00,611::train::INFO] [train] Iter 04644 | loss 0.5751 | loss(rot) 0.1129 | loss(pos) 0.4373 | loss(seq) 0.0248 | grad 3.3343 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4220
[2023-09-02 01:49:09,290::train::INFO] [train] Iter 04645 | loss 1.8024 | loss(rot) 1.6441 | loss(pos) 0.1583 | loss(seq) 0.0000 | grad 4.3731 | lr 0.0010 | time_forward 3.6410 | time_backward 5.0340
[2023-09-02 01:49:18,153::train::INFO] [train] Iter 04646 | loss 2.5879 | loss(rot) 2.1057 | loss(pos) 0.2528 | loss(seq) 0.2295 | grad 5.0377 | lr 0.0010 | time_forward 3.7620 | time_backward 5.0990
[2023-09-02 01:49:20,819::train::INFO] [train] Iter 04647 | loss 1.0569 | loss(rot) 0.2076 | loss(pos) 0.4853 | loss(seq) 0.3640 | grad 8.5570 | lr 0.0010 | time_forward 1.2640 | time_backward 1.3980
[2023-09-02 01:49:28,859::train::INFO] [train] Iter 04648 | loss 2.6927 | loss(rot) 1.7800 | loss(pos) 0.4078 | loss(seq) 0.5049 | grad 4.2943 | lr 0.0010 | time_forward 3.3690 | time_backward 4.6650
[2023-09-02 01:49:32,299::train::INFO] [train] Iter 04649 | loss 2.5482 | loss(rot) 1.1609 | loss(pos) 0.8562 | loss(seq) 0.5311 | grad 4.0997 | lr 0.0010 | time_forward 1.4590 | time_backward 1.9780
[2023-09-02 01:49:40,449::train::INFO] [train] Iter 04650 | loss 3.1236 | loss(rot) 2.8005 | loss(pos) 0.1793 | loss(seq) 0.1438 | grad 4.5202 | lr 0.0010 | time_forward 3.4430 | time_backward 4.7030
[2023-09-02 01:49:50,234::train::INFO] [train] Iter 04651 | loss 1.5441 | loss(rot) 0.1329 | loss(pos) 1.3888 | loss(seq) 0.0224 | grad 7.3460 | lr 0.0010 | time_forward 3.8890 | time_backward 5.8920
[2023-09-02 01:49:52,700::train::INFO] [train] Iter 04652 | loss 1.6460 | loss(rot) 0.3534 | loss(pos) 0.6805 | loss(seq) 0.6121 | grad 4.5241 | lr 0.0010 | time_forward 1.1650 | time_backward 1.2990
[2023-09-02 01:50:00,951::train::INFO] [train] Iter 04653 | loss 1.6579 | loss(rot) 1.0412 | loss(pos) 0.0945 | loss(seq) 0.5222 | grad 2.8811 | lr 0.0010 | time_forward 3.3170 | time_backward 4.9300
[2023-09-02 01:50:09,840::train::INFO] [train] Iter 04654 | loss 2.6890 | loss(rot) 1.6191 | loss(pos) 0.4277 | loss(seq) 0.6421 | grad 4.1620 | lr 0.0010 | time_forward 3.7860 | time_backward 5.0980
[2023-09-02 01:50:17,004::train::INFO] [train] Iter 04655 | loss 1.6354 | loss(rot) 1.4490 | loss(pos) 0.1370 | loss(seq) 0.0495 | grad 6.0611 | lr 0.0010 | time_forward 3.1420 | time_backward 4.0190
[2023-09-02 01:50:25,538::train::INFO] [train] Iter 04656 | loss 1.5815 | loss(rot) 0.4192 | loss(pos) 0.6634 | loss(seq) 0.4988 | grad 3.6640 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9140
[2023-09-02 01:50:32,265::train::INFO] [train] Iter 04657 | loss 2.2813 | loss(rot) 2.0930 | loss(pos) 0.1687 | loss(seq) 0.0196 | grad 5.3302 | lr 0.0010 | time_forward 2.9330 | time_backward 3.7910
[2023-09-02 01:50:34,866::train::INFO] [train] Iter 04658 | loss 3.0929 | loss(rot) 2.9686 | loss(pos) 0.1210 | loss(seq) 0.0032 | grad 4.2469 | lr 0.0010 | time_forward 1.2080 | time_backward 1.3900
[2023-09-02 01:50:44,141::train::INFO] [train] Iter 04659 | loss 0.9919 | loss(rot) 0.1747 | loss(pos) 0.5618 | loss(seq) 0.2554 | grad 4.6393 | lr 0.0010 | time_forward 3.9670 | time_backward 5.2920
[2023-09-02 01:50:52,868::train::INFO] [train] Iter 04660 | loss 1.6783 | loss(rot) 0.0289 | loss(pos) 1.6444 | loss(seq) 0.0049 | grad 9.0169 | lr 0.0010 | time_forward 3.7170 | time_backward 5.0060
[2023-09-02 01:50:55,544::train::INFO] [train] Iter 04661 | loss 1.9931 | loss(rot) 1.3496 | loss(pos) 0.1608 | loss(seq) 0.4826 | grad 3.4016 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4130
[2023-09-02 01:50:58,834::train::INFO] [train] Iter 04662 | loss 2.6207 | loss(rot) 2.2426 | loss(pos) 0.2088 | loss(seq) 0.1692 | grad 4.1400 | lr 0.0010 | time_forward 1.4920 | time_backward 1.7940
[2023-09-02 01:51:06,072::train::INFO] [train] Iter 04663 | loss 1.9057 | loss(rot) 1.7859 | loss(pos) 0.1177 | loss(seq) 0.0020 | grad 4.7762 | lr 0.0010 | time_forward 2.9490 | time_backward 4.2860
[2023-09-02 01:51:16,011::train::INFO] [train] Iter 04664 | loss 2.9083 | loss(rot) 2.7219 | loss(pos) 0.1645 | loss(seq) 0.0219 | grad 5.0032 | lr 0.0010 | time_forward 3.9410 | time_backward 5.9960
[2023-09-02 01:51:25,919::train::INFO] [train] Iter 04665 | loss 2.6573 | loss(rot) 2.4643 | loss(pos) 0.1733 | loss(seq) 0.0197 | grad 4.8389 | lr 0.0010 | time_forward 3.8560 | time_backward 6.0480
[2023-09-02 01:51:28,591::train::INFO] [train] Iter 04666 | loss 1.2216 | loss(rot) 0.9298 | loss(pos) 0.2189 | loss(seq) 0.0729 | grad 3.2937 | lr 0.0010 | time_forward 1.2790 | time_backward 1.3890
[2023-09-02 01:51:31,345::train::INFO] [train] Iter 04667 | loss 1.6231 | loss(rot) 0.0602 | loss(pos) 1.5535 | loss(seq) 0.0094 | grad 8.7324 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4430
[2023-09-02 01:51:38,960::train::INFO] [train] Iter 04668 | loss 1.3306 | loss(rot) 0.3634 | loss(pos) 0.9253 | loss(seq) 0.0420 | grad 6.7821 | lr 0.0010 | time_forward 3.2960 | time_backward 4.3160
[2023-09-02 01:51:48,722::train::INFO] [train] Iter 04669 | loss 1.2169 | loss(rot) 0.4127 | loss(pos) 0.5613 | loss(seq) 0.2429 | grad 3.6859 | lr 0.0010 | time_forward 4.1380 | time_backward 5.6210
[2023-09-02 01:51:56,045::train::INFO] [train] Iter 04670 | loss 2.6160 | loss(rot) 1.6972 | loss(pos) 0.4059 | loss(seq) 0.5129 | grad 5.0267 | lr 0.0010 | time_forward 3.1800 | time_backward 4.1250
[2023-09-02 01:52:05,879::train::INFO] [train] Iter 04671 | loss 2.2131 | loss(rot) 1.9369 | loss(pos) 0.2032 | loss(seq) 0.0730 | grad 6.8759 | lr 0.0010 | time_forward 4.0540 | time_backward 5.7770
[2023-09-02 01:52:08,572::train::INFO] [train] Iter 04672 | loss 2.3171 | loss(rot) 2.0768 | loss(pos) 0.2401 | loss(seq) 0.0001 | grad 4.7198 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4310
[2023-09-02 01:52:18,638::train::INFO] [train] Iter 04673 | loss 1.8731 | loss(rot) 0.5358 | loss(pos) 1.0092 | loss(seq) 0.3281 | grad 11.1857 | lr 0.0010 | time_forward 4.1150 | time_backward 5.9480
[2023-09-02 01:52:28,756::train::INFO] [train] Iter 04674 | loss 1.6738 | loss(rot) 0.1407 | loss(pos) 1.5194 | loss(seq) 0.0136 | grad 9.1803 | lr 0.0010 | time_forward 4.0560 | time_backward 6.0580
[2023-09-02 01:52:38,783::train::INFO] [train] Iter 04675 | loss 2.3351 | loss(rot) 2.2364 | loss(pos) 0.0891 | loss(seq) 0.0096 | grad 3.2837 | lr 0.0010 | time_forward 4.1760 | time_backward 5.8470
[2023-09-02 01:52:41,923::train::INFO] [train] Iter 04676 | loss 2.2387 | loss(rot) 1.2540 | loss(pos) 0.4106 | loss(seq) 0.5741 | grad 5.1508 | lr 0.0010 | time_forward 1.7230 | time_backward 1.4130
[2023-09-02 01:52:51,690::train::INFO] [train] Iter 04677 | loss 2.9147 | loss(rot) 2.4561 | loss(pos) 0.1889 | loss(seq) 0.2698 | grad 4.7662 | lr 0.0010 | time_forward 4.4030 | time_backward 5.3600
[2023-09-02 01:52:54,476::train::INFO] [train] Iter 04678 | loss 1.6781 | loss(rot) 0.7652 | loss(pos) 0.3445 | loss(seq) 0.5685 | grad 4.0912 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4590
[2023-09-02 01:52:56,743::train::INFO] [train] Iter 04679 | loss 1.9844 | loss(rot) 1.4576 | loss(pos) 0.0931 | loss(seq) 0.4337 | grad 2.6570 | lr 0.0010 | time_forward 1.0490 | time_backward 1.2000
[2023-09-02 01:53:04,235::train::INFO] [train] Iter 04680 | loss 2.0444 | loss(rot) 1.2062 | loss(pos) 0.2598 | loss(seq) 0.5784 | grad 4.1385 | lr 0.0010 | time_forward 3.1650 | time_backward 4.3110
[2023-09-02 01:53:06,962::train::INFO] [train] Iter 04681 | loss 2.0990 | loss(rot) 1.1160 | loss(pos) 0.5356 | loss(seq) 0.4474 | grad 3.6017 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4460
[2023-09-02 01:53:09,711::train::INFO] [train] Iter 04682 | loss 3.4642 | loss(rot) 2.5365 | loss(pos) 0.5085 | loss(seq) 0.4191 | grad 4.9634 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4480
[2023-09-02 01:53:18,060::train::INFO] [train] Iter 04683 | loss 1.8754 | loss(rot) 1.2224 | loss(pos) 0.1843 | loss(seq) 0.4686 | grad 3.8977 | lr 0.0010 | time_forward 3.3720 | time_backward 4.9730
[2023-09-02 01:53:27,262::train::INFO] [train] Iter 04684 | loss 2.3999 | loss(rot) 1.4523 | loss(pos) 0.3721 | loss(seq) 0.5755 | grad 4.9375 | lr 0.0010 | time_forward 3.8000 | time_backward 5.3980
[2023-09-02 01:53:35,294::train::INFO] [train] Iter 04685 | loss 1.6369 | loss(rot) 1.3387 | loss(pos) 0.1167 | loss(seq) 0.1815 | grad 4.2461 | lr 0.0010 | time_forward 3.3470 | time_backward 4.6810
[2023-09-02 01:53:45,574::train::INFO] [train] Iter 04686 | loss 2.0481 | loss(rot) 1.0858 | loss(pos) 0.5090 | loss(seq) 0.4532 | grad 3.9655 | lr 0.0010 | time_forward 4.3270 | time_backward 5.9490
[2023-09-02 01:53:53,696::train::INFO] [train] Iter 04687 | loss 2.4559 | loss(rot) 1.8876 | loss(pos) 0.1172 | loss(seq) 0.4510 | grad 3.8119 | lr 0.0010 | time_forward 3.4460 | time_backward 4.6730
[2023-09-02 01:53:56,351::train::INFO] [train] Iter 04688 | loss 1.2519 | loss(rot) 0.2976 | loss(pos) 0.7786 | loss(seq) 0.1756 | grad 4.5070 | lr 0.0010 | time_forward 1.2530 | time_backward 1.3980
[2023-09-02 01:54:06,207::train::INFO] [train] Iter 04689 | loss 2.2102 | loss(rot) 1.9727 | loss(pos) 0.1491 | loss(seq) 0.0883 | grad 3.4778 | lr 0.0010 | time_forward 4.0240 | time_backward 5.7950
[2023-09-02 01:54:08,396::train::INFO] [train] Iter 04690 | loss 2.5928 | loss(rot) 2.2958 | loss(pos) 0.2095 | loss(seq) 0.0875 | grad 5.9776 | lr 0.0010 | time_forward 1.0330 | time_backward 1.1520